No Evidence for Functional Selectivity of Proxyfan at the Human Histamine H₃ Receptor Coupled to Defined Gᵢ/Gₒ Protein Heterotrimers

David Schnell, Katrina Burleigh, Jonathan Trick,¹ and Roland Seifert

Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany (D.S., K.B., J.T.); and Institute of Pharmacology, Medical School of Hannover, Hannover, Germany (R.S.)

Received October 4, 2009; accepted December 2, 2009

ABSTRACT

Numerous structurally diverse ligands were developed to target the human histamine H₃ receptor (hH₃R), a presynaptic Gᵢ/Gₒ-coupled auto- and heteroreceptor. Proxyfan was identified to be functionally selective, with different efficacies toward Gᵢ/Gₒ-dependent hH₃R signaling pathways. However, the underlying molecular mechanism of functional selectivity of proxyfan is still unclear. In the current study, we investigated the role of different Gᵦᵢ₁α₁ proteins in hH₃R signaling, using a baculovirus/Sf9 cell expression system. We tested the hypothesis that ligand-specific coupling differences to defined Gᵦᵢ₁α₁-heterotrimers are responsible for functional selectivity of proxyfan at hH₃R. In Sf9 membranes, full-length hH₃R (445 amino acids) was expressed in combination with an excess of different mammalian G proteins (Gᵦᵢ₁α₁, Gᵦᵦ₁α₁, Gᵦᵦ₁α₁, or Gᵦᵦ₁α₁ and β₁γ₂ dimers, respectively). In addition, we constructed the fusion proteins hH₃R-Gᵦᵦ₁α₁ and hH₃R-Gᵦᵦ₁α₁ to ensure clearly defined receptor/G protein stoichiometries. Steady-state GTPase experiments were performed to directly measure the impact of each G protein on hH₃R signal transduction. The hH₃R coupled similarly to all G proteins. We also observed similar ligand-independent or constitutive activity. Proxyfan and various other imidazole-containing ligands, including full agonists, partial agonists, and inverse agonists, showed very similar pharmacological profiles not influenced by the type of G protein coexpressed. Selected ligands, examined in membranes expressing the fusion proteins hH₃R-Gᵦᵦ₁α₁ and hH₃R-Gᵦᵦ₁α₁ (plus β₁γ₂ dimers), yielded very similar results. Collectively, our data indicate that hH₃R couples similarly to different Gᵦᵦ₁α₁ subunits and that ligand-specific active receptor conformations, resulting in G protein-coupling preferences, do not exist for proxyfan or other imidazole compounds investigated.

The histamine H₃ receptor (H₃R) is currently one of the most targeted biogenic amine receptors because it participates in important physiological processes such as the sleep-wake cycle, eating behavior, and cognition (Leurs et al., 2005). Discovered pharmacologically in the early 1980s and cloned almost 20 years later (Lovenberg et al., 2000), the H₃R was shown to be a presynaptic auto- and heteroreceptor, regulating the release of neurotransmitters including histamine, dopamine, norepinephrine, serotonin, and acetylcholine via negative feedback mechanisms (Haas et al., 2008). Thus, the H₃R is a promising drug target for many diseases, including obesity; sleep disorders such as narcolepsy; and cognitive problems associated with Alzheimer’s disease, attention deficit-hyperactivity disorder, and schizophrenia (Bonaventure et al., 2007; Esbenshade et al., 2008).

According to the two-state model of receptor activation, G protein-coupled receptors (GPCRs) isomerize from an inactive (R) state to an active (R*) state (Kenakin, 2001; Seifert and Wenzel-Seifert, 2002). In the R* state, GPCRs activate G proteins. Agonist-independent R to R* isomerization is referred to as constitutive activity and results in an increase in basal G protein activity. Agonists stabilize the R* state and further increase, whereas inverse agonists stabilize the R state and decrease, basal G protein activity. The H₃R is constitutively active (Leurs et al., 2005) and couples to Gᵦᵦ₁α₁ proteins in native tissues (Clark and Hill, 1996).

ABBREVIATIONS: H₃R, histamine H₃ receptor; GPCR, G protein-coupled receptor; h, human; β₁AR, β₂-adrenoceptor; H₄R, histamine H₄ receptor; aa, amino acids; PCR, polymerase chain reaction; JNU-7753707, (4-fluorophenyl)[1-methyl-2-an-1H-imidazol-5-yl]methanone; GTP-γS, guanosine 5’-[γ-thio]triphosphate; bp, base pair(s); PAGE, polyacrylamide gel electrophoresis; r, rat.

The Journal of Pharmacology and Experimental Therapeutics

Printed in U.S.A.
Many GPCRs are able to signal through various intracellular pathways. Depending on the specific G proteins to which the GPCR is coupled functional ligand selectivity has been frequently observed (Kenakin, 2001, 2007). In this case, the ligand preferentially activates specific signaling pathways mediated by a single GPCR in a manner that challenges the above-introduced two-state model. Based on such findings, a multiple-state model, implying the existence of ligand-specific conformational states, has been developed (Kenakin, 2001, 2007; Koblika and Deupi, 2007). It is interesting to note that even stereoisomers of one and the same compound can show different functional selectivities, providing an additional opportunity to control receptor-mediated effects (Seifert and Dove, 2009).

Protein agonism is considered a special case of functional selectivity. A protein agonist presumably stabilizes a receptor conformation with a lower efficacy toward the G protein than the agonist-free constitutively active or agonist-stabilized GPCR state. The ligand then acts as an inverse agonist. In a quiescent system with low constitutive activity, the protein ligand can act as an agonist (Gbahou et al., 2003; Kenakin, 2007).

Numerous structurally diverse H₃R ligands have been synthesized as potential drug candidates or as pharmacological tools. Almost all H₃R agonists are imidazole-containing small molecules, derived from the endogenous agonist histamine (Leurs et al., 2005). H₃R antagonists/inverse agonists can be differentiated into imidazole-containing antagonists and nonimidazole antagonists (Cowart et al., 2004; Leurs et al., 2005). Proxyfan is a prototypical, imidazole-containing H₃R ligand that was initially characterized as an antagonist (Hüls et al., 1996) (Fig. 1). Subsequent studies revealed a more complex pharmacological profile and proxyfan was re-classified as a protean agonist (Gbahou et al., 2003). However, the systems examined were all very different, rendering data interpretation difficult. In brief, proxyfan was examined in different species and measuring various parameters. In addition, the parameters were often quite distal and the G protein constructs used to transfect recombinant cell lines do not represent the physiological coupling partners or were chimeric to redirect the signaling cascade (Krueger et al., 2005). Collectively, due to the large differences between the systems examined it is very difficult to precisely define the molecular mechanism for the pleiotropic effects of proxyfan.

