Rapid, Nongenomic Stimulation of Multidrug Resistance Protein 2 (Mrp2) Activity by Glucocorticoids in Renal Proximal Tubule

Brigitte Prevoo, David S. Miller, Femke M. van de Water, Kimberley E. Wever, Frans G. M. Russel, Gert Flik, and Rosalinde Masereeuw

Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre/Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands (B.P., F.M.v.W., K.E.W., F.G.M.R., R.M.); Department of Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands (B.P., G.F.); Laboratory of Toxicology and Pharmacology, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (D.S.M.); and Mount Desert Island Biological Laboratory, Salisbury Cove, Maine (B.P., F.M.v.W., R.M.)

ABSTRACT

In renal proximal tubule, multidrug resistance protein 2 (Mrp2) actively transports many organic anions into urine, including drugs and metabolic wastes. Upon exposure to nephrotoxins or during endotoxemia, both Mrp2 activity and expres-
sion are up-regulated. This may result from induced de novo synthesis of Mrp2 or post-transcriptional events involving specific signaling pathways. Here, we investigated glucocorticoid signaling to Mrp2 in killifish renal proximal tubules, a model system in which transport activity can be measured using a fluorescent substrate and confocal imaging. Exposure of tubules to dexamethasone rapidly increased Mrp2-mediated flu-
orescein methotrexate transport. Other glucocorticoid receptor (GR) ligands, cortisol and triamcinolone acetonide, also stimulated Mrp2-mediated transport. The GR antagonist, mifepristone (GR) ligands, cortisol and triamcinolone acetonide, also stimu-
lated Mrp2-mediated transport. The GR antagonist, mifepristone

Introduction

Multidrug resistance protein 2 (Mrp2/ABCC2) is expressed at the luminal membrane of vertebrate renal proximal tubules, where it drives ATP-dependent efflux of anionic xenobiotics and metabolic wastes into urine. Previous studies with rats in vivo, Madin-Darby canine kidney strain II cells
overexpressing human Mrp2, and isolated killifish (Fundulus heteroclitus) renal tubules showed that Mrp2-mediated transport is rapidly reduced by endothelin-1 (ET-1) acting through an ET-B receptor, inducible nitric-oxide synthase (iNOS), cGMP, and protein kinase C (Masereeuw et al., 2000; Notenboom et al., 2004). A number of nephrotoxins, including radiocontrast agents, aminoglycoside antibiotics, and heavy metal salts, initiate the same sequence of events (Terlouw et al., 2002). In the long term, however, luminal Mrp2 activity and protein expression are increased 24 h after transient exposure to ET-1 or nephrotoxins. Blocking this efflux pump resulted in an enhancement of cell damage and necrosis, indicating that its up-regulation during toxic stress is a prerequisite for survival (Heemskerk et al., 2007). Such up-regulation may result from induced de novo synthesis of Mrp2 or post-transcriptional regulation involving receptors and signaling pathways that alter Mrp2 function (Notenboom et al., 2005, 2006). In support of transcriptional up-regulation, increased levels of Mrp2 mRNA were found in the kidney after exposure to several toxicants and in chronic renal failure (van de Water et al., 2005).

The glucocorticoids, cortisol and corticosterone, are stress hormones involved in diverse physiological processes. These hormones exert their biological effects by binding to the intracellular glucocorticoid receptor (GR; NR3C1) or mineralocorticoid receptor (MR; NR3C2), which upon activation translocate to the cell nucleus and bind to specific DNA sequences to regulate transcription of target genes. Corticosteroid binding sites in the plasma membrane have also been detected (Orchinik et al., 1994). In general, the GR controls metabolism, immunity, and the stress response; MR regulates electrolyte homeostasis and blood pressure. Glucocorticoids and their synthetic analogs, as dexamethasone, are used clinically as immunosuppressive and anti-inflammatory agents, and to treat diabetes associated with inflammatory bowel disease (Löwenberg et al., 2008). However, glucocorticoids also produce serious side effects, and excess of endogenous glucocorticoids is associated with obesity, hypertension, hyperlipidemia, and glucose intolerance, as observed in Cushings syndrome (Beck et al., 2009).

