Type 1 Diabetes-Induced Hyper-Responsiveness to 5-Hydroxytryptamine in Rat Pulmonary Arteries via Oxidative Stress and Induction of Cyclooxygenase-2

Jose G. Lopez-Lopez, Javier Moral-Sanz, Giovanna Frazziano, Maria J. Gomez-Villalobos, Laura Moreno, Carmen Menendez, Jorge Flores-Hernandez, Jose A. Lorente, Angel Cogolludo, and Francisco Perez-Vizcaíno

Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico (J.G.L.-L., M.J.G.-V., J.F.-H.); Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain (J.M.-S., G.F., L.M., C.M., A.C., F.P.-V.); Hospital Universitario de Getafe, Getafe, Spain (J.A.L.); and Ciber Enfermedades Respiratorias, Bunyola, Spain (J.M.-S., G.F., L.M., C.M., J.A.L., A.C., F.P.-V.)

Received January 17, 2011; accepted April 25, 2011

ABSTRACT

Recent epidemiological data suggest that diabetes is a risk factor for pulmonary arterial hypertension. The aim of the present study was to analyze the link between type 1 diabetes and pulmonary arterial dysfunction in rats. Male Sprague-Dawley rats were randomly divided into a control group (saline) and a diabetic group (70 mg/kg streptozotocin). After 6 weeks, diabetic animals showed a down-regulation of the lung bone morphogenetic protein receptor type 2, up-regulation of 5-hydroxytryptamine (5-HT) 2A receptors and cyclooxygenase-2 (COX-2) proteins as measured by Western blot analysis, and increased contractile responses to 5-HT in isolated intrapulmonary arteries. The hyper-responsiveness to 5-HT was endothelium-independent and unaffected by inhibition of nitric-oxide synthase but prevented by indomethacin, the selective COX-2 inhibitor N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide (NS-398), superoxide dismutase, and the NADPH oxidase inhibitor apocynin or chronic treatment with insulin. However, diabetic rats at 6 weeks did not develop elevated right ventricular pressure or pulmonary artery muscularization, whereas a longer exposure (4 months) to diabetes induced a modest, but significant, increase in right ventricular systolic pressure. In conclusion, type 1 diabetes mellitus in rats induces a number of changes in lung protein expression and pulmonary vascular reactivity characteristic of clinical and experimental pulmonary arterial hypertension but insufficient to elevate pulmonary pressure. Our results further strengthen the link between diabetes and pulmonary arterial hypertension.

Introduction

Despite the fact that type 1 and type 2 diabetes are strongly associated with systemic cardiovascular diseases (Rutter et al., 2005) the relationship with pulmonary vascular disease has been almost disregarded (Fouty, 2008). However, epidemiological studies suggest a link between diabetes and pulmonary arterial hypertension (PAH) (Movahed et al., 2005; Makarevich et al., 2007; Zamanian et al., 2009). In addition, maternal diabetes is an independent risk factor for persistent pulmonary hypertension of the newborn (Hernandez-Diaz et al., 2007). There is also some experimental evidence linking type 2 diabetes with PAH. Thus, male ApoE(-/-) mice on a high-fat diet, an animal model associated to insulin resistance, developed PAH that was prevented by the antidiabetic drug rosiglitazone (Hansmann et al., 2007).

