The Role of Nitric Oxide in the Local Antiallodynic and Anti-hyperalgesic Effects and Expression of \(\delta \)-Opioid and Cannabinoid-2 Receptors during Neuropathic Pain in Mice

Arnau Hervera, Roger Negrete, Sergi Leánez, Jesús Martín-Campos, and Olga Pol

Grup de Neurofarmacologia Molecular, Institut de Recerca de l’Hospital de la Sta Creu i Sant Pau and Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain (A.H., R.N., S.L., O.P.); and Grup de Bioquímica, Institut de Recerca de l’Hospital de la Sta Creu i Sant Pau, Barcelona, Spain (J.M.-C.)

Received February 23, 2010; accepted May 20, 2010

ABSTRACT

Both \(\delta \)-opioid receptor (DOPr) and cannabinoid-2 receptor (CB2R) agonists attenuate neuropathic pain, but the precise mechanism implicated in these effects is not completely elucidated. We investigated whether nitric oxide synthesized by neuronal (NOS1) or inducible (NOS2) nitric-oxide synthases could modulate DOPr and/or CB2R antiallodynic and anti-hyperalgesic effects through the peripheral nitric oxide-cGMP-protein kinase G (PKG) pathway activation and affect their expression during neuropathic pain. In wild-type (WT) mice at 21 days after chronic constriction of sciatic nerve, we evaluated the effects of \([\text{D-Pen}^2,\text{D-Pen}^5]\)-enkephalin (DPDPE); \((2\text{-methyl-1-propyl-1H-indol-3-yl}-1\text{-naphthalenylmethylene})(\text{JWH}-015);\) and a NOS1\[N\{[(6)-(1-iminoethyl)-lysine; \text{L-NIL}]); L-Guanylate cyclase [1\text{-H}]cGMPs\]
dose-dependently inhibited neuropathic pain and enhanced the local effects of DPDPE or JWH-015. Moreover, although the basal levels of DOPr and CB2R mRNA were similar between WT and NOS-KO animals, nerve injury only decreased (DOPr) or increased (CB2R) their expression in the dorsal root ganglia of naive and nerve-injured WT, NOS1-knockout (KO), and NOS2-KO mice, also was assessed. The subplantar administration of NANT, \text{L-NIL}, ODQ, or \text{Rp-8-pCPT-cGMPs} inhibit administered alone or combined. Expression of DOPr and CB2R mRNA in the spinal cord and dorsal root ganglia of naive and nerve-injured WT, NOS1-knockout (KO), and NOS2-KO mice, also was assessed. The subplantar administration of NANT, \text{L-NIL}, ODQ, or \text{Rp-8-pCPT-cGMPs} dose-dependently inhibited neuropathic pain and enhanced the local effects of DPDPE or JWH-015. Moreover, although the basal levels of DOPr and CB2R mRNA were similar between WT and NOS-KO animals, nerve injury only decreased (DOPr) or increased (CB2R) their expression in the dorsal root ganglia of WT and NOS2-KO mice, and not in NOS1-KO mice. Results suggest that inactivation of the nitric oxide-cGMP-PKG peripheral pathway triggered by NOS1 and NOS2 enhanced the peripheral actions of DOPr and CB2R agonists and that nitric oxide synthesized by NOS1 is implicated in the peripheral regulation of DOPr and CB2R gene transcription during neuropathic pain.

Introduction

Neuropathic pain is a clinical manifestation characterized by the presence of allodynia and hyperalgesia, and it is difficult to treat with the most potent analgesic compounds. Recent studies have demonstrated that \(\delta \)-opioid receptor (DOPr) agonists elicit antiallodynic and antihyperalgesic effects in several models of neuropathic pain (Mika et al., 2001; Kabli and Cahill, 2007), although the possible changes in the expression of DOPr after nerve injury are controversial. Thus, from no changes (Besse et al., 1992), to an increase (Kabli and Cahill, 2007) or a decrease (Stone et al., 2004; Obara et al., 2009) in their expression, in the dorsal root ganglia and spinal cord from sciatic nerve-injured animals,

ABBR.: DOPr, \(\delta \)-opioid receptor; CB2R, cannabinoid-2 receptor; NOS1, neuronal nitric-oxide synthase; NOS2, inducible nitric-oxide synthase; PKG, cGMP-dependent protein kinase; WT, wild type; CCI, chronic constriction of the sciatic nerve; DPDPE [\(\text{D-Pen}^2,\text{D-Pen}^5\)]-enkephalin; JWH-015, \((2\text{-methyl-1-propyl-1H-indol-3-yl}-1\text{-naphthalenylmethylene})(\text{AM630});\) \([6\text{-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl}][4\text{-methoxyphenyl}]/\text{methanone};\) NANT, \((6)-(1-\text{iminoethyl}-\text{lysine}; \text{L-NIL});\) L-Guanylate cyclase [1\text{-H}]cGMPs; \text{ODQ}; or \text{PKG} [1\text{-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate}; \text{Rp-8-pCPT-cGMPs}]

This work was supported by Fondo de Investigación Sanitaria, Madrid [Grants PI051604, PS0900968] and the Fundación La Marató de TV3 Barcelona [Grant 070810], Spain. This article contains data presented, in part, at the following meetings: Hervera H, Negrete R, Leánez S, and Pol O (2009) The crucial role of nitric oxide synthesized by NOS2 in the development and maintenance of peripheral neuropathic pain in NOS2 knockout mice. Proceedings of the 4th International Conference on cGMP, 2009 Jun 19–21; Regensburg, Germany; and Hervera A, Negrete R, Leánez S, and Pol O (2009) Lack of mechanical and thermal alldynia, and thermal hyperalgesia induced by peripheral neuropathic pain in NOS2 knockout mice. Proceedings of the 39th Annual Meeting of Society for Neuroscience, 2009 Oct 17–21; Chicago, IL. Society for Neuroscience, Washington, DC. Article, publication date, and citation information can be found at http://jpet.aspetjournals.org. doi:10.1124/jpet.110.167585.
have been reported. In addition to DOPr, other studies also showed that the cannabinoid-2 receptor (CB2R) activation is effective in attenuating neuropathic pain (Bridges et al., 2001; Fox et al., 2001) and that their expression increases after nerve injury (Zhang et al., 2003; Costa et al., 2004). Even so, the precise mechanisms implicated in the peripheral actions of DOPr and CB2R agonists as well as in the expression of their receptors during neuropathic pain are not completely elucidated.