In the kidney, glucocorticoids determine the acid-base balance through regulation of Na⁺ and HCO₃⁻ absorption (Hultet al., 1980). The apical expression of the most abundant Na⁺/H⁺ exchanger (NHE) isofrom, NHE3, is up-regulated through increased transcription in response to glucocorticoids. However, a rapid nongenomic GR-initiated-up-regulation that does not involve increases in protein abundance also occurs (Wang et al., 2007). Moreover, maternal treatment with dexamethasone during pregnancy reduces kidney development in the young (de Vries et al., 2010) and stimulates renal tubular NHE activity (Dagan et al., 2007), effects that possibly relate to development of hypertension in adult life.

It is not known whether other membrane transporters, including MRP2, are regulated by GR activation. In primary hepatocytes, dexamethasone increases Mrp2 transport activity; for these experiments, we used isolated renal proximal tubules from killifish and con-focal microscopy. Our results show that dexamethasone targets Mrp2 through a nongenomic mechanism, involving GR, the receptor tyrosine kinase, cMet, and MEK/ERK 1/2. This novel signaling pathway may serve to enhance efflux of accumulating wastes during cell and tissue stress.

Materials and Methods

Chemicals. Fluorescein methodroxate (FL-MTX) and Alexa Fluor 488-labeled goat anti-mouse IgG were obtained from Molecular Probes (Eugene, OR). Mouse monoclonal M2III-6 antibody to Mrp2 was from Alexis (San Diego, CA). Actinomycin D, 15β-androstan-17β-ol, bisindolylmaleimide (BIM), chenodeoxycholic acid, clotrimazole, cortisol, cortisone, cycloheximide, dexamethasone, dehydroepiandrosterone, hepatocyte growth factor (HGF), 2-(4-morpholino)-8-phenyl-4H-1-benzopyran-4-one (LY-294002), NG-methyl-1-arginine, mifepristone [17β-hydroxy-11β-[4-dimethylamino phenyl]-17α-[1-propynyl]estradiol-4,9-dien-3-one (RU486)], N-propyl p-hydroxybenzoate, 5β-pregnane-3,20-dione, pregnenalone-16α-carbonitrile, triamcinolone acetonide, 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126), 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)imidazole (SB203580), and modified medium 199 with Earles's salts were purchased from Sigma-Aldrich (St. Louis, MO). Genistein, (9S,9R,10R,12aS)-2,3,9,10.11.12-hexahydropyrido[4,3-c][1,2,3]triazolo[1,5-a]pyridine (K252a), and (2R)-1-[5-[(2,6-dichlorophenyl)methyl]-1,2-dihydro-2-oxo-3H-indol-3-ylidene]methyl]-2,4-dimethyl-1H-pyrrrol-3(4H)-yl[pyrrolidine (PHA-665752) were obtained from Calbiochem (San Diego, CA). All other chemicals used were obtained at the highest purity available.

Animals. All animal studies were performed in accordance with institutional regulations for animal protection. Killifish (Fundulus heteroclitus) were wild-caught in the vicinity of Mount Desert Island, Maine. The fish were maintained in tanks with recirculating natural seawater at the Mount Desert Island Biological Laboratory. Experiments were performed in accordance with legislation in Maine.