PAH exhibits a complex pathophysiology, unlikely to be explained by a single factor (Chan and Loscalzo, 2008; Rabinovitch, 2008). Mutations in bone morphogenetic protein receptor type 2 (BMPR2) underlie many heritable and sporadic cases of PAH (International PPH Consortium, et al., 2000).
2000), and down-regulation of its expression is a common feature of several forms of PAH (Atkinson et al., 2002). Inactivation, down-regulation, or gene polymorphisms of voltage-gated potassium channels (Kv) have also been implicated in PAH (Yuan et al., 1998). Several lines of evidence also indicate that serotonin [5-hydroxytryptamine (5-HT)] plays a central role in the pathogenesis of this entity. Thus, 5-HT stimulates pulmonary artery (PA) contraction and smooth muscle cell proliferation and blocks Kv (MacLean et al., 2000; Cogolludo et al., 2006b). Hyper-responsiveness to 5-HT in large and small PAs is a common feature of PAH (Le Cras et al., 2000; Sato et al., 2000; Keegan et al., 2001; Thomas and Wanstall, 2003; Rodat et al., 2007). Elevated plasma levels of 5-HT and overexpression or polymorphisms in the genes encoding 5-HT receptors or the 5-HT transporter are associated with the disease (MacLean et al., 2000). It has also been suggested that local endothelium-derived 5-HT acting in a paracrine manner may be involved in PAH (Eddahibi et al., 2006). Furthermore, pharmacological inhibition or genetic deletion of 5-HT receptors or the 5-HT transporter attenuates PAH and prolongs survival (MacLean et al., 2000). Loss of nitric-oxide bioavailability is an additional component of the endothelial dysfunction and vascular pathology found in PAH (Coggins and Bloch, 2007).

In rats treated with streptozotocin, a widely used model of type 1 diabetes, we have found pulmonary endothelial dysfunction associated with increased superoxide production and up-regulation of the NADPH oxidase subunit p47phox (Lopez-Lopez et al., 2008). Right ventricular hypertrophy has also been found in this model (Al-Shafei et al., 2002). We hypothesized that type 1 diabetes could lead to the development of PAH. Therefore, the present study was designed to analyze the effects of streptozotocin on pulmonary markers of PAH, including the pulmonary expression of key proteins of the disease, Kv currents, PA pressure, and right ventricular hypertrophy. We also further analyzed the mechanisms contributing to the vascular hyper-reactivity of PA to 5-HT.

Materials and Methods

Animals and Treatments. The investigation conforms with the Guide for the Care and Use of Laboratory Animals (National Institutes of Health Publication 85-23, revised 1986), and the procedures were approved by the institutional review board (Comité de Experimentación Animal, Universidad Complutense de Madrid, Madrid, Spain). Male Sprague-Dawley rats were randomly divided into control and diabetic groups. Diabetes was induced by a single intraperitoneal injection of 70 mg/kg streptozotocin (controls were injected with saline) and followed for 6 weeks (one group was followed for 4 months). In a further experimental series, streptozotocin-treated rats were randomly cotreated with insulin glargine (5 units/kg, once daily) or saline. Blood glucose was analyzed using a clinical glucometer.

Pressure Measurements. Systolic and diastolic systemic arterial pressures (SAPs) were analyzed with a pressure transducer via a catheter located in the right carotid artery in anesthetized (pentobarbital, 30–50 mg/kg, i.p.) rats ventilated with room air. Right ventricular systolic pressure (RVSP) was then measured in open-chest rats with a pressure transducer via a catheter advanced through the right jugular vein and placed into the right ventricle (RV).

Lung Histology. The right lung was inflated in situ with formalin (via a column of 25-cm height through the trachea) and embedded in paraffin. Lung sections were stained by hematoxylin/eosin and Mason trichrome techniques and examined by light microscopy. Elastin was visualized by its green autofluorescence. Small arteries were analyzed in a blinded fashion and categorized as muscular, partially muscular, or nonmuscular.

Vascular Reactivity. Intrapulmonary artery rings (2–3 mm long, internal diameter 0.5–0.8 mm) were dissected and mounted in Krebs’ solution under 0.75 g of resting tension in organ chambers as described previously (Cogolludo et al., 2006b). In some experiments, the endothelium was removed by gently rubbing the intimal surface of the rings with a metal rod. The endothelium removal procedure was verified by the inability of acetylcholine (10^{-6} M) to relax arteries precontracted with 10^{-6} M phenylephrine. After equilibration, rings were precontracted by 80 mM KCl, and once a stable contraction was reached they were washed with Krebs’ solution for 30 min, and concentration-response curves to 5-HT (10^{-8} to 10^{-4} M) were performed by cumulative addition in the absence or presence of drugs.

Kv Current Recordings. PA smooth muscle cells were enzymatically isolated, and membrane currents were recorded using the whole-cell configuration of the patch-clamp technique as described previously (Cogolludo et al., 2006b).