Several studies have shown that nitric oxide synthesized by neuronal (NOS1) or inducible (NOS2) nitric-oxide synthases via central guanosine 3′,5′-cyclic monophosphate (cGMP)-protein kinase G (PKG) pathway activation mediates numerous neuropathic pain symptoms (Meller et al., 1992). Accordingly, the expression of NOS1 and NOS2 is up-regulated in the spinal cord and dorsal root ganglia after nerve injury (Levy et al., 1999; De Alba et al., 2006). Moreover, the systemic administration of selective NOS or guanylate cyclase inhibitors might reverse the hypersensitivity to pain induced by the spinal or sciatic nerve injury (De Alba et al., 2006; LaBuda et al., 2006; Guan et al., 2007), but the involvement of the peripheral nitric oxide-cGMP-PKG pathway in the maintenance of thermal and mechanical hypersensitivity induced by the chronic constriction of the sciatic nerve is not completely established.

It is well known that the nitric oxide-cGMP-PKG pathway activation modulates the peripheral antinociceptive effects induced by certain drugs during inflammatory pain, including opioids (Ferreira et al., 1991; Pol, 2007; Hervera et al., 2009; Lea´nez et al., 2009) and cannabinoids (Lopes et al., 2009). Nitric oxide also regulates the transcription of μ- and κ-opioid receptor genes under basal and inflammatory conditions (Park et al., 2002; Pol et al., 2005), but the exact role of nitric oxide in the peripheral actions and expression of DOPr and CB2R during neuropathic pain is not known.

Thus, to study whether the nitric oxide-cGMP-PKG peripheral pathway activation triggered by NOS1 and NOS2 could modulate the local effects of DOPr and CB2R agonists in nerve-injured wild-type (WT) mice, at 21 days after the chronic constriction of the sciatic nerve (CCI), we evaluated 1) the mechanical allodynia, thermal antihyperalgesia, and thermal antiallodynic effects of the subplantar administration of a specific DOPr ([D-Pen2,D-Pen5]-enkephalin; DPDPE) or CB2R ([2-methyl-1-propyl-1H-indol-3-yl]-1-naphthalenylmethanone; JWH-015) agonist; 2) the reversibility of these effects by their coadministration with a specific DOPr (naltrindole) or a CB2R antagonist; and 3) the antiallodynic and antihyperalgesic effects produced by selective NOS1 [N-(4S)-4-amino-5-(2-aminoethyl)amino]pentyl]-N′-nitroguanidine tris(trifluoroacetate) salt; NANT], NOS2 [l-N(6)-(1-iminoethyl)lysine; l-NIL], soluble guanylate cyclase [1H-[1,2,4]oxadiazolo[4,3-a]quinolin-1-one; ODQ], or PKG ([Rp]-8-para-chlorophenylthio)guanosine-3′,5′-cyclic monophosphorothioate; Rp-8-pCP-6-GMPs] inhibitors subplantarily administered, alone or combined, with DPDPE or JWH-015.

To evaluate the role played by nitric oxide synthesized by NOS1 and NOS2 in the expression of DOPr and CB2R during neuropathic pain, the expression of DOPr and CB2R mRNA in the spinal cord and dorsal root ganglia of sciatic nerve-injured WT, NOS1-KO, and NOS2-KO mice at 21 days after surgery also was evaluated.

Materials and Methods

Animals

Male NOS1-knockout mice (C57BL/6J background) and NOS2-knockout mice (C57BL/6J background) were purchased from The Jackson Laboratory (Bar Harbor, ME), whereas WT mice with the same genetic background (C57BL/6J) were acquired from Harlan Laboratories (Barcelona, Spain). All mice weighing 21 to 25 g were housed under 12:12-h light/dark conditions in a room with controlled temperature (22°C) and humidity (65%). Animals had free access to food and water and were used after a minimum of 6 days acclimati- zation to the housing conditions. All experiments were conducted between 9:00 AM and 5:00 PM. The study protocol was approved by the local Committee of Animal Use and Care of the Autonomous University of Barcelona in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the National Institutes of Health (Bethesda, MD).

Induction of Neuropathic Pain

Neuropathic pain was induced by the chronic constriction of the sciatic nerve. In brief, sciatic nerve ligation was performed under isoflurane anesthesia (3% induction, 2% maintenance). The biceps femoris and the gluteus superficialis were separated by blunt dissection, and the right sciatic nerve was exposed. The injury was produced by tying three ligatures around the sciatic nerve as described by Bennett and Xie (1988). The ligatures (4/0 silk) were tied loosely around the nerve with 1-mm spacing, until they elicited a brief twitch in the respective hind limb, which was prevented from applying a too strong ligation, taking care to preserve epineural circulation. Sham-operated mice that underwent exposure of the right sciatic nerve without ligature and nonoperated (naïve) mice were used as controls.

The development of mechanical and thermal allodynia as well as thermal hyperalgesia was evaluated by using the von Frey filaments, cold-plate, and plantar tests, respectively. All animals were tested in each paradigm before surgery and at 21 days after CCI.

