Ligand-Induced Regulation and Localization of Cannabinoid CB₁ and Dopamine D₂L Receptor Heterodimers

Julie A. Przybyla and Val J. Watts

Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana

Received November 2, 2009; accepted December 15, 2009

ABSTRACT

The cannabinoid CB₁ (CB₁) and dopamine D₂ (D₂) receptors are expressed in the basal ganglia, an area of the brain involved in such processes as cognition, motor function, and emotional control. Several lines of evidence suggest that CB₁ and D₂ receptors may oligomerize, providing a unique pharmacology in vitro and in vivo. However, limited information exists on the regulation of CB₁ and D₂ receptor dimers. We used a novel technique, multicolor bimolecular fluorescence complementation (MBiFC) to examine the subcellular localization of CB₁-D₂L heterodimers as well as D₂L-D₂L homodimers in a neuronal cell model, Cath a differentiated cell line. MBiFC was then used to explore the effects of persistent ligand treatment on receptor dimerization at the plasma membrane and intracellularly. Persistent (20-h) agonist treatment resulted in increased formation of CB₁-D₂L heterodimers relative to D₂L-D₂L homodimers. The effects of the D₂ agonist quinpirole were restricted to the intracellular compartment and may reflect increased D₂L receptor expression. In contrast, treatment with the CB₁ receptor agonist (2)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol (CP55, 940) produced increases in both membrane and intracellular CB₁-D₂L heterodimers independently of alterations in CB₁ receptor expression. The effects of CB₁ receptor activation were attenuated by the CB₁ antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM281) and were both time- and dose-dependent. The effects of CB₁ activation were examined further by combining MBiFC with a constitutively active CB₁ receptor mutant, CB₁T210I. These studies demonstrated that the expression of CB₁T210I increased intracellular CB₁-D₂L heterodimer formation. In summary, agonist-induced modulation of CB₁-D₂L oligomerization may have physiological implications in diseases such as Parkinson’s disease and drug abuse.

Increasing evidence suggests that G protein-coupled receptors (GPCRs) may function in receptor dimeric or higher order oligomeric complexes (for review, see Milligan, 2008). One set of receptors that has received significant attention relevant to oligomerization is the CB₁ cannabinoid (CB₁) receptor and dopamine D₂ (D₂) receptor (for review, see Fuxe et al., 2008). It is thought that the cannabinoid system negatively modulates dopamine circuits as activation of the CB₁ receptor leads to an attenuation of dopamine signaling (Laviolette and Grace, 2006). The CB₁ receptor is widely expressed in the central nervous system, with great abundance in the basal ganglia (Herkenham et al., 1991). CB₁ receptors are located on striatal GABAergic neurons (Herkenham et al., 1991), and they are also found on dendrites in both the dorsal striatum and the nucleus accumbens (Pickel et al., 2006). The D₂ receptor exists as two splice variants, D₂S (short) and D₂L (long). The D₂S variant is highly expressed on presynaptic dopaminergic neurons, whereas the D₂L variant is found postsynaptically on dopaminergic neurons throughout the striatum.
tions reveal that CB1 and D2L receptors have overlapping expression patterns in the striatum and also suggest that they are colocalized in neurons in the nucleus accumbens (see references within Kearn et al., 2005; Pickel et al., 2006).