Western Blot Analysis. Pulmonary artery or whole lung homogenates were run by SDS-polyacrylamide gel electrophoresis, and Western blot was performed as described previously (Moreno et al., 2004) using primary monoclonal mouse anti-α or anti-β-actin (Sigma-Aldrich, St. Louis, MO), anti-BMPR2 (BD Biosciences Transduction Laboratories, Lexington, KY), anti-SHPT1 (BD Biosciences Pharmingen, San Diego, CA), anti-cyclooxygenase-2 (COX-2) (Cayman Chemical, Ann Arbor, MI), or anti-Kv-1,5 (Alomone Labs, Jerusalem, Israel) antibodies.

Statistical Analysis. Results are expressed as means ± S.E.M. of measurements. Statistical analysis was performed by an unpaired Student’s t test and for multiple comparisons by one-way analysis of variance followed by a Newman-Keuls test. P < 0.05 was considered statistically significant. Individual cumulative concentration-response curves were fitted to a logistic equation. The maximal drug effect (E_max) and the drug concentration producing 50% of the E_max (EC_{50}) expressed as negative log molar value (pD_{2}) were calculated from the fitted curves for each ring. Apparent pK_a values were calculated according to the equation pK_a = log(10) - 1 - log[B], where DR is the ratio of the mean EC_{50} values of the agonist in the presence and absence of a given concentration (B) of the antagonist.

Results

Right Ventricular Systolic Pressure and Right Ventricular Weight. After 6 weeks of streptozotocin treatment, animals developed the expected increase in blood glucose (488 ± 39 mg/dl; P < 0.01 versus 134 ± 13 mg/dl in control animals) and decrease in body weight (BW) (196 ± 13 g; P < 0.01 versus 367 ± 10 g in control animals). We found no significant changes in RVSP or the ratios of the free wall of the RV to BW, free wall of the left ventricle (LV) plus septum (S) to BW or RV/(LV+S) compared with controls (Fig. 1A). Moreover, diabetes did not modify the percentage of muscular, partially muscular, or nonmuscular arteries (Fig. 1B). However, in the group treated for 4 months with streptozotocin (blood glucose 473 ± 31 mg/dl; P < 0.01 versus 125 ± 5 mg/dl in control animals) there was a significant increase in RVSP compared with parallel controls (22.4 ± 1.9, n = 6 vs 16.7 ± 0.7 mm Hg, n = 4; P < 0.05).

Lung BMPR2 But Not K_{v1.5} Expression Is Down-Regulated in Diabetes. Because BMPR2 and K_{v1.5} are key proteins involved in PAH we examined its expression in diabetic lungs. Diabetes induced a clear down-regulation of lung BMPR2 expression (Fig. 2A). In contrast, the expression of K_{v1.5} channel protein was not significantly modified in these diabetic animals (Fig. 2B).

In isolated PA smooth mus-
The presence of the nitric-oxide synthase inhibitor L-NAME (Lopez et al., 2008) similar experiments were carried out in arteries from rats cotreated with streptozotocin plus insulin (blood glucose = 178 ± 5 mg/dl) the E_{max} of 5-HT was reduced (115 ± 17%; $P < 0.05$) compared with the parallel group of streptozotocin-treated rats (glucose = 440 ± 26; $E_{\text{max}} = 201 ± 17\%$).

Role of 5-HT$_{2A}$ Receptors. We analyzed the contractile response of 5-HT in endothelium-intact and -denuded PA in the presence of the competitive antagonist of 5-HT$_{2A}$ receptors, ketanserin. This drug produced a rightward shift of the concentration response to 5-HT (Fig. 4A). The calculated pK_B values of ketanserin from this shift, an indicator of the potency of the antagonist, were 8.2 in both intact and denuded arteries (Fig. 4B). These pK_B values are in agreement with the expected potency of the antagonist for 5-HT$_{2A}$ receptors (8.1–9.7) (Alexander et al., 2008), indicating that these receptors seem to play a major role in 5-HT contraction as reported previously (MacLean et al., 1996). The potency of ketanserin was similar in control and diabetic animals in both intact and denuded vessels. To analyze the possible role of changes in 5-HT$_{2A}$ receptors, its expression was analyzed in lung homogenates by Western blot. The expression of the 5-HT$_{2A}$ receptors was increased ~2-fold in diabetic rats (Fig. 4C).