Nociceptive Behavioral Tests

Mechanical Allodynia. Mechanical allodynia was quantified by measuring the hind paw withdrawal response to von Frey filament stimulation. In brief, animals were placed in a Plexiglas box (20 cm in height, 9 cm in diameter) with a wire grid bottom through which the von Frey filaments (bending force range from 0.008 to 3.5 g; North Coast Medical, Inc., San Jose, CA) were applied by using a modified version of the up-down paradigm, as reported by Chaplan et al. (1994). The 0.4-g filament was used first and the 3.5-g filament was used as a cut-off. Then, the strength of the next filament was decreased or increased according to the response. The threshold of response was calculated from the sequence of filament strength used during the up-down procedure by using an Excel program (Microsoft Iberia SRL, Barcelona, Spain) that includes curve fitting of the data. Clear paw withdrawal and shaking or licking of the paw were considered nociceptive-like responses. Both ipsilateral and contralateral hind paws were tested. Animals were allowed to habituate for 1 h before testing to allow an appropriate behavioral immobility. The baseline values were between 1.3 and 1.5 g.

Thermal Hyperalgesia. Thermal hyperalgesia was assessed as reported by Hargreaves et al. (1988). Paw withdrawal latency in response to radiant heat was measured using the plantar test apparatus (Ugo Basile, Comerio, Italy). In brief, mice were placed in Plexiglas boxes (20 cm in height × 9 cm in diameter) positioned on a glass surface. The heat source was positioned under the plantar surface of the hind paw and activated with a light beam intensity derived from the sequence of filament strength used to calculate the cut-off. Then, the strength of the next filament was increased according to the response. The threshold of response was calculated from the sequence of filament strength used during the up-down procedure by using an Excel program (Microsoft Iberia SRL, Barcelona, Spain) that includes curve fitting of the data. Clear paw withdrawal and shaking or licking of the paw were considered nociceptive-like responses. Both ipsilateral and contralateral hind paws were tested.
from the average of three separate trials, taken at 5-min intervals to prevent thermal sensitization and behavioral disturbances. Animals were habituated to the environment for 1 h before the experiment to become quiet and to allow testing. The baseline values were between 8.4 and 9.0 s.

Thermal Allodynia. Thermal allodynia to cold stimulus was assessed by using the hot/cold-plate analgesia meter (Ugo Basile) as described by Bennett and Xie (1988). The number of elevations of each hind paw was recorded in the mice exposed to the cold-plate (4 ± 0.5°C) for 5 min. The baseline values were between zero and one paw lifts.

Gene Expression Studies

Tissue Isolation and Total RNA Extraction. Animals were sacrificed at 0 and 21 days after CCI induction by cervical dislocation. Tissues from the ipsilateral lumbar spinal cord and dorsal root ganglia of WT, NOS1-KO, and NOS2-KO mice were removed immediately after sacrifice, frozen in liquid nitrogen, and stored at −80°C until assay. Samples from two to three animals were pooled into one experimental sample for each spinal cord or dorsal root ganglia tissue, respectively. All tissues were homogenized in ice-cold TRIZol reagent (Invitrogen, Renfrewshire, UK) with a homogenizer (Ultra-Turq, T8; Ika Werke, Staufen, Germany), and the total RNA was extracted. The amount of the purified RNA (\(A_{260}/A_{280}\) ratio ≥1.9) was determined by spectrophotometry.

Reverse Transcription. In all experiments, 1 μg of total RNA was reverse-transcribed into cDNA using SuperScript II RTase H2 reverse transcriptase (Invitrogen) in a final volume of 10 μl. Negative controls were performed in which all of the components were included except reverse transcriptase.

TaQMan Probe Real-Time Polymerase Chain Reaction. The expression of DOPr and CB2R was determined by real-time PCR using predeveloped mice TaqMan gene expression assays (Applied Biosystems, Foster City, CA) for the following genes: GenBank numbers Mm99999915_g1 (DOPr) and Mm00439135_m1 (CB2R). A probe against GAPDH (GenBank number Mm99999915_g1) was used as endogenous control, and reactions without RNA were included as negative controls to ensure the specificity. PCRs were set up in 96-well plates containing the corresponding cDNA, 0.9 μM each forward and reverse primer, 0.25 μM TaqMan MGB probe, and a final concentration of 1× universal master mix (Applied Biosystems), which provides the PCR buffer, MgCl2, dNTPs, and the thermal stable AmpIiQ Gold DNA polymerase. The assay was conducted using the ABI Prism 7000 Sequence Detection System (Applied Biosystems). All samples were assayed in duplicate. Relative expression of the target genes was calculated by means of the comparative threshold cycle method (Livak and Schmittgen, 2001).

Experimental Protocol. In a first set of experiments, we assessed the expression of neuropathic pain by using the chronic constriction injury model of Bennett and Xie (1988). WT mice were habituated for 1 h to the environment of the different experimental tests during 4 days. After the habituation period, baseline responses were established in the following sequence: von Frey filaments, plantar, and cold-plate tests. After baseline measurements, neuropathic pain was induced as described previously, and animals were tested in each paradigm at 21 days after surgery by using the same sequence as for baseline responses. In the initial experiments, we used sham-operated and nonoperated (naive) mice as controls. However, because the results obtained in sham-operated and naive mice were very similar, we used the latter as a true control in all subsequent experiments.

In a second set of experiments, we investigated the mechanical antiallodynic, thermal antihyperalgesic, and thermal antiallodynic effects of the subplantar administration of different doses of the specific DOPr agonist DPDPE (38.7–232.3 nmol; Clark et al., 1986), the specific CB2R agonist JWH-015 (15.3–91.6 nmol; Huffman, 2000), or their corresponding vehicle in the ipsilateral and contralateral paws of sciatic nerve-injured WT mice at 21 days after surgery. The effects of both agonists in the contralateral and ipsilateral paws of naive mice also were evaluated. Animals were tested in each paradigm pre- and postdrug administration using the same sequence as mentioned above.