By studying nine imidazole-containing H₃R ligands (Fig. 1), we wanted to obtain more direct evidence for the existence of different ligand-specific H₃R conformations. Most importantly, we aimed at probing the hypothesis that the type of G/Gi protein α-subunit to which H₃R couples is responsible for the differential effects of proxyfan. Therefore, we established a baculovirus/Sf9 cell expression system for the full-length hH₃R (445 aa), in which the receptor can be expressed either alone or coexpressed with different G/Gi protein α-subunits (Gα₁i, Gα₂i, Gα₃i, or Gα₄i, and β₁γ₂ dimers, respectively). Sf9 cells have already been successfully used for reconstitution of several G/Gi-coupled GPCRs (Wenzel-Seifert et al., 1998; Kleemann et al., 2008). The H₃R-expressing membranes were then studied under identical experimental conditions, focusing on steady-state GTPase activity, a proximal parameter of GPCR/G protein coupling. Moreover, we examined the fusion proteins hH₃RGi₂S and hH₃RGi₃S. GPCR-Ga fusion proteins ensure proximity and defined 1:1 stoichiometry of the signaling partners (Seifert et al., 1999b), ruling out the possibility that differences in receptor-to-G protein ratio account for potential differences in pharmacological properties of ligands at hH₃R.

Materials and Methods

Materials. The cDNA for the hH₃R was kindly provided by Dr. T. Lovenberg (Johnson and Johnson Pharmaceutical R&D, San Diego, CA). All restriction enzymes and T4 DNA ligase were from New England Biolabs (Frankfurt, Germany). Moloney murine leukemia virus reverse transcriptase was from Invitrogen (Carlsbad, CA). Cloned Pfu polymerase was obtained from Stratagene (La Jolla, CA). The DNA primers for PCR were synthesized by MWG Biotech (Ebersberg, Germany). Baculoviruses for Gα₁i, Gα₂i, and Gα₃i were donated by Dr. A. G. Gilman (Department of Pharmacology, University of Southwestern Medical Center, Dallas, TX). Baculovirus for rat Gα₁i was donated by Dr. J. C. Garrison (University of Virginia, Charlottesville, VA). Recombinant baculovirus encoding the unmodified version of GB₁γ₂-subunits was a kind gift from Dr. P. Gierschik (Department of Pharmacology and Toxicology, University of Ulm, Ulm, Germany). Anti-hH₃R Ig was from Bio-Trend (Cologne, Germany). The anti-FLAG Ig (M1 monoclonal antibody) and anti-His₉ Ig were from Sigma-Aldrich (St. Louis, MO). The antibodies recognizing Gα₁i-subunits (Gα₇comm, AS 266) and Gβ-subunits (Gβcomm, AS 389/9), as well as purified Gα₁i, Gα₂i, and Gα₃i protein, were kindly provided by Dr. B. Nürnberg (Institute of Pharmacology, University of Tübingen, Tübingen, Germany). The Gα₁i, Gα₂i, and Gα₃i-selective antibodies were from Calbiochem (San Diego, CA). Histamine, (R)-α-methylhistamine, N₃-methylhistamine, imetit, colbenoprop, and thioperamide were from Tocris Bioscience (Avonmouth, Bristol, UK). Impentamine, imoproxyfan, and ciproxyfan were kind gifts from Dr. S. Elz (Department of Pharmaceutical/Medical Chemistry I, University of Regensburg, Regensburg, Germany). Proxyfan was synthesized by Dr. P. Igel (Department of Pharmaceutical/Medical Chemistry II, University of Regensburg, Regensburg, Germany). [3H]Dihydroalprenolol (85–90 Ci/mmol) and [35S]GTPγS (1100 Ci/ mmol) were obtained from PerkinElmer Life and Analytical Sciences (Bostons, MA). [γ-32P]GTP was prepared using GDP and [3P]P (8500–9120 Ci/mmol orthophosphoric acid) (PerkinElmer Life and Analytical Sciences) according to a previously described enzymatic labeling procedure (Walseth and Johnson, 1979). Unlabeled nucleotides were from Roche Diagnostics (Indianapolis, IN).

![Fig. 1. Structures of imidazole-containing H₃R ligands: full agonists 1 to 3, partial agonists 4 to 6, and antagonists/inverse agonists, 7 to 9.](image-url)
IN), and all other reagents were of the highest purity available and from standard suppliers.

Construction of FLAG Epitope- and Hexahistidine-Tagged cDNA for hH3R. The cDNA for the tagged receptor protein was generated by sequential overlap-extension PCR. With pGEM-3Z-SF-hH3R-His6 as template (Schneider et al., 2009), PCR 1A was used to amplify a DNA fragment consisting of the cleavable signal peptide from influenza hemagglutinin (S), the FLAG epitope (F) recognized by the monoclonal antibody M1, and a start codon. The sense primer F1a (5'-GAC CAT GAT GAG GCC GAG CAT GCC CCG CC-3') annealed with 19 bp of pGEM-3Z before the 5'-end of SF. The antisense primer C3 (5'-CAT GGC GTC ATC ATC GTC-3') annealed with 15 bp of the 3'-end of SF and with ATG. In PCR 1B, the cDNA encoding the hH3R, followed by a hexahistidine tag (His6) in 3'-position, was generated. The hexahistidine tag was included to allow future purification, to provide additional protection against proteolysis and to serve as a linker in fusion proteins between the hH3R and G proteins (Seifert et al., 1998). The sense primer HUMAN HRH3-F (5'-GAC GAT GAT GAC GCC ATG GAG GAG CCG CCG CC-3') consisted of 15 bp of the 3'-end of SF and the first 17 bp of the 5'-end of the hH3R. The antisense primer HUMAN HRH3-RV (5'-GA TCC TCT AAG TTA GTG ATG ATG ATG GTG ATG CTT CCA GCA GTC GTC CTC-3') consisted of 15 bp of the C terminus of the hH3R, the hexahistidine tag, the stop codon, and an XbaI site. As template, a plasmid (pCloneo) containing the sequence of hH3R was used. In PCR 2, the products of PCR 1A and PCR 1B annealed in the region encoding SF and ATG. Here, the sense primer of PCR 1a and the antisense primer of PCR 1b were used. In that way, a fragment encoding SF, the hH3R sequence, the hexahistidine tag, the stop codon, and an XbaI site were obtained. The fragment was digested with SacI and XbaI and cloned into pGEM-3Z-SF-hH3R-His6, digested with the same restriction enzymes, to yield pGEM-3Z-SF-hH3R-His6. After transformation of chemically competent bacteria (JM 109), amplification of the plasmids and analytical restriction digestion, the subcloned hH3R construct was fully sequenced. Finally, the construct was cloned into the baculovirus transfer vector pVL1392-SF-hH3R-His6 via SacI and XbaI restriction sites. Again, competent bacteria (Top 10) were transformed, the plasmids were amplified, and the accuracy of the resulting MaxiPrep-DNA was checked by extensive restriction digestion analysis and sequencing.

Construction of the cDNAs for hH3R-G o1 and hH3R-G o1. The cDNAs for the tagged fusion proteins were also generated by sequential overlap-extension PCR. With pGEM-3Z-SF-hH3R-His6 as template, a prolonged sense primer from PCR 1A F1b (5'-GAC CAT GAT GAG GCC GAG CAT GCC CCG CC-3') and aGaoAXbaI (5'-GA TCC TCT AGA ATG ATG ATG ATG ATG ATG ATG GAG GAG CCG CCG CC-3') consisted of 15 bp of the C terminus of the hH3R, the hexahistidine tag, the stop codon, and an XbaI site was used. Again, competent bacteria (Top 10) were transformed, the plasmids were amplified, and the accuracy of the resulting MaxiPrep-DNA was checked by extensive restriction digestion analysis and sequencing.