Fig. 1. Effects of diabetes on RVSP, right ventricular hypertrophy, and PA muscularization. A, systolic and diastolic SAP, RVSP, right ventricular weight relative to body weight (RV/BW), and right ventricular weight relative to left ventricular plus septum weight [RV/(LV+S)] in control (open columns) and streptozotocin-treated (solid columns) rats ($n = 5$ and 8, respectively). B, percentage of muscular, partially muscular, and nonmuscular arteries in control and diabetic rats ($n = 4$). Each column represents the mean ± S.E.M.

PA from Diabetic Rats Show Endothelium-Independent Hyper-Responsiveness to 5-HT. 5-HT induced a concentration-dependent contractile response that was higher in diabetic rats compared with control rats (Fig. 3A). The analysis of the concentration-response curve indicated that diabetes induced an increase in the maximal contractile response (E_{max}; Fig. 3C) without significant changes in the concentration of 5-HT required for half-maximal contraction (pD_{50}; Fig. 3C). Because this increased response could be attributed to a reduced nitric-oxide bioavailability (Lopez-Lopez et al., 2008) similar experiments were carried out in the presence of the nitric-oxide synthase inhibitor L-NAME. This drug increased the maximal response to 5-HT in both diabetic and control animals ($P < 0.05$), but the difference between both groups remained highly significant ($P < 0.01$; Fig. 3, B and C). Likewise, in endothelium-denuded arteries the response to 5-HT was higher ($P < 0.01$) than in intact ones, but again diabetic-denuded vessels were strongly hyper-responsive ($P < 0.01$; Figs. 3C and 4A). In endothelium-denuded arteries from rats cotreated with streptozotocin plus insulin (blood glucose = 178 ± 5 mg/dl) the E_{max} of 5-HT was reduced (115 ± 17%; $P < 0.05$) compared with the parallel group of streptozotocin-treated rats (glucose = 440 ± 26; $E_{\text{max}} = 201 ± 17\%$).

Fig. 2. Diabetes down-regulates BMPR2 but not Kv1.5 expression. A and B, expression of BMPR2 (A) and Kv1.5 (B) in lungs from diabetic (d) and parallel control (c) rats measured by Western blot. *, $P < 0.05$ versus control. C, K_v currents recorded in isolated PA smooth muscle cells. Left, current traces are shown for depolarization pulses from −60 to +60 mV from a holding potential of −60 mV. Right, current-voltage relationships measured at the end of the pulse ($n = 4–8$).
Role of Superoxide. Because we have reported previously an increase in NADPH oxidase-derived superoxide in PA from diabetic rats (Lopez-Lopez et al., 2008), we analyzed the contractile response to 5-HT in endothelium-intact PA treated with superoxide dismutase (SOD) or the NADPH oxidase inhibitor apocynin. The contraction induced by 5-HT in control rats (Fig. 6) was similar to that observed in the absence of the drugs (Fig. 3A). However, both treatments prevented enhanced response to 5-HT in diabetic rats.

Effects of Exogenous Addition of Superoxide and a Thromboxane A_2 Analog. The responses to 5-HT in PA from control rats were analyzed in the presence of the superoxide-generating drug pyrogallol or the thromboxane A_2 (TXA_2) analog (Z)-7-(1S,3S,4S)-3-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxabicyclo[2.2.1]heptan-2-yl]hept-5-enoic acid (U46619). After washing the initial response to KCl, pyrogallol or U46619 was added at concentrations titrated to produce 5 to 15% of the response to KCl (3 × 10^-6 and 10^-8 M, respectively). After 15 min the concentration-response to 5-HT was performed. Pyrogallol increased the E_max to 5-HT without changing the pD2 value, and this effect was prevented by indomethacin (Fig. 7A), mimicking the results in diabetic rats. On the other hand, U46619 produced a leftward shift of the curve to 5-HT (increase in pD2) with a nonsignificant increase in the E_max, and this effect was not prevented by apocynin (Fig. 7B).