In another set of experiments, the specificity of the mechanical antiallodynic, thermal antihyperalgesic, and thermal antiallodynic effects produced by DPDPE and JWH-015 in sciatic nerve-injured WT mice was assessed by evaluating the reversibility of the effects produced by a dose of agonist that produced the maximal inhibition of allodynia or hyperalgesia (154.6 nmol for DPDPE and 91.6 nmol for JWH-015) with the peripheral coadministration of a specific DOPr (naltrindole, 110.9 nmol; Portoghese et al., 1990) or CB2R (AM630, 59.5 nmol; Ross et al., 1989) antagonist. The effects of these antagonists administered alone also were tested in sciatic nerve-injured WT mice.

The possible involvement of the peripheral nitric oxide-cGMP-PKG pathway activated by Nos1 and Nos2 in the local antiallodynic and antihyperalgesic effects of DOPr and CB2R agonists was confirmed in an extra group of WT mice. For this purpose, the local effects produced by different doses of NANT (50.9–254.5 nmol), a selective Nos1 inhibitor (Han et al., 2003), l-NIL (134.1–894.1 nmol), a selective Nos2 inhibitor (Moore et al., 1994); ODQ (53.4–53.4 nmol), a selective soluble guanylyl cyclase inhibitor (Garthwaite et al., 1995); Rp-8-pCPT-cGMPs (4.1–16.5 nmol), a PKG inhibitor (Butt et al., 1994); or vehicle in the ipsilateral and contralateral paws of sciatic nerve-injured WT mice were initially evaluated. Then, the effects of the subplantar coadministration of NANT (50.9 nmol), l-NIL (223.5 nmol), ODQ (13.4 nmol), Rp-8-pCPT-cGMPs (4.1 nmol), or vehicle with DPDPE (38.7 nmol) or JWH-015 (15.3 nmol) on the mechanical allodynia, thermal hyperalgesia, and thermal allodynia induced by sciatic nerve injury in WT mice at 21 days after CCI induction also were evaluated. The doses of all tested drugs were selected according to previous experiments as the doses that produce the lowest antiallodynic and antihyperalgesic effects. The effects produced by these inhibitors, alone or combined, in the contralateral and ipsilateral paws of naive mice also were evaluated.

In all experiments, antinociception in Von Frey filaments and plantar test are expressed as the percentage maximal possible effect, where the test latencies pre- (baseline) and postdrug administration are compared and calculated according to the following equation: percentage maximal possible effect = [(drug – baseline)/(cut-off – baseline)] × 100.

In the cold-plate test, the inhibitory effects were calculated according to the following equation: percentage inhibition = [Paw elevations number at baseline – Paw elevations number after drug/paw elevations number at baseline] × 100. For each drug and test, the ED50 value, defined as the dose that produces a 50% effect based on the Emax estimated from the double reciprocal plot, also was calculated.

Finally, the relative DOPr and CB2R mRNA expression in the ipsilateral side of the spinal cord and dorsal root ganglia from naive and sciatic nerve-ligated WT, Nos2-KO, and Nos1-KO mice, at 21 days after CCI induction, also was evaluated by using real-time PCR.

Drugs

JWH-015, AM630, and l-NIL were acquired from Tocris Bioscience (Ellisville, MI). DPDPE, naltrindole hydrochloride, NANT, ODQ, and Rp-8-pCPT-cGMPs were purchased from Sigma-Aldrich. DPDPE, naltrindole hydrochloride, NANT, l-NIL, and Rp-8-pCPT-cGMPs were dissolved in saline solution (0.9% NaCl), ODQ in DMSO (10% solution in saline), and AM630 in DMSO (50% solution in saline). All drug combinations were diluted in the highest required concentration of DMSO. All drugs administered alone or combined were injected in a final volume of 30 μl. In all experiments, drugs were administered into the plantar side of the right paw, 20 min before behavioral testing. For each group treated with a drug, the respective control group received the same volume of vehicle.
Statistical Analysis

Data are expressed as mean ± S.E.M. For each test and paw, the comparison of the nociceptive values obtained in naive, sham-operated and sciatic nerve-injured WT mice was assessed by using a one-way ANOVA followed by the Student-Newman-Keuls test.

For each test and dose, the comparison of the effects produced by DPDPE, JWH-015, NANT, t-NIL, ODQ, or Rp-8-pCPT-cGMPs versus the effects produced by their respective vehicle in the ipsilateral paw of nerve-injured mice, was evaluated by using Student’s t test. The ED$_{50}$ values (dose that produced a 50% of the maximal effect) plus 95% confidence limits were determined by linear regression analysis of dose-response relations based on at least five to six mice per dose.

For each test, the reversion of the antiallodynic and antihyperalgesic effects of DOPr or CB2R agonists by their specific antagonists and the effects produced by each antagonist administered alone in the ipsilateral paw of sciatic nerve-injured WT mice were analyzed by using a one-way ANOVA followed by the Student-Newman-Keuls test.

The comparison between the effects produced by the combination of one specific agonist (DPDPE or JWH-015) plus an specific inhibitor (NANT, t-NIL, ODQ, or Rp-8-pCPT-cGMPs) with the effects produced by each of these agonists administered alone in the mechanical and thermal allodynia as well as thermal hyperalgesia induced by CCI in the ipsilateral paw of nerve-injured WT mice were performed by using a one-way ANOVA followed by the Student-Newman-Keuls test.

The changes in the expression of DOPr and CB2R in the spinal cord and dorsal root ganglia of naive or nerve-injured WT, NOS1-KO, and NOS2-KO mice at 21 after CCI were analyzed by using a two-way ANOVA (genotype and surgery as between factors of variation), followed by the corresponding one-way ANOVA or Student’s t test when required. A value of $p < 0.05$ was considered as a significant.