Construction of the cDNAs for hH3R-G o1 and hH3R-G o1. The cDNAs for the tagged fusion proteins were also generated by sequential overlap-extension PCR. With pGEM-3Z-SF-hH3R-His6 as template, a prolonged sense primer from PCR 1A F1b (5'-GAC CAT GAT GAG GCC GAG CAT GCC CCG CC-3') and aGaoAXbaI (5'-GA TCC TCT AGA ATG ATG ATG ATG ATG ATG ATG GAG GAG CCG CCG CC-3') consisted of 15 bp of the C terminus of the hH3R, the hexahistidine tag, the stop codon, and an XbaI site was used. Again, competent bacteria (Top 10) were transformed, the plasmids were amplified, and the accuracy of the resulting MaxiPrep-DNA was checked by extensive restriction digestion analysis and sequencing.

Construction of the cDNAs for hH3R-G o1 and hH3R-G o1. The cDNAs for the tagged fusion proteins were also generated by sequential overlap-extension PCR. With pGEM-3Z-SF-hH3R-His6 as template, a prolonged sense primer from PCR 1A F1b (5'-GAC CAT GAT GAG GCC GAG CAT GCC CCG CC-3') and aGaoAXbaI (5'-GA TCC TCT AGA ATG ATG ATG ATG ATG ATG ATG GAG GAG CCG CCG CC-3') consisted of 15 bp of the C terminus of the hH3R, the hexahistidine tag, the stop codon, and an XbaI site was used. Again, competent bacteria (Top 10) were transformed, the plasmids were amplified, and the accuracy of the resulting MaxiPrep-DNA was checked by extensive restriction digestion analysis and sequencing.

Generation of Recombinant Baculoviruses, Cell Culture, and Membrane Preparation. Baculoviruses encoding recombinant proteins were generated in SF9 cells using the BaculoGOLD transfection kit (BD Biosciences Pharmingen, San Diego, CA) according to the manufacturer's instructions. SF9 cells were cultured in 250- or 500-ml disposable Erlenmeyer flasks at 28°C under rotation at 150 rpm in SF 900 II medium (Invitrogen) supplemented with 5% (v/v) fetal calf serum (Biochrom, Berlin, Germany) and 0.1 mg/ml gentamicin (Lonza Walkersville, Inc., Walkersville, MD). Cells were maintained at a density of 0.5 to 6.0 × 10⁶ cells/ml. After initial transfection, high-titer virus stocks were generated by two sequential virus amplifications. In the first amplification, cells were seeded at 2.0 × 10⁶ cells/ml and infected with a 1:100 dilution of the supernatant from the initial transfection. Cells were cultured for 7 days, resulting in the death of virtually the entire cell population. The supernatant fluid of this infection was harvested and stored under light protection at 4°C. In a second amplification, cells were seeded at 3.0 × 10⁶ cells/ml and infected with a 1:20 dilution of the supernatant fluid from the first amplification. Cells were cultured for 48 h, and the supernatant fluid was harvested. After the 48-h culture period, the majority of cells showed signs of infections (e.g., altered morphology, viral inclusion bodies), but most of the cells were still intact. The supernatant fluid from the second amplification was stored under light protection at 4°C and used as routine virus stock for membrane preparations. To ensure the purity and identity of the viruses, the total RNA of infected SF9 cells was isolated (RNeasy kit; Qiagen GmbH, Hilden, Germany), the cDNA was derived via reverse transcription, and fragments representative for the constructs were PCR-amplified and analyzed by restriction digestion. For infection, cells were sedimented by centrifugation and suspended in fresh medium. Cells were seeded at 3.0 × 10⁶ cells/ml and infected with a 1:100 dilution of high-titer baculovirus stocks encoding hH3R constructs, G o1 proteins and G o2 dimers. Cells were cultured for 48 h before membrane preparation. SF9 membranes were prepared as described previously, using 1 mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride, 10 μg/ml benzamidine, and 10 μg/ml leupeptin as protease inhibitors. Membranes were suspended in binding buffer (12.5 mM MgCl₂, 1 mM EDTA, and 75 mM Tris-HCl, pH 7.4) and stored at -80°C until use.

SDS-PAGE and Immunoblot Analysis. Membrane proteins were diluted in Laemmli buffer and separated on SDS polyacrylamide gels containing 12% (w/v) acrylamide. The purified G protein standards were handled in dilution buffer (25 mM Tris-HCl, pH 7.5, 1 mM dithiothreitol, 100 mM NaCl, 0.1% Lubrol PX (v/v), 25 mM MgCl₂, and 1 mM EDTA). Proteins were transfected onto 0.45-μm nitrocellulose membranes (Bio-Rad Laboratories, Hercules, CA) and then reacted with anti-hH3R (1:1000), M1 antibody (1:1000), anti-G o1/2 (1:1000), or G o1 (1:200) Igs. Immunoreactive bands were visualized by enhanced chemoluminescence (Pierce Chemical, Rockford, IL), using anti-mouse and anti-rabbit Igs coupled to peroxidase (GE Healthcare, Little Chalfont, Buckinghamshire, UK). Electrochemoluminiscently stained blots were exposed to X-ray films (GE Healthcare). The expression level of proteins were roughly estimated by using appropriate dilutions of a reference membrane expressing defined levels of h β 2 AR protein or purified G proteins. h β 2 AR expression level were determined by radioligand binding with [H]-hydroalprenolol. Immunoblots were scanned with a GS-710-calibrated imaging densitometer (Bio-Rad Laboratories). The intensity
of the bands was analyzed with the Quantity One 4.0.3 software (Bio-Rad Laboratories).

\[^{32}\text{P}]\text{HJNJ}-7753707 Binding Assay.\] Before experiments, membranes were sedimented by a 10-min centrifugation at 4°C and 15,000 g and resuspended in binding buffer (12.5 mM MgCl\(_2\), 1 mM EDTA, and 75 mM Tris-HCl, pH 7.4). Each tube (total volume, 250 or 500 \(\mu\)l) contained 10 to 50 \(\mu\)g of protein. Nonspecific binding was determined in the presence of \(^{[32]P}\text{HJNJ}-7753707\) at various concentrations plus 10 \(\mu\)M thioperamide and amounted to \(20\) to \(30\)% of total binding at saturating concentrations (10 nM). Incubations were conducted for 60 min at room temperature and shaking at 250 rpm. Saturation binding experiments were carried out using 0.3 to 10 nM \(^{[32]P}\text{HJNJ}-7753707\). Bound \(^{[32]P}\text{HJNJ}-7753707\) was separated from free \(^{[32]P}\text{HJNJ}-7753707\) by filtration through 0.3% (m/v) polyethylenimine-pretreated GF/C filters (Whatman, Maidstone, UK), followed by three washes with 2 ml of binding buffer (4°C). Filter-bound radioactivity was determined by liquid scintillation counting. The experimental conditions chosen ensured that not more than 10% of the total amount of radioactivity added to binding tubes was bound to filters.