It has been reported that CB1 and D2 receptors oligomerize, providing unique pharmacology in vitro and in vivo (Glass and Felder, 1997; Jarrahian et al., 2004; Kearn et al., 2005; Marcellino et al., 2008). For example, it was demonstrated in primary rat striatal neurons that concurrent activation of Gα16-coupled CB1 and D2 receptors resulted in stimulation of cAMP accumulation (Glass and Felder, 1997). Subsequent experiments using recombinant CB1 and D2L receptors suggested that D2L receptor activation promoted a switch in CB1 receptor coupling from Gα16 to Gα12 (Glass and Felder, 1997). One proposed mechanism for D2 receptor modulation of CB1-G protein coupling may involve receptor oligomerization. This hypothesis was examined by demonstrating a physical interaction between CB1 and D2L receptors using coimmunoprecipitation (Kearn et al., 2005). The same investigators also revealed that the CB1-D2L receptor complex can be dynamically modulated by receptor agonists. More recent studies have examined CB1-D2L heteromers using FRET techniques (Marcellino et al., 2008). Using human embryonic kidney cells transiently transfected with fluorescently tagged CB1 and D2L receptors, a FRET interaction was detected. However, no significant changes in the FRET signal were detected after short-term exposure to CB1 or D2L receptor agonists (Marcellino et al., 2008). The ability of CB1 and D2L receptors to interact is consistent with suggestion of a CB1-D2L heterodimer. Additional behavior and biochemical data support further the physiological relevance of CB1 and D2 receptors heterodimers (Fuxe et al., 2008). However, limited information exists on the cellular localization and regulation of CB1-D2L receptor heterodimers. Despite the therapeutic potential of drugs targeting these receptors, the effect of persistent receptor activation on the dynamics of receptor oligomerization has not been explored.

The most common techniques currently being used to study the physical association of GPCRs include coimmunoprecipitation and traditional resonance energy transfer (FRET and BRET) techniques (Vidi and Watts, 2009). These techniques are typically limited to the study of a single protein-protein complex. In addition, coimmunoprecipitation does not allow for detection of an interacting protein complex within a living cell. To gain further insight into GPCR dimerization in live cells, we recently developed a new technique called MBiFC (Marcellino et al., 2008) as a tool to investigate GPCR homo- and heteromer oligomerization (Vidi et al., 2008a,b). MBiFC allows for the detection of two separate protein-protein complexes in living cells by visualizing the fluorescence complementation of two distinct spectral variants of green fluorescent protein (Hu and Kerppola, 2003). Moreover, this technique can be used to measure the relative amounts of homodimer versus heterodimer formation in a cell region-specific manner (Vidi et al., 2008b).

The present study uses MBiFC to examine CB1-D2L heterodimers and D2L-D2L homodimers in Cath. a differentiated (CAD) cells. CAD cells are a neuronal cell model that express GAP-43, synaptotagmin, and synaptosome-associated protein of 25 kDa and upon differentiation, form neurite-like processes (Qi et al., 1997). The present results provide additional evidence for the existence of CB1 and D2L receptor oligomers. We also revealed that persistent agonist (i.e., dopaminergic or cannabinergic) treatment favors the formation of the CB1-D2L heterodimer relative to the formation of the D2L-D2L homodimer. The D2 agonist-mediated effects were accompanied by an increase in D2L receptor expression, whereas the CB1 agonist-mediated changes in heterodimer formation appeared to involve primarily CB1 receptor activation. These results provide further insight into the dynamic nature of CB1-D2L oligomerization.

Materials and Methods

Materials. Human CB1 and D2L cDNAs were obtained from the Missouri S&T cDNA Resource Center (Rolla, MO). Growth media (Dulbecco’s modified Eagle’s medium), quinpirole, and sulpiride were obtained from Sigma-Aldrich (St. Louis, MO). Fetal bovine serum and bovine calf serum were purchased from Thermo Fisher Scientific (Waltham, MA). Penicillin/streptomycin/ampicillin B antibiotic/antimycotic was purchased from Invitrogen (Carlsbad, CA). Forskolin was purchased from Tocris Bioscience (Ellisville, MO). CP55,940 was a generous gift from Pfizer Pharmaceuticals (New York, NY). [3H]cAMP (25 Ci/mmol) was purchased from PerkinElmer Life and Analytical Sciences (Boston, MA). [3H]Spiperone (91 Ci/mmol) and [3H]SR141716A (42 Ci/mmol) were obtained from GE Healthcare (Chalfont St. Giles, Buckinghamshire, UK). Specific cellular compartment markers (mCherry-mem, YFP-ER, YFP-Endo, and YFP-Golgi) were gifts from Dr. Catherine Berlot (Weis Center for Research, Danville, PA).