Results

Expression of Neuropathic Pain in WT Mice. Our results showed that the total sciatic nerve ligation produced mechanical allodynia, thermal hyperalgesia, and thermal allodynia (Table 1). Thus, sciatic nerve injury led to a significant decrease of the threshold for evoking paw withdrawal to a mechanical stimulus, a decrease of paw withdrawal latency to thermal stimulus, and an increase in the number of paw elevations to cold thermal stimulus in the ipsilateral paw of these animals compared with naive (nonoperated) or sham-operated mice ($p < 0.001$; one-way ANOVA followed by the Student-Newman-Keuls test). Sham operation did not produce any modification of nociceptive responses in the three behavioral tests. In all tests, nonsignificant changes were observed in the contralateral paw compared sciatic nerve injured, sham-operated, or naive mice.

Effects of Subplantar Administration of Specific DOPr and CB2R Agonists Alone or Coadministered with Selective Receptor Antagonists in the Mechanical Allodynia, Thermal Hyperalgesia, and Thermal Allodynia Induced by Sciatic Nerve Injury in WT Mice.

The subplantar administration of DPDPE or JWH-015 into the ipsilateral paw dose-dependently inhibited the mechanical allodynia (Fig. 1A), thermal hyperalgesia (Fig. 1B), and thermal allodynia (Fig. 1C) induced by sciatic nerve injury. Thus, the mechanical antiallodynic and thermal antihyperalgesic effects produced by different doses of DPDPE (77.4–232.3 nmol) or JWH-015 (30.5–91.6 nmol) in the ipsilateral paws of sciatic nerve-injured WT mice were significantly higher than those obtained in their corresponding vehicle-treated groups ($p < 0.05$; Student’s t test). However, although the thermal antiallodynic effects of JWH-015 were significantly higher than those obtained in vehicle-treated mice ($p < 0.05$; Student’s t test; JWH-015 versus vehicle), the thermal antiallodynic effects of DPDPE in the ipsilateral paw were only modestly improved compared with the effects produced by vehicle in the same paw. Moreover, by analyzing the ED$_{50}$ values of DPDPE and JWH-015, our data showed that the potency of the CB2R agonist on the inhibition of mechanical and thermal sensitivity induced by sciatic nerve injury was between 3.6 and 5.9 times higher than that of the DOPr agonist (Table 2), indicating that JHW-015 is markedly more potent than DPDPE on the inhibition of neuropathic pain.

The subplantar administration of DPDPE, JWH-015, or vehicle did not elicit any antinoceptive effect either in the contralateral paw of sciatic nerve-injured mice or in the ipsilateral or contralateral paw of naive animals (data not shown).

In all tests, the antiallodynic and antihyperalgesic effects produced by DPDPE (Table 3) or JWH-015 (Table 3) in the ipsilateral paw of sciatic nerve-injured WT mice were completely reversed by the subplantar coadministration with a selective DOPr (naltrindole) or CB2R (AM630) antagonist, respectively ($p < 0.05$; one-way ANOVA followed by the Student-Newman-Keuls test). The subplantar administration of naltrindole, AM630, or vehicle alone in sciatic nerve-injured WT mice did not show any significant effect on the three different nociceptive responses evaluated in this study. In addition, the subplantar administration of D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH$_2$, a selective μ-opioid receptor antagonist, was unable to revert the local antiallodynic and antihyperalgesic effects produced by 154.8 nmol of DPDPE, confirming the specific involvement of DOPr in the effects produced by high doses of DPDPE in these experimental conditions (data not shown).

Involvement of the Peripheral Nitric Oxide-cGMP-PKG Pathway Triggered by NOS1 and NOS2 in the Mechanical Allodynia, Thermal Hyperalgesia, and Thermal Allodynia Induced by the Sciatic Nerve Injury.

Table 1

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Mechanical allodynia (basal response), thermal hyperalgesia (withdrawal latency), and thermal allodynia (paw lifts) in the contralateral and ipsilateral paw of naive, sham-operated, and sciatic nerve-injured WT mice at 21 days after surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Paw</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Mechanical allodynia (basal response, %)</td>
<td>Contralateral</td>
</tr>
<tr>
<td></td>
<td>Ipsilateral</td>
</tr>
<tr>
<td>Thermal hyperalgesia (withdrawal latency, s)</td>
<td>Contralateral</td>
</tr>
<tr>
<td></td>
<td>Ipsilateral</td>
</tr>
<tr>
<td>Thermal allodynia (paw lifts, no.)</td>
<td>Contralateral</td>
</tr>
<tr>
<td></td>
<td>Ipsilateral</td>
</tr>
</tbody>
</table>

* $p < 0.05$ denotes significant differences vs. naive or sham-operated mice (one-way ANOVA, followed by the Student-Newman-Keuls test) for each test and paw.
jury in WT Mice. Our results showed that the subplantar administration of different doses of NANT, L-NIL, ODQ, or Rp-8-pCPT-cGMPs dose-dependently inhibited the mechanical allodynia (Fig. 2A), thermal hyperalgesia (Fig. 2B), and thermal allodynia (Fig. 2C) induced by sciatic nerve injury in WT mice. Thus, in all behavioral tests, the antiallodynic and antihyperalgesic effects of all inhibitors in the ipsilateral paw of sciatic nerve-injured WT mice were significantly higher than those obtained in their corresponding vehicle-treated groups (p < 0.05, Student’s t test). Moreover, the subplantar administration of NANT, L-NIL, ODQ, Rp-8-pCPT-cGMPs, or vehicle did not have any significant antinociceptive effect neither on the contralateral paw of sciatic nerve-injured mice nor in the ipsilateral or contralateral paw of naive animals (data not shown).