\[^{35}\text{S}]\text{GTP}\gamma\text{S} Binding Assay.\] Membranes were thawed, sedimented by a 10-min centrifugation at 4°C and 15,000 g to remove residual endogenous guanine nucleotides as far as possible. Membranes were resuspended in binding buffer, supplemented with 0.05% (m/v) bovine serum albumin. Each tube (total volume of 250 or 500 \(\mu\)l) contained 10 to 20 \(\mu\)g of membrane protein. In saturation binding experiments, tubes contained 0.2 to 2 nM \(^{[35]}\text{S}\)GTP\(\gamma\text{S}\) plus unlabeled GTP\(\gamma\text{S}\) to give the desired final ligand concentrations (0.2–50 nM). Neither GDP nor H\(_3\)R ligands were included in assays. Nonspecific binding was determined in the presence of 100 nM unlabeled GTP\(\gamma\text{S}\) and amounted to less than 1% of total binding. Incubations were conducted for 90 min at 25°C and shaking at 250 rpm. Bound \(^{[35]}\text{S}\)GTP\(\gamma\text{S}\) was separated from free \(^{[35]}\text{S}\)GTP\(\gamma\text{S}\) by filtration through GF/C filters, followed by three washes with 2 ml of binding buffer (4°C). Filter-bound radioactivity was determined by liquid scintillation counting. The experimental conditions chosen ensured that not more than 10% of the total amount of radioactivity added to binding tubes was bound to filters.

Results

Immunological Detection of Recombinant Proteins Expressed in SF9 Cell Membranes. Membranes from the same batch of SF9 cells infected with recombinant N- and C-terminally tagged h\(_3\)R-baculoviruses alone or in combination with baculoviruses encoding different mammalian G proteins \((\text{G}_{\alpha_{11}}, \text{G}_{\alpha_{12}}, \text{G}_{\alpha_{13}}\) or \(\text{G}_{\alpha_{1}}\)) and/or \(\beta_3\gamma_2\) dimers, respectively) were prepared and subjected to immunological analysis. The predicted molecular mass of the h\(_3\)R is \(49\) kDa. We used anti-h\(_3\)R Ig, recognizing an 18-aa peptide within the extracellular N terminus of the h\(_3\)R to confirm expression (Fig. 2A). Indeed, h\(_3\)R migrated as the expected band for a monomeric GPCR. The results were confirmed by the use of anti-FLAG Ig (Fig. 2F), recognizing the N-terminal FLAG-epitope and anti-His\(_3\) Ig (Fig. 2C), recognizing the C-terminal hexahistidine tag. The bands were doublets, probably representing different glycosylated forms of h\(_3\)R. h\(_3\)R possesses one putative N-glycosylation site (Asn11), located in the N terminus. The receptor expression levels were similar in all membrane batches and estimated to be \(\approx 1\) to 2 pmol/mg, using anti-FLAG Ig and h\(_3\)R AR as standards (Fig. 2B). The expression level of the h\(_3\)AR was \(7.5\) pmol/mg, as determined by \(\text{[^{3}H]dihydroalprenolol saturation binding.}\) Thus, h\(_3\)R was properly expressed in SF9 cells and not proteolytically degraded after membrane preparation.

To visualize the coexpressed G\(_{\beta\gamma}\)-subunits, we used an antibody recognizing all G\(_{\alpha_{i0}}\) proteins (Fig. 2D). G\(_{\alpha_{i0}}\)-subunits appeared at the expected molecular mass (\(40–41\) kDa) as very intense bands, although the expression level of G\(_{\alpha_{11}}\) was lower compared with the other G protein subunits. This is an intrinsic property of mammalian G\(_{\alpha_{11}}\), heterologously expressed in SF9 cells, as already shown in a previous study (Kleemann et al., 2008). Unfortunately, this problem could not be overcome by an optimization of the expression process. However, it was also shown that a low expression level of G\(_{\alpha_{11}}\) does not influence its ability to effectively interact with GPCRs (Kleemann et al., 2008). It is likely that G\(_{\alpha_{11}}\) accumulates in GPCR-expressing membrane domains. G\(_{\beta\gamma}\)-subunits were expressed at similar levels in all membranes studied (Fig. 2E).

The GPCR/G protein ratio can alter the pharmacological properties of ligands (Kenakin, 1997). Therefore, we quantified G\(_{\alpha_{12}}\) and G\(_{\alpha_{13}}\) using purified protein as reference. These semiquantitatively determined expression levels for the G\(_{\alpha}\)-subunits were in the range of 50 to 100 pmol/mg, resulting in receptor-to-G protein ratios of \(\approx 1:50\) to 1:100 (Fig. 2, F and G). This is in good agreement with ratios determined for other G\(_{\alpha_{i0}}\)-coupled receptors in SF9 cell membranes, for example the h\(_{\beta\gamma}\)R (Schneider et al., 2009), human cannabinoid receptors CB\(_1\) and CB\(_2\) (Nickel et al., 2008), and the human formyl peptide receptor (Wenzel-Seifert et al., 1998).
Due to the fact that the determination of expression levels by immunoblotting does not discriminate between functional and nonfunctional proteins, we also quantified the hH3R and G-proteins by a combination of antagonist [3H]JNJ-7753707- and [35S]GTPγS saturation binding and calculated the functional GPCR/G-protein ratios (Table 1). The membranes were from the same batch as those studied by immunoblot to ensure maximal comparability and data accuracy.

In [35S]GTPγS saturation binding experiments neither GDP nor H3R ligands were present. The maximal number of Gi/i-related GTPγS binding sites in membranes expressing hH3R plus Gi2 subunits plus β1γ2 was corrected by the binding determined in parallel in membranes expressing hH3R plus Gi1 subunits, using 2, 4, 7.5, 15, and 30 pmol of purified Gi1 as standard. G, 0.5, 1.0, 1.5, and 2.0 μg of a corresponding membrane of the same batch expressing hH3R plus Gi1 subunits plus β1γ2 was analyzed to quantify the Gi-subunits, using 2, 4, 7.5, 15, and 30 pmol of purified Gi1 as an almost identical splice variant of Gi1 as standard.

In [35S]GTPγS binding experiments neither GDP nor H3R ligands were present. The maximal number of Goi/o-related GTPγS binding sites in membranes expressing hH3R plus Go-subunits plus β1γ2 was corrected by the binding determined in parallel in membranes expressing hH3R plus β1γ2 alone. To ensure the same viral load in the reference membrane, Sf9 cells were infected with baculoviruses encoding hH3R, Gi1 subunits, and virus encoding no recombinant protein at all. In this manner, only the number of functionally intact and heterologously expressed mammalian Goi/o-subunits was quantified.