Role of Cyclooxygenase-2. To analyze a possible role of COX, we tested the effects of the nonselective COX inhibitor indomethacin in endothelium-intact vessels. This drug produced a weak rightward shift of the curve to 5-HT in PA from control rats (Fig. 5A), leading to a significant decrease in the pD2 value (Fig. 5C). It is noteworthy that indomethacin abolished the hyper-responsiveness to 5-HT in diabetic rats. In the presence of the selective COX-2 inhibitor N-(2-cyclohexyloxy)-4-nitrophenyl-methane sulfonamide (NS-398) the responses to 5-HT in control rats were similar to those in its absence. However, in diabetic rats, this drug prevented the enhanced response to 5-HT and also induced a weak rightward shift of the curve (Fig. 5B), leading to a significant decrease in the pD2 value (Fig. 5C). Consistent with a role for COX-2 in the vascular responses, the amount of this protein was strongly increased in PA from diabetic rats (Fig. 5D).

Fig. 3. PA from diabetic rats are hyper-responsive to 5-HT. A and B, vasoconstrictor responses induced by 5-HT in endothelium-intact (+E) PA from diabetic and control rats in the absence (A; n = 17 and 13, respectively) or the presence (B; n = 7 and 5, respectively) of L-NAME (10^-4 M). C, E_max and pD2 values calculated from data here and in endothelium-denuded PA (−E from Fig. 4A). **P < 0.01 versus control. #, P < 0.05; ##, P < 0.01, versus +E.

Fig. 4. Role of 5-HT_2A receptors. A, effects of the 5-HT_2A receptor antagonist ketanserin (10^-7 M) on the vasoconstrictor responses to 5-HT in endothelium-denuded PA (n = 5–7). B, calculated pD2 and pK_b values for both endothelium-intact (+E) and endothelium-denuded (−E) PA. C, expression of 5-HT_2A receptors in lungs from diabetic rats (d; n = 8) and parallel controls (c; n = 8). **P < 0.01 versus control.
down-regulated and it has been also reported in diabetic rat kidneys (Wang et al., 2001). Our data are consistent with the concept that BMPR2 mutation or down-regulation is a predisposing factor but may not be sufficient for PAH 5-HT (Long et al., 2006). In contrast, in diabetic rats there was no significant change in K_v currents and $K_v1.5$ expression. This is consistent with the small, if any, change in both parameters found in the fawn hooded rats, an animal model of genetic predisposition to PAH, at 20 weeks of age (prehypertensive) (Bonnet et al., 2006).

Hyper-responsiveness to 5-HT in large and small PA rings is a common feature of animal models of PAH, including cardiopulmonary bypass-, chronic hypoxia-, intermittent hypoxia-, or monocrotaline-induced PAH (Brown et al., 1998; Sato et al., 2000; Keegan et al., 2001; Thomas and Wanstall, 2003; Rodat et al., 2007). We also found a marked increase in the response to 5-HT in intrapulmonary arteries from diabetic rats. Because PAs from BMPR2(+/−) mice also exhibit increased contractile responses to 5-HT (Long et al., 2006) it seems likely that in the diabetic rats hyper-responsiveness to 5-HT is a consequence of the BMPR2 down-regulation. It is noteworthy that PAH is not evident in BMPR2(+/−) mice but it does develop after chronic 5-HT infusion, an effect that is exaggerated under hypoxic conditions (Long et al., 2006).