Furthermore, by analyzing the ED50 values of NOS1, NOS2, L-guanylate cyclase, and PKG inhibitors, our data showed that the potency of the NOS1 inhibitor (NANT) on the inhibition of mechanical and thermal sensitivity induced by sciatic nerve injury was between 3.7 and 4.5 times higher than the NOS2 (L-NIL) inhibitor (Table 4). Our results also showed that the potency of the PKG inhibitor (Rp-8-pCPT-cGMPs) on the inhibition of mechanical and thermal sensitivity induced by sciatic nerve injury was between 2.4 and 3.6 times higher than that of the L-guanylate cyclase inhibitor (ODQ). Moreover, the potency of the peripheral cGMP-PKG pathway blockers on the inhibition of mechanical and thermal allodynia as well as thermal hyperalgesia induced by sciatic nerve injury was higher than the peripheral NOS inhibitors.

Role of the Peripheral Nitric Oxide-cGMP-PKG Pathway Activated by NOS1 and NOS2 on the Local Antiallodynic and Antihyperalgesic Effects Produced by DPDPE or JWH-015 in Sciatic Nerve-Injured WT Mice. The role of the peripheral nitric oxide-cGMP-PKG pathway activated by NOS1 and NOS2 in the local antiallodynic and antihyperalgesic effects induced by DPDPE or JWH-015 during neuropathic pain was assessed by evaluating the effects of the coadministration of DPDPE (38.7 nmol) or JWH-015 (15.3 nmol) with NANT (50.9 nmol), L-NIL (223.5 nmol), ODQ (13.4 nmol), Rp-8-pCPT-cGMPs (4.1 nmol), or vehicle in sciatic nerve-injured WT mice at 21 days after CCI induction.

Our results showed that the coadministration of DPDPE plus NANT, L-NIL, ODQ, or Rp-8-pCPT-cGMPs significantly increases the local mechanical antiallodynic (Fig. 3A), thermal antihyperalgesic (Fig. 3B), and thermal antiallodynic (Fig. 3C) effects produced by DPDPE alone in the ipsilateral paw of sciatic nerve-injured mice (p < 0.001, one-way ANOVA followed by Student-Newman-Keuls test). In a similar way, the coadministration of JWH-015 plus NANT, L-NIL, ODQ, or Rp-8-pCPT-cGMPs significantly increases the local mechanical antiallodynic (Fig. 4A), thermal antihyperalgesic (Fig. 4B), and thermal antiallodynic (Fig. 4C) effects produced by JWH-015 alone in the ipsilateral paw of sciatic nerve-injured mice (p < 0.001, one-way ANOVA followed by Student-Newman-Keuls test).

The local coadministration of DPDPE or JWH-015 plus vehicle, NANT, L-NIL, ODQ, or Rp-8-pCPT-cGMPs did not have any significant effect in either the contralateral paw of sciatic nerve-injured WT mice or in the ipsilateral or contralateral paw of naive animals (data not shown).
Expression of DOPr and CB2R mRNA in the Spinal Cord and Dorsal Root Ganglia of Sciatic Nerve-Injured WT, NOS2-KO, and NOS1-KO Mice. The expression of DOPr mRNA in the spinal cord of WT and NOS knockout mice is shown in Fig. 5A. A two-way ANOVA showed a significant effect of the surgery (p < 0.006) as well as a significant interaction between genotype and surgery (p < 0.045). Thus, sciatic nerve injury did not affect the expression of DOPr in the spinal cord of WT or NOS2-KO animals, but it significantly increased their expression in NOS1-KO mice (p < 0.037, Student’s t test; compared with their respective naive mice). Our results did not show any significant difference between genotypes compared with the expression of DOPr mRNA among them in naive or sciatic nerve-injured mice.

In the dorsal root ganglia, a two-way ANOVA also showed a significant effect of the surgery (p < 0.008) as well as a significant interaction between genotype and surgery (p < 0.050). Thus, sciatic nerve injury significantly reduced the expression of DOPr in the dorsal root ganglia of WT (p < 0.001, Student’s t test) and NOS2-KO mice (p < 0.047, Student’s t test), but not in NOS1 knockout animals, compared with their respective naive mice (Fig. 5B). Nonsignificant differences were found between genotypes compared with the expression of DOPr mRNA among them in naive or sciatic nerve-injured mice.

The CB2R mRNA expression in the spinal cord of WT and NOS-knockout mice is shown in Fig. 5C. A two-way ANOVA showed a significant effect of the surgery (p < 0.001) and a marginally significant interaction between genotype and surgery (p < 0.072). Sciatic nerve injury significantly increased the expression of CB2R in the spinal cord of WT (p < 0.050, Student’s t test) and NOS2-KO (p < 0.009, Student’s t test), but not in NOS1-KO mice, compared with their respective naive mice. Our results also showed that in naive mice, the CB2R mRNA expression in NOS2-KO mice was significantly lower than in WT or NOS1-KO animals (p < 0.002, one-way ANOVA followed by Student-Newman-Keuls test).

In the dorsal root ganglia, a two-way ANOVA only showed a significant effect of the surgery (p < 0.012). Thus, although sciatic nerve injury significantly increased the expression of CB2R in the dorsal root ganglia of WT (p < 0.029, Student’s t test; versus naive WT) and NOS2-KO mice (p < 0.040, Student’s t test; versus naive NOS2-KO), nonsignificant changes were observed in NOS1-KO mice (Fig. 5D). Our results did not show any significant difference between genotypes compared with the expression of CB2R mRNA among them in naive or sciatic nerve-injured mice.

Furthermore, the expression of DOPr in the spinal cord and dorsal root ganglia was significantly higher than that of CB2R in all genotypes (p < 0.01, Student’s t test).