Expression Vectors. Full-length human CB1 and D2L cDNAs were amplified by polymerase chain reaction (PCR) using oligonucleotides with EcoRI, XbaI, or XhoI restriction sites and omitting the stop codons. The PCR products were digested with either EcoRI/XbaI or EcoRI/Xhol and ligated into the corresponding pBiFC vectors. These expression vectors contain nonfluorescent fragments of the N and C termini of the enhanced yellow fluorescent protein (Venus) and the enhanced cyan fluorescent protein (Cerulean). The N-terminal fragments (VN or CN) include residues 1 to 172, whereas the C-terminal fragment of Cerulean (CC) includes residues 155 to 238. This cloning strategy places the fragment on the C terminus of the receptors. In addition, the C- and N-terminal receptor products were digested with either EcoRI/XbaI or EcoRI/Xhol and ligated into expression vectors containing the full-length Venus or Cerulean proteins resulting in the CB1 and D2L receptors tagged at the C terminus with either Venus or Cerulean. The CB1 receptor mutant (CB1, T210F) was generated using the QuickChange kit according to the supplier’s protocol (Stratagene, La Jolla, CA) in pcDNA3-CB1 and then subcloned into the pBiFC vectors using EcoRI and XbaI restriction enzyme sites. All constructs were verified by DNA sequencing.

Cell Culture and Transient Transfections. CAD cells were maintained as described previously (Vortherms and Watts, 2004). For microscopic evaluation of BiFC, CAD cells were grown to approximately 70% confluence in four-well LabTek chambered coverslips (Nalge Nunc International, Rochester, NY). Cells were transfected with 1 μl of Lipofectamine 2000 (Invitrogen) according to the manufacturer’s recommendations. In MBiFC experiments, CB1-VN (500 ng), D2L-CC (300 ng), and D2L-CN (500 ng) were transiently cotrans-
ected with 20 ng of either mCherry-Mem, YFP-Endo, YFP-ER, or YFP-Golgi depending on the experiment. Twenty-four hours after transfection, the growth media and transfection reagent were replaced with 400 μl of warm phosphate-buffered saline (PBS), and images were taken using a charge-coupled device camera mounted on a TE2000-U inverted fluorescence microscope (Nikon, Melville, NY) equipped with a 100-W mercury lamp and band-pass filters (Chroma Technology Corp., Rockingham, VT) for Venus (excitation at 500/20 nm; emission at 535/30 nm), Cerulean (excitation, 430/25 nm; emission, 470/30 nm), and mCherry (Texas Red, excitation, 571/25 nm; emission, 625/25 nm). Fluorescent images were acquired using MetaMorph software (Molecular Devices, Sunnyvale, CA). For MBIFC experiments investigating the effects of receptor ligands on receptor dimer population, the cells were transfected as described above and 4 h after transfection, the appropriate drug treatment was added to the growth medium for an additional 20 h before image acquisition.

Quantitative Image Analysis. Quantification of fluorescent signals was performed as described previously using ImageJ software (http://rsb.info.nih.gov/ij/; Hu et al., 2002; Supplemental Fig. 1). In each experiment, approximately 40 to 50 individual cells were quantified. Ten microscopic fields at 60× magnification were acquired as stacks of images from the YFP, CFP, and Texas Red channels corresponding to the fluorescent signals from Venus, Cerulean, and mCherry proteins, respectively. Background fluorescence intensity was measured in each channel in an area devoid of cells and subtracted from the fluorescent signals. The signals corrected for background fluorescence were then scaled to a factor equal to that of the inverse of the exposure time for each pixel intensity measurement. The images of the mCherry-Mem membrane marker signal were used to select cells for image analysis and to normalize BiFC signals (Supplemental Fig. 1). Cellular analysis of BiFC signals was performed in two parts. First, the fluorescent signal intensity maximum at the membrane was determined by drawing a perpendicular line through the membrane using the mCherry-Mem image. The maximum signal intensity was determined in all three channels, YFP, CFP, and Texas Red to estimate the BiFC signals at the membrane. The BiFC signal intensity in the intracellular space was determined by outlining the intracellular compartment (excluding the plasma membrane) and determining the average pixel intensity in all three channels, YFP, CFP, and Texas Red, to estimate the intracellular BiFC signals. Cells with saturated signals as well as cells with signals that were 1.2 times lower than background were not used for quantification. BiFC experiments assessing bleed-through/overflow of Cerulean or Venus in the opposite channels (i.e., YFP or CFP) revealed minimal cross-talk. Specifically, complemented Cerulean contributed less than 2% of the YFP signal and complemented Venus contributed less than 3% of the CFP signal (data not shown). Venus/Cerulean fluorescence ratios exhibit a non-Gaussian distribution; therefore, median values were calculated and averaged between experiments.