The increased response to 5-HT was maintained in endothelium-denuded vessels or in the presence of L-NAME, in-

![Fig. 5. Role of COX-2. A and B, effects of the nonselective COX inhibitor indomethacin (INDO; 10 $^{-5}$ M) (A) and the COX-2-selective inhibitor NS-398 (10 $^{-5}$ M) (B) on the vasoconstrictor responses to 5-HT in endothelium-intact PA ($n = 6$). C, E_{max} and pD_2 values calculated from A and B and in the absence of drug (untreated, calculated from Fig. 3). D, expression of COX-2 in PA from control ($n = 5$) and diabetic ($n = 6$) rats. †, $P < 0.05$; ††, $P < 0.01$, diabetic versus control rats. ‡, $P < 0.05$, indomethacin versus untreated.](image)

Discussion

Despite the well known link between diabetes and systemic cardiovascular disease, the relationship with pulmonary vascular disease has been largely overlooked. In a previous study, insulin resistance in ApoE(−/−) mice was associated with PAH (Hansmann et al., 2007). We found previously PA endothelial dysfunction, a characteristic feature of PAH, in rats with type 1 diabetes, and right ventricular hypertrophy was also reported in streptozotocin-treated rats (Al-Shafei et al., 2002; Lopez-Lopez et al., 2008). Herein, we show that rats treated with streptozotocin share a number of pulmonary vascular abnormalities with animal models and patients with PAH such as down-regulation of BMPR2, COX-2 induction, up-regulation of 5-HT$_{2A}$ receptors, and vascular hyper-responsiveness to 5-HT in addition to those described previously such as endothelial dysfunction and pulmonary vascular oxidative stress. RVSP and RV/(LV+S) and PA muscularization were not significantly different in diabetic rats compared with nondiabetic controls at 6 weeks, whereas at 4 months we found a significant increase in RVSP. This increase was modest, much lower than classic models of PAH.

Both clinical and experimental forms of PAH are associated with a decrease in K_v currents and diminished pulmonary expression of BMPR2 (Atkinson et al., 2002; Takahashi et al., 2006; Morty et al., 2007) and $K_v1.5$, $K_v3.1$, and $K_v2.1$ channels (Yuan et al., 1998; Bonnet et al., 2006; Guignabert et al., 2006). In diabetic animals lung BMPR2 protein was decreased and it has been also reported in diabetic rat kidneys (Wang et al., 2001). Our data are consistent with the concept that BMPR2 mutation or down-regulation is a predisposing factor but may not be sufficient for PAH 5-HT (Long et al., 2006). In contrast, in diabetic rats there was no significant change in K_v currents and $K_v1.5$ expression. This is consistent with the small, if any, change in both parameters found in the fawn hooded rats, an animal model of genetic predisposition to PAH, at 20 weeks of age (prehypertensive) (Bonnet et al., 2006).
indicating that a major component of this phenomenon is not related to acute release of endothelial vasoactive factors.

However, differences tended to be smaller in endothelium-denuded compared with intact vessels, suggesting that endothelial dysfunction (Al-Shafei et al., 2002; Lopez-Lopez et al., 2008) might also play a role. Moreover, it seems to be secondary to the high blood glucose rather than a direct effect of streptozotocin because it was reduced by cotreatment with insulin. On the other hand, the similar potency of ketanserin, a specific 5HT2A receptor competitive antagonist, on 5-HT vasoconstriction indicates that the responses to 5-HT are mediated mainly by 5HT2A receptors in both control and diabetic animals. However, a possible additional role for other receptors such as 5-HT1B cannot be ruled out (MacLean et al., 2009). Thus, we questioned what was first in the signal pathway in diabetic PA without affecting the controls. On the contrary, exogenous addition of a superoxide-donating drug such as pyrogallol increased the maximal response to 5-HT in control PA, mimicking the effects of diabetes.