Fig. 2. Immunological detection of recombinant proteins expressed in Sf9 cells. Each lane of the gels was loaded with 10 μg of membrane protein, unless otherwise indicated below the film. Numbers on the left designate masses of marker proteins in kilodaltons. A, a membrane expressing the hH3R alone was loaded onto the gels. B1 and B2, 2, 4, 6, 8, and 10 μg of protein of Sf9 membranes expressing hβ1AR at 7.5 pmol/mg (as determined by [3H]dihydroalprenolol saturation binding) were used as standard to assess the expression levels of the hH3R in different membrane preparations with anti-FLAG Ig. C, the same membranes were reacted with anti-His6 Ig. D, the membranes were reacted with anti-Gi-common Ig. E, membranes were reacted with anti-Go-common Ig. F, 0.5, 1.0, 1.5, and 2.0 μg of a membrane expressing the hH3R + Gi2 + β1γ2 was analyzed to quantify the Gi-subunits, using 2, 4, 7.5, 15, and 30 pmol of purified Gi2 as standard. G, 0.5, 1.0, 1.5, and 2.0 μg of a corresponding membrane of the same batch expressing hH3R + Go1 + β1γ2 was analyzed to quantify the Go-subunits, using 2, 4, 7.5, 15, and 30 pmol of purified Go1 as an almost identical splice variant of Go1 as standard.
TABLE 1
Quantification of hH3R-to-G protein ratios via [3H]JNJ-7753707- and [35S]GTPγS saturation binding

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Rmax ± S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3H]JNJ-7753707</td>
<td>0.6 ± 0.04</td>
</tr>
<tr>
<td>[35S]GTPγS</td>
<td>1.02 ± 0.07</td>
</tr>
<tr>
<td>R/G ratio</td>
<td>1.2 ± 0.06</td>
</tr>
<tr>
<td>[3H]JNJ-7753707 + Goβ1</td>
<td>0.7 ± 0.03</td>
</tr>
</tbody>
</table>

The experiments revealed that the number of [3H]JNJ-7753707 binding sites was very similar to the hH3R protein expression levels determined via immunoblot. Thus, most hH3R molecules were correctly folded in Sf9 cell membranes. However, the number of specific [35S]GTPγS binding sites for mammalian Go proteins was much smaller compared with the Go protein expression levels determined via immunoblot. Nevertheless, there were still more functionally intact mammalian Go proteins than receptors in the membranes and the functional receptor-to-G protein ratios ranged between 1:2 and 1:11. Similar ratios were also found by other investigators, using the same methodology (Gazi et al., 2003). These data also fit the linear and noncatalytic signal transfer observed for severalGPCR/G-protein pairs in Sf9 cell membranes (Wenzel-Seifert et al., 1998, 1999; Wenzel-Seifert and Seifert, 2000).

Steady-State GTPase Assay: hH3R Coupling to Different Go-Subunits. To investigate the G protein-coupling profile of the hH3R, we measured the receptor-dependent [γ-32P]GTP hydrolysis of different Go-subunits (Fig. 3). The experiments were performed under steady-state conditions. Thus, multiple G protein activation/deactivation cycles were assessed, eliminating the inherent bias of kinetic [35S]GTPγS binding studies. GTP hydrolysis was determined in parallel under basal conditions, maximal stimulation with the physiological (and full) agonist histamine (10 μM) and a saturating concentration of the inverse agonist thioperamide (10 μM) in Sf9 cell membranes expressing the hH3R alone or coexpressing the hH3R and different Go proteins.

In membranes expressing the hH3R alone, basal GTPase activity was low, and the stimulatory and inhibitory effects of histamine and thioperamide, respectively, were small (Table 2). This reflects only very weak coupling of the hH3R to insect cell Go proteins. The structurally related hH2R also couples only weakly to insect cell Go proteins (Schneider et al., 2009). hH3R coupled efficiently to all coexpressed mammalian Goβγ-subunits (Goβ1, Goβ2, Goγ1, or Goγ2, and βγ2 dimers, respectively) as was evident by the higher basal GTPase activity and the larger absolute stimulatory and inhibitory effects of histamine and thioperamide, respectively. The relative stimulatory effects of histamine and the relative inhibitory effects of thioperamide based on total ligand-regulated GTPase activity were similar for each of the five systems studied, indicating that the constitutive activity of hH3R was comparable and not substantially influenced by the type of G protein (Seifert and Wenzel-Seifert, 2002). In contrast to hH3R, the short and long splice variants of Goα3 had a large impact on the constitutive activity of the hβAR (Seifert et al., 1998; Seifert, 2001). The constitutive activity of hH3R coupled to cognate Gβγ subunits was rather high and comparable with the constitutive activity of hH3R (Schneider et al., 2009) and the human formyl peptide receptor (Wenzel-Seifert et al., 1998, 1999). However, some Gs/Gαs-coupledGPCRs expressed in Sf9 cells exhibit only low or no constitutive activity, indicating that the expression system per se does not give rise to high constitutive activity (Seifert and Wenzel-Seifert, 2002; Kleemann et al., 2008).

Ligand Potencies and Efficacies in the Steady-State GTPase Assay at hH3R Coexpressed with Different Go-Subunits. Next, we examined a variety of imidazole-based ligands, including the functionally selective proxyfan, in Sf9 cell membranes expressing the hH3R and different Goβγ proteins in the steady-state GTPase assay (Fig. 1; Table 3). The endogenous agonist histamine (1) and the standard H3R ligands Nα-methylhistamine (2) and (R)-α-methylhistamine (3) were full agonists and equally potent in all membranes. The highly potent standard H3R agonist imetit (4)
TABLE 3