Discussion

The local administration of specific DOPr and CB2R agonists, nitric-oxide synthases, or cGMP-PKG pathway inhibitors dose-dependently inhibited the mechanical and thermal allodynia as well as the thermal hyperalgesia induced by sciatic nerve injury. It is interesting to note that the local antiallodynic and antihyperalgesic effects of DPDPE and JWH-015 were significantly enhanced by their coadministration with nitric-oxide synthases or cGMP-PKG pathway blockers. This study also showed that nitric oxide synthesized by NOS1 is implicated in the peripheral down- and up-regulation of DOPr and CB2R gene transcription during neuropathic pain.

In a model of CCI-induced neuropathic pain, our results confirmed the mechanical antiallodynic effects of DOPr and CB2R agonists locally administered (Elmes et al., 2004; Kabli and Cahill, 2007; Obara et al., 2009) and further demonstrated the thermal antihyperalgesic and antiallodynic effects of both agonists in these experimental conditions. More-
over, although JWH-015 had a similar potency in the inhibition of mechanical and thermal allodynia as well as thermal hyperalgesia, the capability of DPDPE to reduce mechanical allodynia and thermal hyperalgesia was higher than that of reducing thermal allodynia. By comparing the ED50 values of DPDPE and JWH-015, our data revealed that the DOPr agonist is effective at doses 3.6 to 4.1 times higher than the CB2R agonist in reversing the mechanical allodynia and thermal hyperalgesia induced by sciatic nerve injury. It is curious that a higher relative efficacy of JWH-015 than DPDPE was observed on the inhibition of thermal allodynia, in which the potency of JWH-015 is 5.9 times higher than that of DPDPE. The specificity of the peripheral antiallodynic and antihyperalgesic effects of DOPr and CB2R ago-

Fig. 2. Effects of the subplantar administration of different doses (logarithmic axis) of a specific NOS1 (NANT), NOS2 (L-NIL), guanylate cyclase (ODQ), and PKG (Rp-8-pCPT-cGMPs; Rp-8) inhibitor and their corresponding vehicle (dotted lines) in mechanical allodynia (A), thermal hyperalgesia (B), and thermal allodynia (C) induced by CCI in the ipsilateral paw of WT mice at 21 days after surgery. All inhibitors were administered 20 min before starting behavioral testing. Data are expressed as mean values of maximal possible effect (%) for mechanical allodynia and thermal hyperalgesia and inhibition (%) for thermal allodynia ± S.E.M. (five to six animals for each dose and drug tested). In all tests, for each drug and dose, *p < 0.05; **p < 0.01; and ***p < 0.001 denotes significant differences compared with each inhibitor versus their corresponding vehicle-treated group (Student’s t test).

TABLE 4
Comparison of the potencies (ED50) of the subplantar administration of L-NIL, NANT, ODQ, or Rp-8-pCPT-cGMPs (Rp-8) to suppress the mechanical allodynia (von Frey test), thermal hyperalgesia (plantar test), and thermal allodynia (cold-plate test) induced by nerve injury in WT mice at 21 days after CCI induction.

<table>
<thead>
<tr>
<th>Test</th>
<th>L-NIL (ED50)</th>
<th>NANT (ED50)</th>
<th>ODQ (ED50)</th>
<th>Rp-8 (ED50)</th>
<th>Ratio (L-NIL/NANT)</th>
<th>Ratio (ODQ/Rp-8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical allodynia</td>
<td>465.6 (423.7–511.6)</td>
<td>118.0 (115.1–120.9)</td>
<td>22.5 (12.5–40.2)</td>
<td>7.7 (6.3–9.3)</td>
<td>3.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Thermal hyperalgesia</td>
<td>462.2 (394.7–541.3)</td>
<td>101.4 (97.4–105.5)</td>
<td>21.7 (13.0–36.4)</td>
<td>9.0 (8.1–10.1)</td>
<td>4.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Thermal allodynia</td>
<td>334.8 (283.4–395.6)</td>
<td>90.6 (61.3–133.9)</td>
<td>26.6 (19.8–35.6)</td>
<td>7.3 (6.1–8.8)</td>
<td>3.7</td>
<td>3.6</td>
</tr>
</tbody>
</table>
nists after sciatic nerve injury was demonstrated by the complete reversion of their effects with selective antagonists that did not have any effect in the absence of agonists. Moreover, the highest doses of DPDPE or JWH-015 did not produce any significant effect in the contralateral paw of sciatic nerve-injured mice, indicating a peripheral site of action.

It is well accepted that nitric oxide mediates some neuropathic pain symptoms (LaBuda et al., 2006). Thus, several studies using pharmacological and genetic approaches have demonstrated that nitric oxide mediates the maintenance of neuropathic pain through the activation of spinal nitric oxide-cGMP-PKG pathway triggered by NOS1 and NOS2, in which the soluble guanylyl cyclase and PKG enzymes are essentially required for the pronociceptive action of nitric oxide in the spinal cord (Guan et al., 2007; Schmidtko et al., 2008). In addition, the peripheral involvement of this nitric oxide signaling pathway in the maintenance of thermal and mechanical hypersensitivity induced by the chronic constriction of the sciatic nerve has not been fully clarified. Our results showed that the subplantar administration of NOS1 and NOS2 inhibitors as

![Fig. 3. Effects of the subplantar coadministration of DPDPE (38.7 nmol) plus vehicle, NANT (50.9 nmol), L-NIL (223.5 nmol), ODQ (13.4 nmol), or Rp-8-pCPT-cGMPs (4.1 nmol; Rp-8) in the ipsilateral paw of sciatic nerve-injured WT mice at 21 days after CCI. All drugs were coadministered 20 min before starting behavioral testing. Data are expressed as mean values of the maximal possible effect (%) for mechanical allodynia (A) and thermal hyperalgesia (B) and as inhibition (%) for thermal allodynia (C) ± S.E.M. (five to six animals per group). For each behavioral test, *p < 0.05 denotes significant differences versus group treated with DPDPE + vehicle (one-way ANOVA followed by Student-Newman-Keuls test).](fig3.png)