Transport Experiments. Killifish renal (proximal) tubules were used as a model for two reasons. First, renal tubules of fishes have, in contrast to mammalian renal tubules, the capacity to reseal after isolation; they form a closed compartment and are still viable for transport studies. Second, killifish tubules are unique because they have high Mrp2 expression in proximal tubules; the dissected and teased tubules reseal quickly; and transport closely resembles transport processes characterized in humans (Masereeuw et al., 1996; Miller et al., 1996). Experiments were carried out at room temperature (20–22°C). For an experiment, four to six fish were killed by decapitation, and pooled renal tubular masses were collected and transferred into a Petri dish filled with marine teleost saline (MTS), containing 140 mM NaCl, 2.5 mM KCl, 1.5 mM CaCl₂, 1.0 mM MgCl₂, and 20 mM Tris at pH 8.0. Under a dissecting microscope the kidney was teased with fine forceps to remove adherent hematopoietic tissue. For a first screening experiment, renal tubules were transferred into a well plate containing 2 ml of modified medium 199 with Earles's salts supplemented with 30 mM NaCl, 4.2 mM NaHCO₃, 1.0 mM l-glutamine, 25.0 mM HEPES, 14.75 mM NaOH (pH 7.5, 347 mOsmol/kg H₂O), 20 mg/ml tetracycline, 10 µg/ml insulin, and 5 µg/ml hydrocortisone (Renfro et al., 1999), without (controls) or with added chemicals. Chemicals were added from stock solutions in MTS or dimethyl sulfoxide. The final dimethyl sulfoxide concentration never exceeded 0.5% and did not affect FL-MTX transport (Breen et al., 2004). After 3-h incubation at 14°C and with 95% O₂/5% CO₂, tubules were washed in MTS and transferred to a foil-covered chamber (Bionique, Saranac Lake, NY) containing 1 ml of MTS and 2 µM FL-MTX. For all experiments except the first screening experiment, tubules were incubated for 1 h in MTS only and were directly transferred to the chambers containing the added chemicals.
and FL-MTX. The chamber floor was a 4 × 4 cm glass coverslip, through which the tubules could be viewed by means of a confocal laser-scanning microscope with inverted objectives. Tubules were incubated for 1 h at room temperature, to reach steady-state distribution of FL-MTX. It was demonstrated previously that FL-MTX is not metabolically degraded when incubated with killifish proximal tubules for periods up to 1 h or more (Masereeuw et al., 1996, 2000).

Confocal Microscopy. After incubation with FL-MTX, tubules in the chambers were placed on an inverted confocal microscope [Olympus Fluoview 1000 (Tokyo, Japan) or Zeiss LSM 510 (Carl Zeiss Inc., Thornwood, NY)] and viewed with a 20× dry objective or 40× water immersion objective. Under transmitted light, intact tubules were selected; then confocal fluorescent images were acquired using the 488-nm line of an argon ion laser, a 510-nm dichroic filter, and a 515-nm long-pass emission filter. Four scans, 4 s each, were averaged to provide a final image (512 × 512 × 8 or 12 bits). Stored images were analyzed using ImageJ 1.3u (National Institutes of Health, Bethesda, MD), as described previously (Masereeuw et al., 1996, 2000; Miller et al., 1996; Notenboom et al., 2004, 2005).

Immunohistochemistry. For the analysis of Mrp2 expression at the luminal membrane, tubules of killifish were dissected and treated with 1 μM dexamethasone for 1 h as described above. After incubation with dexamethasone, whole mounts of tubules were stained for Mrp2. For this purpose, tubules were washed in MTX, fixed for 10 min at room temperature in 2% (v/v) formaldehyde/0.1% (v/v) glutaraldehyde, permeabilized for 20 min in 1% (v/v) Triton X-100, and incubated for 90 min with a mouse monoclonal M2III-6 antibody to Mrp2 at 37°C and for 60 min with the secondary Alexa Fluor 488-labeled goat anti-mouse IgG antibody at 37°C. For staining of the GR, tubules were incubated for 90 min with a rabbit GR antibody to trout GR (1:500) at 37°C (Bury et al., 2003) and for 60 min with the secondary Alexa Fluor 594-labeled goat anti-rabbit IgG antibody (1:200) at 37°C. After staining, tubules were transferred to a Teflon chamber containing MTX, and Mrp2 expression was visualized using the Olympus Fluoview inverted confocal laser scanning microscope. Acquired confocal images were analyzed as before, only now in Mrp2-stained tubules: the entire luminal membrane was traced manually and mean pixel intensity was determined for each tubule.