Constitutive activity of hH3R under the various conditions. Such an observation was not made. Moreover, differences in ligand mixtures contained ligands at concentrations from 0.1 nM to 10 μM as appropriate to generate saturated concentration/response curves. Data were analyzed by nonlinear regression and were best fit to sigmoidal concentration/response curves. Typical basal GTPase activities ranged between 2.0 and 5.0 pmol × mg⁻¹ × min⁻¹, and the maximal stimulatory effect of histamine (10 μM) amounted to ~30 to ~50% above basal. The efficacy (E_{max}) of histamine was determined by nonlinear regression and was set to 1.00. The E_{max} values of other agonists and inverse agonists were referred to this value. Data shown are the means ± S.E.M. of three to four experiments performed in duplicates each. Statistical analysis was performed using one-way ANOVA, followed by Dunnett’s multiple comparison test using the values determined at hH3R, G_{o1} and G_{o2} as a reference. Significant differences to the membrane expressing hH3R-G_{o2} are shown following comparison with other G_{o1}/G_{o2} subunits. Structures of ligands and definitions of abbreviations are shown in Fig. 1.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>hH3R + G_{o1}</th>
<th>hH3R + G_{o2}</th>
<th>hH3R + G_{o3}</th>
<th>hH3R + G_{o1} + G_{o2}</th>
<th>hH3R + G_{o1} + G_{o3}</th>
<th>hH3R + G_{o2} + G_{o3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA</td>
<td>8.02 ± 0.07*</td>
<td>7.90 ± 0.05</td>
<td>7.88 ± 0.09</td>
<td>7.85 ± 0.07</td>
<td>7.85 ± 0.07</td>
<td>7.88 ± 0.09</td>
</tr>
<tr>
<td>NAMH</td>
<td>8.95 ± 0.12</td>
<td>8.86 ± 0.07</td>
<td>8.83 ± 0.11</td>
<td>8.84 ± 0.08</td>
<td>8.84 ± 0.08</td>
<td>8.84 ± 0.08</td>
</tr>
<tr>
<td>RAMH</td>
<td>8.78 ± 0.21</td>
<td>8.81 ± 0.16</td>
<td>8.82 ± 0.12</td>
<td>8.71 ± 0.19</td>
<td>8.71 ± 0.19</td>
<td>8.71 ± 0.19</td>
</tr>
<tr>
<td>IME</td>
<td>9.61 ± 0.19</td>
<td>9.68 ± 0.13</td>
<td>9.63 ± 0.16</td>
<td>9.38 ± 0.15</td>
<td>9.38 ± 0.15</td>
<td>9.38 ± 0.15</td>
</tr>
<tr>
<td>PRO</td>
<td>8.86 ± 0.21</td>
<td>8.91 ± 0.11</td>
<td>8.82 ± 0.09</td>
<td>8.14 ± 0.14</td>
<td>8.14 ± 0.14</td>
<td>8.14 ± 0.14</td>
</tr>
<tr>
<td>IMP</td>
<td>8.25 ± 0.20</td>
<td>8.25 ± 0.20</td>
<td>8.97 ± 0.19</td>
<td>8.87 ± 0.28</td>
<td>8.87 ± 0.28</td>
<td>8.87 ± 0.28</td>
</tr>
<tr>
<td>CIP</td>
<td>12.10 ± 0.02</td>
<td>12.01 ± 0.01</td>
</tr>
<tr>
<td>CLOB</td>
<td>9.08 ± 0.22</td>
<td>9.14 ± 0.12</td>
<td>9.18 ± 0.23</td>
<td>9.05 ± 0.08</td>
<td>9.05 ± 0.08</td>
<td>9.05 ± 0.08</td>
</tr>
<tr>
<td>THIO</td>
<td>6.97 ± 0.13</td>
<td>6.93 ± 0.14</td>
<td>6.77 ± 0.18</td>
<td>6.64 ± 0.12</td>
<td>6.64 ± 0.12</td>
<td>6.64 ± 0.12</td>
</tr>
</tbody>
</table>

* P < 0.05; ** P < 0.01; and *** P < 0.001.

No asterisk(s) after a value indicates not significant.

Studies with hH3R-G_{o12} and hH3R-G_{o13} Fusion Proteins. The use of coexpression systems is often hampered by the fact that it is difficult, if not impossible, to control the expression levels of different signaling partners exactly (Fig. 2, Table 1) (Gille and Seifert, 2003; Kleemann et al., 2008). Table 1 shows that also for hH3R, identical GPCR/Gα ratios could not be achieved. The efficiency of interactions between GPCRs and heterotrimeric G proteins can be influenced by the absolute and relative densities of these proteins in the plasma membrane (Kenakin, 1997; Gille and Seifert, 2003). Fortunately, the analysis of these interactions is greatly facilitated by the use of GPCR-Gα fusion proteins (Seifert et al., 1999b). Fusion proteins ensure a defined 1:1 stoichiometry of GPCR to Gα and ensure physical proximity of the signaling partners. Nonetheless, fusion proteins are not physiologically occurring and therefore, the academically best procedure is to compare coexpression systems directly with fusion proteins (Wenzel-Seifert et al., 1998, 1999; Wenzel-Seifert and Seifert, 2000).

Pertussis toxin-sensitive G proteins consist of different Gα subunit family members and βγ-complexes (Birnbaumer, 2007). The three Gα subunits are all very similar in structure, whereas the two Gγ splice variants are less conserved. The largest structural differences in this G protein family exist was almost a full partial agonist in this assay. It was most interesting that the protein agonist proxyfan (5) was a strong partial agonist in all systems, independent of the G protein subtype coexpressed. Impentamine (6) was a moderate partial agonist in all experimental settings. The inverse agonists ciproxyfan (7), clobenpropit (8), and thiopemadie (9) each were also equally potent in the various systems, although they significantly differed in efficacy with the various Gα subunits. However, the rank orders of potency and efficacy of compounds 7 to 9 did not change under the various conditions. Thus, the pharmacological profile of the hH3R is very similar under the various experimental conditions. In addition, there is a strong linear correlation between potencies and efficacies of hH3R ligands at membranes expressing different Gα subunits (Fig. 4). An increase in constitutive activity of hH3R coupled to one G protein relative to another G protein would have been reflected in increased agonist potency and efficacy (Seifert and Wenzel-Seifert, 2002), but such an observation was not made. Moreover, differences in constitutive activity of hH3R under the various conditions would have resulted in systematic changes of inverse agonist potency, i.e., an increase in constitutive activity would have resulted in decreased inverse agonist potency (Seifert and Wenzel-Seifert, 2002). Again, no such data were obtained. Collectively, these results corroborate the findings regarding the relative stimulatory and inhibitory effects of histamine and thiopemadie, respectively (Table 2) based on total ligand-regulated GTPase activity and are indicative for similar constitutive activity of hH3R under all experimental conditions (Seifert and Wenzel-Seifert, 2002).
between α_{i2} and α_{i3} (Birnbaumer, 2007). Thus, we constructed $hH_{3R}-G_{i2}$ and $hH_{3R}-G_{i3}$ fusion proteins as representative pair to study hH_{3R}/G protein coupling in more detail. We hypothesized that, if there were any hH_{3R}/G protein-coupling differences, then potencies and efficacies of ligands should diverge most prominently at this fusion protein pair. The assessment of GTPase activity at different GPCR-G protein fusion proteins is the most accurate measure of the pharmacological profile of a given receptor because GTPase activities are determined under steady-state conditions, rendering potency and efficacy values of agonists and inverse agonists expression level-independent (Seifert et al., 1999a,b; Wenzel-Seifert et al., 1999, 2000). The pharmacological profiles of histamine, imetit, proxyfan, clenbuterol, and thiopropamide in the GTPase assay were very similar at the $hH_{3R}-G_{i2}$ and $hH_{3R}-G_{i3}$ fusion proteins both in terms of potency and efficacy (Table 4). Moreover, there was no evidence for differences in constitutive activity of the two fusion proteins. These results fit very well to the data obtained with the corresponding coexpression systems (Table 3) and render it unlikely that the nonidentical GPCR/G protein stoichiometries in the coexpression studies documented in Table 1 had a major impact on the pharmacological profile of hH_{3R}. Actually, the stoichiometry issue would have been of greater concern if the pharmacological profiles of the hH_{3R} had been different with the various coexpressed $G_{i/o}$ proteins. This was, however, not the case (Table 3).