![Fig. 4. Effects of the subplantar coadministration of JWH-015 (15.3 nmol) plus vehicle, NANT (50.9 nmol), L-NIL (223.5 nmol), ODQ (13.4 nmol), or Rp-8-pCPT-cGMPs (4.1 nmol; Rp-8) in the ipsilateral paw of WT mice at 21 days after CCI. All drugs were coadministered 20 min before starting behavioral testing. Data are expressed as mean values of the maximal possible effect (%) for mechanical allodynia (A) and thermal hyperalgesia (B) and as inhibition (%) for thermal allodynia (C) ± S.E.M. (five to six animals per group). For each behavioral test, *p < 0.05 denotes significant differences versus group treated with JWH-015 + vehicle (one-way ANOVA followed by Student-Newman-Keuls test).](fig4.png)
well as soluble guanylate cyclase or PKG blockers generates poten dose-dependent antiallodynic and antihyperalgesic effects after peripheral nerve injury, in which the potency of the peripheral downstream cGMP-PKG pathway blockers attenuating neuropathic pain was much higher than that of NOS1 or NOS2 inhibitors. These data suggest that nitric oxide produced by NOS1 and NOS2 mediates the maintenance of neuropathic pain induced by CCI through peripheral nitric oxide-cGMP-PKG pathway activation.

In other pain models, such as acute and inflammatory models, a clear relationship between the antinoceptive effects of opioids and nitric oxide-cGMP-PKG pathway activation has been extensively demonstrated. In accordance, a significant reduction in the antinoceptive effects of opioids was observed when neuronal NOS, inducible NOS, or both are inhibited, either pharmacologically or by using knockout mice for these enzymes (Li and Clark, 2001; Pol, 2007; Leánez et al., 2009). Moreover, the coadministration of a DOPr agonist with a nitric oxide donor significantly enhances the antinoceptive potency of DPDPE in a mouse model of inflammatory pain (Hervera et al., 2009). In the present study, the involvement of the peripheral nitric oxide-cGMP-PKG pathway as a possible mechanism of action of DOPr and CB2R agonists during neuropathic pain also was investigated. It is interesting that in contrast to inflammatory pain, the local pharmacological blockade of the nitric oxide-cGMP-PKG pathway potentiated the peripheral antiallodynic and antihyperalgesic effects of DOPr and CB2R agonists during neuropathic pain also was investigated. These results suggest that the activated nitric oxide-cGMP-PKG peripheral pathway was implicated as a mechanism limiting the local antiallodynic and antihyperalgesic efficiency of DOPr and CB2R agonists under neuropathic pain conditions. Therefore, the local coadministration of opioids or cannabinoids with a NOS1, NOS2, guanylate cyclase, or a PKG inhibitor might represent a useful therapeutic strategy for the treatment of neuropathic pain.

The possible alteration of DOPr and CB2R gene expression by neuropathic pain also has been evaluated in this study. Our data indicated a decreased abundance of DOPr mRNA in the dorsal root ganglia of WT mice in day 21 after CCI. According to these results, Obara et al. (2009) also demonstrated that the dorsal root ganglia DOPr mRNA levels decreased in days 3 and 14 after total sciatic nerve ligation in WT mice, although their expression did not change in day 16 after the partial sciatic nerve ligation (Pol et al., 2006). These findings suggest that the DOPr expression changes induced by neuropathic pain in the dorsal root ganglia could be more related to the nerve injury model (partial versus CCI) than the postinjury time. Moreover, although sciatic nerve injury did not alter the transcription of DOPr gene in the spinal cord, an enhanced transcription of CB2R in the spinal cord and dorsal root ganglia of WT mice at 21 days after CCI has been demonstrated. In accordance to our results, an increased immunoreactivity and CB2R mRNA expression in the spinal cord and the nerve sections proximal to the spinal nerve ligation site also have been demonstrated by other studies (Zhang et al., 2003; Wotherspoon et al., 2005). In summary and taking account that DOPr is mainly located in neurons and CB2R in glial cells, the nerve injury-induced degeneration of C fibers (Ossipov et al., 2000) and glial activation (Mika et al., 2009) could be the principals responsible for the decreased and increased synthesis of peripheral DOPr and CB2R that leads to the lower peripheral potency of DPDPE compared with JWH-015 during neuropathic pain.

Finally, the role of nitric oxide synthesized by NOS1 or NOS2 enzymes in DOPr and CB2R gene expression changes observed at 21 days after CCI-induced neuropathic pain has been evaluated by using knockout mice. Thus, in contrast to NOS1-KO mice and similar to WT mice, nerve injury also decreased DOPr and increased CB2R expression in the dorsal root ganglia but did not alter (DOPr) or enhance (CB2R) their expression in the spinal cord of NOS2-KO animals. These findings indicated that nitric oxide synthesized by NOS1 plays a dual role in the modulation of DOPr and CB2R gene transcription after sciatic nerve injury, because it is implicated in the decreased or not-altered DOPr mRNA expression as well as in the increased transcription of CB2R that takes place in the peripheral and central nervous system of animals with neuropathic pain.

In summary, our data demonstrate that the inactivation of the nitric oxide-cGMP-PKG peripheral pathway triggered by NOS1 and NOS2 enhanced the peripheral actions of DOPr and CB2R agonists and that nitric oxide synthesized by...
NOS1 is implicated in the peripheral regulation of DOPr and CB2R gene transcription during neuropathic pain.

References

Address correspondence to: Dr. Olga Pol, Grup de Neurofarmacologia Molecular, Institut de Neurociencies, Facultat de Medicina, Edifici M2, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. E-mail: opol@santpau.es