Cyclic AMP Accumulation Assays. CAD cells were grown to 70% confluence in 24-well plates and were transiently transfected as described previously (Vidi et al., 2008a). CAD cells were either transfected with 300 ng/well D2L constructs or 500 ng/well CB1 constructs. All drugs were diluted in Earle’s balanced salt solution assay buffer (Earle’s balanced salt solution containing 2% bovine calf serum, 0.025% ascobic acid, and 15 mM HEPES, pH 7.4) and added to the cells on ice. Determination of cAMP accumulation was performed by incubating the transfected CAD cells with forskolin (10 μM) in the absence and presence of either CP55,940 (10 μM) or quinpirole (10 μM) for 15 min at 37°C. All assays were performed in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (500 μM) and terminated with ice-cold 3% trichloroacetic acid. Quantification of cAMP accumulation was determined using a competitive binding assay as described previously (Vortherms and Watts, 2004). Radioligand Binding Assays. Single point radioligand binding assays were used to estimate CB1 and D2L receptor densities after drug treatments as described previously (Vidi et al., 2008a). CAD cells were plated in a 12-well plate and were grown to 70% confluence before being transiently transfected with CB1-VN, D2L-CN, and D2L-CC using 2 μl/well of Lipofectamine 2000. Four hours after transfection, the appropriate drug treatment was added in triplicate to the growth medium and transfection reagent. The cells were incubated for an additional 20 h before single point radioligand binding assays. Cells were washed three times with 500 μl of receptor binding buffer (50 mM Tris and 4 mM MgCl2, pH 7.4). The cells were lysed with 500 μl of ice-cold lysis buffer (1 mM HEPES and 2 mM EDTA, pH 7.4) for 10 min on ice. The cells were recovered from each well by trituration, and crude cell membranes were collected by centrifugation (30,000g for 15 min at 4°C). Membrane pellets were resuspended by mechanical homogenization in 1 ml of receptor binding buffer. For CB1 receptor binding, the addition of 0.5% bovine serum albumin to the receptor binding buffer was used to decrease nonspecific binding. Crude cell membranes (approximately 30 μg in 150 μl) were added to duplicate to the assay tubes to determine both nonspecific and total binding. For CB1 binding, nonspecific binding was defined by 10 μM nonradioactive SR141716A (essentially identical levels of nonspecific binding were obtained using 10 μM AM281; data not shown). All tubes contained a near-saturating amount of [3H]SR141716A (50 μl; final concentration, −5.0 nM) in a total volume of 500 μl. Likewise, for D2L binding, nonspecific binding was defined with 5 μM (+)-butaclamol, with all reaction conditions containing a near-saturating amount of [3H]spiperone (50 μl; final concentration, −1.5 nM) in a total volume of 500 μl. The reaction was terminated by filtration onto PB glass fiber plates with ice-cold wash buffer (10 mM Tris and 0.9% NaCl) using a cell harvester (FilterMate; PerkinElmer Life and Analytical Sciences). Radioactivity was determined on a Top-Count scintillation counter (PerkinElmer Life and Analytical Sciences). Specific binding was determined as the difference between the average of the nonspecific and total binding conditions. The specific binding amount was normalized to the amount of protein using the bicinchoninic acid protein assay (Pierce Chemical, Rockford, IL) following the supplier’s protocol. Under the transfection conditions used to explore the effects of drug treatments on BiFC, the following estimated KD and Bmax values were obtained using radioligand saturation binding experiments: [3H]SR141716A, KD = 0.74 ± 0.18 nM and Bmax = 204 ± 28 fmol/mg; and [3H]spiperone, KD = 0.051 ± 0.02 nM and Bmax = 3550 ± 200 fmol/mg.