Data Analysis. Most data are presented as a percentage of fluorescence intensity observed in controls (mean values ± S.E.M.). For statistical analysis, one-way analysis of variance followed by Bonferroni’s multiple comparison test was applied using Prism (version 5.02 for Windows; GraphPad Software Inc., San Diego, CA). Means were considered significantly different when p < 0.05.

Results

Dexamethasone Stimulates Mrp2-Mediated Transport in Renal Proximal Tubules. Isolated renal proximal tubules from certain teleost fish provide a convenient model for the study of membrane transport and its regulation (Masereeuw et al., 1996; Miller et al., 1996; Miller and Pritchard, 1997). These tubules are easily isolated and long-lived when maintained in a simple physiological saline. Previous studies with killifish renal proximal tubules have established functional assays for teleost organic anion transporter, P-glycoprotein, and Mrp2 (Schramm et al., 1995; Miller et al., 1996; Terlouw et al., 2001). These were based on the use of confocal microscopy and digital image analysis to measure the steady-state distribution of fluorescent substrates in intact living tubules. We showed previously that luminal accumulation of the fluorescent organic anion, FL-MTX, can be used as an indicator of Mrp2 transport activity in killifish renal proximal tubules (Masereeuw et al., 2000; Terlouw et al., 2001). Such accumulation is specific, energy-dependent, and concentrative (Fig. 1A).

In mammalian liver, Mrp2 expression is induced through activation of nuclear receptors, viz. PXR, the constitutive androstane receptor (NR1I3), and farnesoid xenobiotic receptor (FXR; NR1H4) (Kast et al., 2002). Although Mrp2 expression in the kidney can be regulated by these nuclear receptors (Bauer et al., 2008), their expression levels in kidney seem to be low (Zhang et al., 1999; Cheng and Klaassen, 2006). In initial experiments, we measured Mrp2-mediated transport in isolated killifish tubules after exposure to various potent PXR or FXR ligands in various species and zebrafish (PXR) (Parks et al., 1999; Moore et al., 2002). FL-MTX transport was not affected by the FXR ligand, chenodeoxycholic acid, nor by the PXR ligands clotrimazole, pregnenolone-16α-carbonitril, 15α-androstan-17β-ol, n-propyl p-hydroxybenzoate, 5β-pregnane-3,20-dione, and dehydroepiandrosterone (data not shown). Only dexamethasone, a PXR and GR ligand, increased Mrp2-mediated transport (Fig. 1, A and B).

Exposing killifish tubules to 0.25 to 1.0 μM dexamethasone increased luminal FL-MTX accumulation in a concentration-dependent manner (Fig. 1E); at higher dexamethasone concentrations, FL-MTX accumulation tended to fall off. Dexamethasone had no significant effect on cellular FL-MTX accumulation and did not stimulate transport of the organic anion transporter substrate FL (data not shown). Thus, dexamethasone did not target basolateral organic anion transporters.

The greatest stimulation of Mrp2-mediated transport (118 ± 10%) occurred at 1 μM dexamethasone, and this concentration was chosen for subsequent experiments. To determine the time course of dexamethasone action, we incubated tubules to steady state in medium containing FL-MTX and then added dexamethasone. Mrp2-mediated transport, as indicated by luminal FL-MTX, increased rapidly after addition of the drug, with a significant change within 10 min (Fig. 1F). The increase in luminal fluorescence intensity was maximal at 30 min and remained at that level for at least 3 h (data not shown). The rapid time course of dexamethasone action suggests a nongenomic signaling mechanism. In subsequent experiments focused on the mechanism of dexamethasone signaling to Mrp2, tubules were exposed to 1 μM dexamethasone for 1 h to ensure both steady-state distribution of FL-MTX and maximal stimulation.