Discussion

The imidazole-containing H_{3R} ligand proxyfan exhibits pleiotropic effects, ranging from inverse agonism to agonism, depending on the system studied (Gbahou et al., 2003; Krueger et al., 2005). An explanation for these findings could be that the proxyfan-bound H_{3R} exhibits different affinities and efficacies for coupling to various G proteins (Kenakin, 2001, 2007; Kobilka and Deupi, 2007). Thus, the observed proxyfan effects could be due to functional selectivity. We tested this hypothesis by studying coupling of the hH_{3R} to four different $G_{i/o}$ proteins under clearly defined experimental conditions, measuring one and the same parameter of GPCR/G-protein coupling, i.e., steady-state GTPase activity. However, we did not obtain evidence for functional selectivity of proxyfan. In our hands, proxyfan was a strong partial agonist at the full-length hH_{3R} (445 aa) in all experimental settings. For eight other hH_{3R} ligands, we did not obtain evidence for functional selectivity either. Moreover, we could not find differences in constitutive activity of hH_{3R} coupled to $G_{i/o}$ proteins that would have been important for detecting protean agonism (Gbahou et al., 2003). Those “negative”

TABLE 4

<table>
<thead>
<tr>
<th>Ligand</th>
<th>pE_{C50} \pm S.E.M.</th>
<th>E_{max} \pm S.E.M.</th>
<th>pE_{C50} \pm S.E.M.</th>
<th>E_{max} \pm S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA</td>
<td>7.40 \pm 0.10</td>
<td>1.00</td>
<td>7.46 \pm 0.11</td>
<td>1.00</td>
</tr>
<tr>
<td>IME</td>
<td>9.55 \pm 0.19</td>
<td>0.96 \pm 0.08</td>
<td>9.62 \pm 0.09</td>
<td>0.95 \pm 0.04</td>
</tr>
<tr>
<td>PRO</td>
<td>7.65 \pm 0.23</td>
<td>0.81 \pm 0.08</td>
<td>7.76 \pm 0.13</td>
<td>0.74 \pm 0.05</td>
</tr>
<tr>
<td>CLOB</td>
<td>8.72 \pm 0.25</td>
<td>-0.60 ± 0.07</td>
<td>8.45 \pm 0.25</td>
<td>-0.86 ± 0.09</td>
</tr>
<tr>
<td>THIO</td>
<td>7.00 \pm 0.18</td>
<td>-0.76 ± 0.07</td>
<td>7.05 \pm 0.15</td>
<td>-0.74 ± 0.05</td>
</tr>
</tbody>
</table>

Steady-state GTPase activity in Sf9 membranes expressing $hH_{3R}-G_{i2}$ or $hH_{3R}-G_{i3}$, plus β_{i2}, was determined as described under Materials and Methods. Reaction mixtures contained ligands at concentrations from 0.1 nM to 10 μM as appropriate to generate saturated concentration/response curves. Data were analyzed by nonlinear regression and were best fit to sigmoid concentration/response curves. Typical basal GTPase activities ranged between 1.0 and 1.5 pmol \times mg $^{-1}$ \times min $^{-1}$, and the maximal stimulatory effect of HA (10 μM) amounted to \approx 50 to \approx 80% above basal. The efficacy (E_{max}) of HA was determined by nonlinear regression and was set to 1.00. The E_{max} values of other agonists and inverse agonists were referred to this value. Data shown are the means \pm S.E.M. of three to four experiments performed in duplicates each. Statistical analysis was performed using the t-test ($P < 0.05$). Significant differences were not found for the data analyzed. Structures of ligands and definitions of abbreviations are shown in Fig. 1.

Fig. 4. Correlation of potency and efficacy of ligands at the hH_{3R} in the presence of different coexpressed $G_{i/o}$ proteins. Data shown in Table 3 were analyzed by linear regression. A, C, and E, potencies of ligands at membranes coexpressing the hH_{3R}, G_{i1}, G_{i2}, or G_{i3}, and β_{i2} dimers, respectively, were correlated with values determined at the reference membrane expressing G_{i3}. A, $r^2 = 0.97$; slope $= 0.93 \pm 0.06$. C, $r^2 = 0.93$; slope $= 1.02 \pm 0.10$. E, $r^2 = 0.92$; slope $= 0.96 \pm 0.11$. B, D, and F, the efficacies of ligands at membranes coexpressing the hH_{3R}, G_{i1}, G_{i2}, or G_{i3}, and β_{i2} dimers, respectively, were correlated with values determined at the reference membrane expressing G_{i3}. B, $r^2 = 0.99$; slope $= 0.87 \pm 0.03$. D, $r^2 = 0.99$; slope $= 0.78 \pm 0.03$. F, $r^2 = 0.99$; slope $= 0.85 \pm 0.03$. The dotted lines indicate the 95% confidence intervals of the regression lines. The diagonal dashed line has a slope of 1 and represents a theoretical curve for identical values.

TABLE 4

<table>
<thead>
<tr>
<th>Ligand</th>
<th>pE_{C50} \pm S.E.M.</th>
<th>E_{max} \pm S.E.M.</th>
<th>pE_{C50} \pm S.E.M.</th>
<th>E_{max} \pm S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA</td>
<td>7.40 \pm 0.10</td>
<td>1.00</td>
<td>7.46 \pm 0.11</td>
<td>1.00</td>
</tr>
<tr>
<td>IME</td>
<td>9.55 \pm 0.19</td>
<td>0.96 \pm 0.08</td>
<td>9.62 \pm 0.09</td>
<td>0.95 \pm 0.04</td>
</tr>
<tr>
<td>PRO</td>
<td>7.65 \pm 0.23</td>
<td>0.81 \pm 0.08</td>
<td>7.76 \pm 0.13</td>
<td>0.74 \pm 0.05</td>
</tr>
<tr>
<td>CLOB</td>
<td>8.72 \pm 0.25</td>
<td>-0.60 ± 0.07</td>
<td>8.45 \pm 0.25</td>
<td>-0.86 ± 0.09</td>
</tr>
<tr>
<td>THIO</td>
<td>7.00 \pm 0.18</td>
<td>-0.76 ± 0.07</td>
<td>7.05 \pm 0.15</td>
<td>-0.74 ± 0.05</td>
</tr>
</tbody>
</table>
data were obtained in a coexpression system and a fusion protein system. Thus, the crucial question is how the discrepancies between our present study and the studies of Gbahou et al. (2003) and Krueger et al. (2005) could be explained.

Defined ligands stabilize distinct conformations in the human dopamine D₂ receptor that result in the activation of only one specific Goᵢₒ subtype when expressed in Sf9 cells (Gazi et al., 2003). In addition, endogenous catecholamines and synthetic ligands stabilize distinct ligand-specific active states in human β-adrenergic receptors (Seifert et al., 1999a; Wenzel-Seifert and Seifert, 2000; Weitl and Seifert, 2008). Moreover, ligand-specific conformations were readily unmasked for histamine H₁ and H₂ receptors expressed in Sf9 cells (Preuss et al., 2007; Wittmann et al., 2009). These data show that the baculovirus/Sf9 cell system is sufficiently sensitive at detecting ligand-specific GPCR conformations so that we should have been able to detect functional selectivity of proxfan. However, it should also be emphasized that for some GPCRs expressed in Sf9 cells, e.g., the human formyl peptide receptor, no evidence for ligand-specific receptor conformations could be obtained despite intense efforts (Wenzel-Seifert et al., 1999). These data indicate that not all GPCRs exhibit ligand-specific conformations. It is noteworthy that like hH₁R, the formyl peptide receptor couples to Gᵢ/Gₒ proteins (Wenzel-Seifert et al., 1999).