Fluorescence Energy Transfer. CAD cells were grown to 70% confluence in 12-well plates before transfection. Cells were transiently transfected with three general conditions depending on the receptor dimer species to be studied including: cells only expressing the FRET donor (Cerulean), cells only expressing the FRET acceptor (Venus), and cells expressing both the donor and acceptor. To normalize for protein expression in cells only expressing either the donor or acceptor, the total amount of DNA transfected was normalized with the untagged receptor. In each FRET assay, 750 ng/well of the donor (CB1-Cerulean or D2L-Cerulean) and 750 ng/well of the acceptor (CB1-Venus or D2L-Venus) were transiently transfected either alone or in combination 24 h before the experiment. Cells were washed with 500 μl of warm PBS and resuspended in 300 μl of warm PBS. Protein concentration was determined on the cell suspension using the bicinchoninic acid assay method (Pierce Chemical) and normalized to 200 ng/mg. Under the transfection conditions used to explore the effects of drug treatments on BiFC, the following estimated KD and Bmax values were obtained using radioligand saturation binding experiments: [3H]SR141716A, KD = 3550 ± 200 fmol/mg.
in cells only expressing either Cerulean (donor) or Venus (acceptor) fusion proteins. The FRET signals were corrected (cFRET) for acceptor and donor bleed-through using the equation $cFRET = F - aV - dC$. The signals were then normalized to donor (C) and acceptor (Y) intensities as follows: $nFRET = cFRET/V/C \times Y$.

Data and Statistical Analysis. Data and statistical analyses were performed using Prism (GraphPad Software Inc., San Diego, CA). A p value <0.05 was considered significant.

Results

Functional cAMP accumulation assays were performed to verify the signaling properties of the BiFC-tagged CB$_1$ and D$_2$L receptors (Fig. 1). Because CB$_1$ and D$_2$L receptors couple to inhibitory G proteins (i.e., G$_{\alpha_i}$), agonist-induced inhibition of forskolin-stimulated cAMP accumulation was used to evaluate receptor function. The BiFC-tagged D$_2$L receptors D$_2$L-CN and D$_2$L-CC were functional after stimulation with the D$_2$ agonist quinpirole (10 μM), revealing approximately 60% inhibition of forskolin-stimulated cAMP accumulation (Fig. 1A). Additional experiments confirming the functionality of the BiFC-tagged CB$_1$ receptors, CB$_1$-VN and CB$_1$-CC, were performed. Both constructs were functional after stimulating with forskolin-stimulated cAMP accumulation under vehicle conditions (one-independent experiments assayed in duplicate.

$F = aV + dC$.

F is the observed fluorescence intensity, aV is the acceptor bleed-through, and dC is the donor bleed-through.

$F - aV - dC$.

$cFRET$ is the corrected FRET signal.

$nFRET = cFRET/V/C \times Y$.

V and C are the donor and acceptor intensities, respectively.

Y is the acceptor intensity.

$P < 0.05$.

Fig. 1. Functional characterization of receptor-BiFC fragment fusion proteins by measurement of acute inhibition of forskolin-stimulated cAMP accumulation. CAD cells were transiently transfected as indicated. Cyclic AMP accumulation was measured after a 15-min incubation with forskolin (10 μM; A) or CP55,940 (10 μM; B) as shown. All data are normalized to the percentage of forskolin-stimulated cAMP accumulation under matched transfection conditions. Each bar represents the mean \pm S.E.M. of three to four independent experiments assayed in duplicate. $*, p < 0.05$ compared with forskolin-stimulated cAMP accumulation under vehicle conditions (one-sample t test).
membrane and extensive overlap with the membrane marker was displayed (Fig. 2D).

We also attempted to perform MBiFC experiments to simultaneously examine D2L-CB1 and CB1-CB1 dimers. Unfortunately, the fluorescent signal of the CB1-CB1 dimer under MBiFC conditions was too low to reliably measure, restricting our MBiFC experiments to CB1-D2L and D2L-D2L receptor dimers. The lack of a CB1-CB1 dimer MBiFC signal may reflect one of the disadvantages of BiFC. Specifically, the intensity of the fluorescence complementation signal is considerably weaker (2.5–5.5-fold) than the signal from the corresponding full-length fluorescent protein under similar transfection conditions (Vidi and Watts, 2009).