Dexamethasone Stimulates Mrp2-Mediated Transport Through GR. Dexamethasone is a potent synthetic glucocorticoid. Figure 2A shows that the GR-antagonist RU486 abolished the effect of dexamethasone on FL-MTX transport in the renal tubules; RU486 by itself did not alter transport. Consistent with this, the endogenous teleost fish GR ligand, cortisol, and the synthetic GR ligand, triamcinolone acetonide, increased luminal FL-MTX accumulation; their effects were also abolished by RU-486 (Figs. 1C and 2, B and C). In contrast, the MR antagonist, spironolactone, did not block the effects of dexamethasone (Fig. 2D). Cortisone, an inactive metabolite of the native fish GR ligand, cortisol, did not alter Mrp2 function (Fig. 1D). Finally, with an antibody directed against rainbow trout GR (Teitsma et al., 1998), we investigated receptor expression in killifish renal proximal tubules. Immunohistochemistry showed clear expression of the GR at the basolateral and luminal plasma membranes of the tubule epithelial cells, with lower diffuse, cytoplasmatic labeling (Fig.
These findings indicate that dexamethasone, cortisol, and triamcinolone acetonide act through a killifish GR to stimulate Mrp2-mediated transport in renal tubules.

Dexamethasone Does Not Alter Mrp2 Protein Expression. Dexamethasone was shown to regulate NHE3 (Wang et al., 2007) and protect the kidney from ischemic injury by GR-dependent, nongenomic mechanisms (Kumar et al., 2009). Figure 3, A and B, shows that the dexamethasone-induced stimulation of Mrp2-mediated transport was not affected when tubules were preincubated with actinomycin D, an inhibitor of transcription, or cycloheximide, an inhibitor of translation. Consistent with these results, immunohistochemistry revealed that Mrp2 expression in the luminal plasma membrane had not increased after incubation with dexamethasone (Fig. 3, C–G). In addition, treatment of tubules with the microtubule inhibitor, colchicine, did not affect the ability of dexamethasone to increase FL-MTX transport (Fig. 3H). Thus, enhanced transport activity was not caused by synthesis of new transporter or insertion of preformed transporter protein into the luminal plasma membrane.

Dexamethasone Signals through cMet, a Receptor Tyrosine Kinase. We demonstrated previously that the loss of Mrp2 activity in killifish tubules involved ET-1 binding to an ETB receptor followed by activation of iNOS and PKC (Terlouw et al., 2001; Notenboom et al., 2005). To determine whether elements of this pathway were involved in the dexamethasone-induced stimulation, we measured the effects of NG-methyl-L-arginine (NOS inhibitor) and bisindolylmaleimide (PKC inhib-
Neither drug altered the ability of dexamethasone to stimulate Mrp2 activity (Fig. 4). Thus, the ET-1 signaling pathway was not involved in the GR-related pathway.

GR can act through multiple kinase-based signaling pathways (Beck et al., 2009). Figure 5A shows that genistein, a nonspecific tyrosine kinase inhibitor, abolished the effect of dexamethasone on Mrp2-mediated transport. K252a, a kinase inhibitor of the tyrosine receptor kinase subfamily (Tapple et al., 1992), also blocked the dexamethasone-induced effect (Fig. 5B), as did the specific c-Met kinase inhibitor, PHA-665752 (Christensen et al., 2003) (Fig. 5C). These results support the involvement of the mesenchymal epithelial transition factor, c-Met, a tyrosine receptor kinase, in GR signaling to Mrp2 (Fig. 5C). The natural ligand for c-Met is HGF, also known as scatter factor. HGF is both renotropic and nephroprotective (Vargas et al., 2000). Exposing killifish tubules to human recombinant HGF produced a rapid and potent increase in FL-MTX transport; significant stimulation of luminal FL-MTX was evident within 5 min of exposure to an optimal concentration of 25 ng/ml (Fig. 6, A and B). This HGF-mediated effect was blocked by pretreatment with PHA-665752, but not by RU486; from this we conclude that HGF/c-Met signaling is downstream of GR action (Fig. 6, C and D).