The relationship of COX-2 and reactive oxygen species is complex because COX-2 can generate superoxide directly or indirectly via the release of TXA2 (Cogolludo et al., 2006a; Shi and Vanhoutte, 2008) and conversely, COX-2 activity can be stimulated by reactive oxygen species (Garcia-Redondo et al., 2009). Herein, we found that acute inhibition of COX-2 can prevent the hypercontractile response to 5-HT in diabetic rats as previously found in PAH induced by intermittent hypoxia (Thomas and Wanstall, 2003) or high pulmonary blood flow (Sato et al., 2000). These results suggest that a COX-2-derived metabolite is responsible for the enhanced maximal response to 5-HT. The fact that the TP receptor agonist U46619 reproduces at least partially the effect of diabetes suggests that the COX-2 metabolite might be acting on these receptors. Likewise, COX-2-dependent and endothelium-independent vascular hyper-responsiveness have also been reported in several systemic arteries from animal models of type 1 and type 2 diabetes (Jarajapu et al., 2008; Shi and Vanhoutte, 2008). Moreover, COX-2 inhibitors and ROS scavengers prevent the vascular hyper-responsiveness in endothelium-denuded femoral arteries from streptozotocin-induced diabetic rats (Shi and Vanhoutte, 2008), suggesting that COX metabolites and ROS are generated in the smooth muscle. In addition, the TP receptor antagonist terutroban prevented the femoral vascular hyper-responsiveness to ROS in diabetic animals, suggesting that the COX metabolite is acting via TP receptors (Shi and Vanhoutte, 2008).

Type 1 and type 2 diabetes are associated with systemic oxidative stress (Keaney and Loscalzo, 1999; Meigs et al., 2007). In PA, diabetes induces an increase in superoxide and up-regulation of p47phox, the regulatory subunit of the superoxide-generating enzyme NADPH oxidase, which is involved in endothelial dysfunction (Lopez-Lopez et al., 2008). The down-regulation of BMPR2 in diabetic rat kidney was prevented by the antioxidant tiron (Yeh et al., 2009), suggesting that it was secondary to oxidative stress. In addition, oxidative stress is involved in the exaggerated response to vasoconstrictors in systemic arteries from diabetic animals (Shi and Vanhoutte, 2008). Thus, we hypothesized that scavenging superoxide using SOD or inhibiting its main source using apocynin, a widely used yet nonselective NADPH oxidase inhibitor, might also prevent 5-HT hyper-responsiveness. In fact, both approaches prevented the exaggerated response to 5-HT in diabetic PA without affecting the controls. On the contrary, exogenous addition of a superoxide-donating drug such as pyrogallol increased the maximal response to 5-HT in control PA, mimicking the effects of diabetes.

The relationship of COX-2 and reactive oxygen species is complex because COX-2 can generate superoxide directly or indirectly via the release of TXA2 (Cogolludo et al., 2006a; Shi and Vanhoutte, 2008) and conversely, COX-2 activity can be stimulated by reactive oxygen species (Garcia-Redondo et al., 2009). Thus, we questioned what was first in the signaling pathway in diabetic PA COX-2 activity or increased oxidative stress. Our data fit better with the second possibility because indomethacin prevented the pyrogallol-induced hyper-responsiveness to 5-HT in control rats, whereas apocynin had no effect on U46619-induced sensitization. Taken together, the present results suggest that NADPH oxidase-
derived reactive oxygen species activate its downstream effector COX-2, leading to the enhanced response to 5-HT. This is further supported by the up-regulation of the main proteins involved in this pathway, p47phox, COX-2, and 5-HT2A receptors observed in the diabetic lungs.

In conclusion, consistent with data in humans and animal models of PAH, in diabetic rats BMP2R expression was down-regulated, 5-HT2A receptors, p47phox and COX-2 were up-regulated, and PAs were hyper-responsive to 5-HT. This latter effect was independent of the endothelium and seemed to be related to NADPH oxidase-induced superoxide production and COX-2-derived metabolites. All of these changes were not sufficient to induce a consistent increase in PA pressure or PA muscularization. However, a prolonged period of diabetes induced an increase in RVSP. Our results further strengthen the link between diabetes and PAH.

Acknowledgments
We thank Enrique Moreno and Bianca Barreiræ for excellent technical assistance.

Authorship Contributions
Participated in research design: Moreno, Lorente, Cogolludo, and Perez-Vizcaino.
Conducted experiments: Lopez-Lopez, Moral-Sanz, Frazziano, Gomez-Villalobos, Moreno, Menendez, and Flores-Hernandez.
Wrote or contributed to the writing of the manuscript: Perez-Vizcaino.

References

Address correspondence to: F. Perez-Vizcaino, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid, 28040 Madrid, Spain. E-mail: fperez@med.ucm.es