In the study by Gbahou et al. (2003), proxfan was a partial agonist in [³⁵S]GTPγS binding, cAMP accumulation and mitogen-activated protein kinase assays, but an inverse agonist in phospholipase A₂ assays, some parameters representing distal consequences of Goᵢₒ protein activation. It is possible that different combinations of Goᵢₒ proteins are involved in the responses, that the G protein/effecter stoichiometry is different in the pathways (Ostrom and Insel, 2004) and that there is cross-talk between the mitogen-activated protein kinase and phospholipase A₂. In contrast, we studied clearly defined G protein heterotrimeric (although at somewhat different GPCR/G protein ratios) and a proximal parameter of GPCR/G-protein coupling, avoiding complications of G protein/effecter stoichiometry and cross-talk of signaling pathways.

In the study of Krueger et al. (2005), proxfan exhibited little activity in neurotransmitter release assays, full agonism in cAMP accumulation assays, and partial agonism in [³⁵S]GTPγS binding assays. In addition, in transfected human embryonic kidney cells proxfan displayed differential activity in cAMP accumulation- and calcium mobilization assays dependent on the type of G protein coexpressed (Go₁₆ or Go₄₅₁). The authors concluded that the type of G protein determines the pharmacological properties of proxfan. Although it is known that Go₁₆ has an impact on the pharmacological properties of GPCRs (Wenzel-Seifert and Seifert, 2000), Go₁₆ is certainly not a cognate G protein of hH₁R, but rather a G protein expressed in hematopoietic cells and not in neuronal cells (Birnbaumer, 2007). Moreover, Go₄₅₁ is not a physiological G protein, but a chimeric G protein used to direct G₁-coupled GPCRs toward Gᵢ and phospholipase C coupling (Coward et al., 1999). We studied only cognate G proteins of hH₁R, i.e., Goᵢₒ proteins, and did not obtain evidence for ligand-specific hH₁R conformations.

Gbahou et al. (2003) expressed H₂R in Chinese hamster ovary cells. These cells express some of the cognate Goᵢₒ proteins of H₂R, but the specific expression pattern of Goᵢₒ subunits was not defined in the previous study. Moreover, it is unknown whether the proxfan-bound H₂R interacted differentially with various Goᵢₒ proteins in Chinese hamster ovary cells. Such an interaction can be studied by photoaffinity labeling with [α-³²P]GTP azidoanilide (Woo et al., 2009). However, such data are not available. Moreover, various βγ₁γ₂-complexes affect on GPCR/G protein coupling (Birnbaumer, 2007). However, in the previous studies on proxfan βγ₁γ₂-complexes were not defined. We studied a single βγ₁-complex that is broadly expressed, i.e., β₁γ₂ (Birnbaumer, 2007), but we did not examine other βγ₁γ₂-complexes. It is possible that distinct βγ₁γ₂-complexes account for the protean agonism of proxfan observed in the previous studies, but those βγ₁γ₂-complexes remain to be identified. It is also possible that differential compartmentation of G protein heterotrimers into specific membrane domains, resulting in different GPCR/G protein stoichiometries (Ostrom and Insel, 2004) contributed to protean agonism of proxfan observed in previous studies. In our coexpression system, we cannot exclude different compartmentalization of signaling partners either, but the GPCR-Gα fusion protein approach circumvented this problem (Seifert et al., 1999b). With hH₃R-G₀ᵢₒ fusion proteins, like with the corresponding coexpression systems, there was no evidence for ligand-specific GPCR conformations.

Another issue is the fact that some of the previous assays were performed with intact cells and some assays with membranes. In experiments with intact cells, the precise ionic and nucleotide environments of G proteins are unknown, but both ionic and nucleotide composition can largely affect GPCR/G protein coupling, constitutive GPCR activity and pharmacological GPCR profile (Seifert et al., 1999a; Seifert, 2001; Gille et al., 2002). Moreover, in intact cells, specifically native tissues, relevant for neurotransmitter release studies, it cannot be excluded that endogenous histamine is present, thereby changing the apparent agonistic/inverse agonistic activities of ligands. We performed experiments with extensively washed membranes, excluding the presence of contaminating histamine and conducted experiments under clearly defined ionic conditions and nucleotide composition. We are aware of the fact that our experimental conditions do not represent physiological conditions, but our conditions are defined and allow direct comparison with data from our group for other GPCRs over a period of a decade (Seifert et al., 1999a; Seifert, 2001; Gille et al., 2002; Preuss et al., 2007; Schneider et al., 2009). It is noteworthy that under our experimental conditions, different degrees of constitutive activity of a GPCR can be readily detected (Wenzel-Seifert and Seifert, 2000; Seifert, 2001; Preuss et al., 2007), supporting the principal suitability of our system for the hypothesis tested.

It should be also noted that the study of Gbahou et al. (2003) was performed with hH₁R. Species-specific pharmacology of the H₁R has been mainly attributed to two aa differences in transmembrane domain 3, which are part of the ligand binding site, and this leads to changes in antagonist affinities (Yao et al., 2003). However, it is possible that the hH₃R also shows a different G protein coupling profile compared with the hH₁R. Here, we studied only the full-length hH₃R (445 aa). Future studies will have to examine hH₃R as well.
a truncated splice variant of the full-length hH3R (413 aa) in their experiments. This short splice variant lacks 32 amino acids in the 3rd intracellular loop of the receptor, which is an important interaction site for G proteins (Seifert et al., 1999b; Leurs et al., 2005). It is possible that the truncated hH3R possesses an altered G protein coupling profile compared with the full-length hH3R. The detailed coupling profiles of various H3R splice variants are not yet known, but should be addressed in future investigations. The pattern of H3R splice variant expression differs between species and brain regions (Bongers et al., 2007) and splice variants differentially regulate signal transduction pathways (Drutel et al., 2001). These data are indicative for differences in G protein coupling of H3R splice variants. We studied only the full-length hH3R (445 aa) without considering splice variants.

In conclusion, we have shown that the full-length hH3R (445 aa) couples similarly to four defined G/Gi protein heterotrimers expressed in Sf9 cells. We did not obtain evidence in favor of the hypothesis that proxyfan or eight other H3R ligands are functionally selective in a coexpressed system and a fusion protein system. Moreover, we did not find differences in constitutive activity of hH3R under various experimental conditions. These “negative” results cannot be attributed to unsuitability of our expression system for exclusion of ligand functional selectivity. However, our system is not suitable to definitely exclude protein agonism at hH3R because that would require a systematic and precise variation of receptor-to-G protein stoichiometries (Kenakin 2001, 2007). In addition, we discussed several possibilities that could account, fully or partially, for the differences between the results of our study and the previous studies of Gbahou et al. (2003) and Krueger et al. (2005). Extensive systematic studies under clearly defined experimental conditions are required to reconcile the discrepancies. Thus, presently, a specific and generally applicable mechanistic explanation for the previously observed pleiotropic effects of proxyfan cannot yet be provided.

Acknowledgments

We thank G. Wilberg and A. Seefeld for excellent technical assistance. We also thank the reviewers of this article for the helpful critique.

References