Activation of c-Met can initiate intracellular signaling through additional downstream phosphorylation cascades. When killfish tubules were exposed to U0126, which blocks a mitogen-activated protein kinase pathway by inhibiting MEK1/2 (Favata et al., 1998), the effects of dexamethasone and HGF on FL-MTX transport were abolished (Fig. 7A). No such effects were seen with LY294002, which inhibits the
phosphatidylinositol 3-kinase/Akt pathway (Vlahos et al., 1994) (Fig. 7B), nor with SB203580, which inhibits Akt and p38 mitogen-activated protein kinase (Saklatvala et al., 1996) (Fig. 7C). These findings are consistent with dexamethasone acting through GR, cMet, and then MEK/ERK 1/2 to increase Mrp2 transport activity.

Discussion

In the present study, we used killifish renal proximal tubules to map a novel signaling pathway through which glucocorticoids rapidly stimulate Mrp2-mediated transport. Three main findings substantiate this pathway. First, dexamethasone and triamcinolone acetonide, potent synthetic glucocorticoids, and cortisol, the natural fish glucocorticoid, increased Mrp2-mediated transport of FL-MTX. These effects were blocked by the GR antagonist, RU-486, but not by the MR antagonist, spironolactone. These results establish GR as the receptor through which these glucocorticoids activate Mrp2. Glucocorticoids are released in response to physiological stress, eliciting GR-specific responses in multiple, if
not all, cell types. Signaling by GR can be complicated, involving multiple receptor subtypes and both genomic and nongenomic actions. Rapid glucocorticoid effects generally involve cytosolic GRs, although GRs can also act within membranes to exert multiple rapid effects on various tissues and cells, as described in teleost and higher vertebrates (Borski, 2000; Roy and Rai, 2009). More specifically, membrane-bound GRs were found to have analogous ligand binding domains (epitope recognition, ligand specificity, and phosphorylation site) comparable with cytosolic GRs (Gametchu et al., 1999; Bartholome et al., 2004), and RU486 does not discriminate between the GR subtypes (Borski, 2000). We show here that killifish renal proximal tubules immunostained for GR showed extensive labeling of the basolateral and luminal plasma membranes as well as less intense, diffuse intracellular labeling. At present, it is not clear whether the dexamethasone stimulation of Mrp2 activity resulted from ligand binding to membrane-bound or intracellular GR.

Second, dexamethasone stimulation of Mrp2 transport activity had a rapid onset and was not affected when transcription or translation was inhibited. Immunostaining showed no increase in Mrp2 protein expression in dexamethasone-ex-
posed tubules. These observations indicate a nongenomic mechanism of GR regulation of Mrp2 activity. This nongenomic action of dexamethasone, involving the GR, is also in agreement with results from rat kidney where the glucocorticoid showed renoprotective effects against ischemia reperfusion injury (Kumar et al., 2009). In addition to our results with killifish renal tubules, Mrp2 gene expression in zebrafish did not increase after treatment with dexamethasone (data not shown), consistent with the nongenomic pathway proposed here.

Third, using pharmacological tools, we found that GR signaled to Mrp2 through c-Met, a receptor tyrosine kinase and its downstream effector pathway, MEK1/2, a protein Ser/Thr kinase. Thus rapid signaling by GR involved a downstream protein kinase cascade. Endogenously, this signaling cascade is triggered by HGF, which activates c-Met by triggering receptor autophosphorylation. Although we do not show direct generation of HGF upon dexamethasone treatment, we cannot explain our findings any differently other than the glucocorticoids signal through the growth factor. During development, HGF function is essential because knockout mice for both ligand and receptor are embryonically lethal. HGF displays a unique feature in inducing “branching morphogenesis,” a complex program of proliferation and ontogenesis in a number of different cell types, including renal cells (Davies and Fisher, 2002). Moreover, HGF is involved in tumor cell invasion both in vivo and in vitro. Perturbation of the HGF/c-Met axis leads to enhanced signaling that occurs in a wide range of human cancers, and elevated c-Met signals are characteristic of aggressive tumors with poor prognosis (Lai et al., 2009). Inhibition of the tyrosine kinase activity and blockade of the receptor/ligand interaction are strategies for novel targeted therapies in oncology (Eder et al., 2009). Inhibition of Mrps by tyrosine kinase inhibitors may be a helpful mechanism in cancer therapy, because these efflux pumps notably contribute to the development of drug resistance in chemotherapy (van de Water et al., 2005). On the other hand, chemicals that target the tyrosine kinase pathway, such as tyrosine kinase inhibitors that block c-Met, may increase the sensitivity to xenobiotics and also be the cause of reduced renal function associated with tyrosine kinase inhibitor treatment (Gafter-Gvili et al., 2010).

Nongenomic up-regulation of Mrp2 activity can result from insertion of the transporter into a region of the plasma membrane from which it can function, covalent modification, or altered associations with membrane protein and lipids (Sabolíc et al., 2002; Ito et al., 2005; Kubitz et al., 2005). In the present study, we found no changes in transporter protein expression in the luminal membrane of dexamethasone-treated tubules (immunostaining) or any effect of the microtubule disruptor colchicine on dexamethasone stimulation of Mrp2 activity. These findings suggest that transporter activity increased through covalent modification or altered associations, within the membrane. Hegeduš et al. (2003) examined the effect of mutational changes at Ser1542 that mimic phosphorylation of the Mrp2 PDZ domain by PKC. They demonstrated that the phosphorylated form of MRp2 anchors PDZ proteins stronger than the dephosphorylated form, suggesting a role in the distribution and routing of functional Mrp2. It is to be expected that c-Met influences Mrp2-mediated transport activity by another mechanism, because involvement of PKC was excluded in the present study and membrane insertion of endosomal vesicles expressing Mrp2 seems unlikely. Our experiments suggest that Met acts through the MEK1/2 signaling cascade, which in turn may phosphorylate and, thereby, activate ERK. More than 100 different proteins have been identified as substrates for the ERK1/2 signaling pathway (Ramos, 2008); thus, ERK activation affects an array of cellular functions. We used the sequences that were aligned in the article by Long et al. (2011) and found 14 consensus ERK1/2 phosphorylation sites on zebrafish Mrp2. Of these, seven are conserved comparing the human and zebrafish transporter, indicating that Mrp2 is a potential target protein of ERK1/2.
We speculate that the increase in Mrp2 function caused by glucocorticoids and activating MEK1/2 and ERK1/2 signaling is an essential way by which renal cells cope with accumulating waste products of metabolism during stress.

In conclusion, our results suggest a novel mechanism of rapid nongenomic induction of Mrp2-mediated transport in renal proximal tubules; no change in transporter protein expression was observed. Signaling involved glucocorticoids acting though the GR and the receptor tyrosine kinase c-Met. Downstream c-Met activates MEK1/2, finally resulting in increased Mrp2 function. In renal proximal tubules, Mrp2 pumps drugs and toxic substances into the urinary space. A better, more complete mapping of the regulatory pathways that alter Mrp2 activity may reveal new therapeutic and renoprotective targets.

Authorship Contributions

Participated in research design: Prevo, Miller, van de Water, Wever, Russel, Flik, and Masereeuw.

Conducted experiments: Prevo, van de Water, Wever, and Masereeuw.

Performed data analysis: Prevo, Miller, van de Water, and Masereeuw.

Wrote or contributed to the writing of the manuscript: Prevo, Miller, Flik, and Masereeuw.

References

Wever, Russel, Flik, and Masereeuw.

Address correspondence to: Dr. Rosalinde Masereeuw, Department of Pharmacology and Toxicology (149), Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. E-mail: r.masereeuw@pharmtox.umcn.nl