One advantage of BiFC is the ability to investigate the localization of the receptor dimers using epifluorescence. With the use of fluorescently tagged intracellular markers, the patterns of intracellular expression of the CB1-D2L and D2L-D2L receptor dimers were investigated using fluorescent microscopy (Fig. 3). CAD cells were transiently transfected with BiFC constructs that reconstitute Cerulean to either express the CB1-D2L heterodimer (CB1-CN + D2L-CC) or the D2L-D2L homodimer (D2L-CN + D2L-CC). In addition, these cells were transfected with the indicated YFP-tagged intracellular marker proteins (YFP-Endo, YFP-ER, or YFP-Golgi; Fig. 3). The endosome marker (YFP-Endo) is a fusion protein with RhoB, a known endosomal protein fused to YFP. The ER marker (YFP-ER) consists of YFP fused to the ER targeting sequence of calreticulin and the KEDL ER retrieval sequence. The Golgi marker (YFP-Golgi) is a YFP fusion protein with residues 1 to 81 of the β1,4-galactosyltransferase protein. Overall, both receptor dimers, D2L-D2L and CB1-D2L, displayed moderate to extensive overlap with endosome and ER structures (Fig. 3, A and B). However, CB1-D2L and D2L-D2L receptor dimers demonstrated minimal to no overlap with the Golgi apparatus. These expression patterns are consistent with receptor dimer assembly at the ER (Herrick-Davis et al., 1997) and proper trafficking into endosomes (Leterrier et al., 2004). However, the additional possibility that receptors dimerize at the plasma membrane cannot be excluded in the absence of additional studies.

The results demonstrating MBiFC in neuronal cells were further validated by examining dimerization of these receptors...
using FRET, which has been used previously to investigate interactions of CB₁ and D₂L receptors (Marcellino et al., 2008). CAD cells were transiently transfected with either CB₁-Venus + CB₁-Cerulean, CB₁-Venus + D₂L-Cerulean, or D₂L-Venus + D₂L-Cerulean (Fig. 4). A significant FRET signal was detected with all three receptor pairs compared with the mix control sample in which suspensions of cells only expressing the donor or acceptor was mixed in the FRET sample plate. These results provide further confirmation of our BiFC studies, supporting the hypothesis that CB₁ and D₂ form both homo- and heteromeric receptor oligomers in a neuronal-like cell model.

Using MBiFC and FRET techniques, we have provided evidence that CB₁ and D₂ receptors participate in receptor dimer complexes. We next sought to investigate the effects of persistent ligand treatment on the formation of CB₁ and D₂L heterodimer and D₂L homodimers using MBiFC as a tool to monitor changes in relative receptor dimer population. CAD cells were transiently transfected with CB₁-VN, D₂L-CC, and D₂L-CN, and the presence of the CB₁-D₂L heterodimer (Venus) and D₂L-D₂L homodimer (Cerulean) was simultaneously measured. The fluorescent intensity ratio of Venus to Cerulean in both the plasma membrane and intracellular compartments was determined after drug treatment. Under the conditions used, an increase in the Venus-to-Cerulean ratio would be indicative of an increase in the formation of the CB₁-D₂L receptor dimer relative to the D₂L-D₂L receptor dimer compared with vehicle-treated cells.

Our previous work with D₂ and A₂A receptor ligands suggested that a 20-h drug treatment provided a robust BiFC signal in which drug-induced changes in A₂A-D₂L, D₂L-D₂L, and A₂A-A₂A dimers could be observed (Vidi et al., 2008a). In the present study, we completed MBiFC time course experiments with the CB₁ receptor ligand CP55,940 to verify that a similar treatment duration produced robust responses in the absence of a ceiling effect. The results of the time course study revealed that CP55,940 treatments shorter than 10 h (i.e., 5 h) had very low fluorescent signals and did not allow us to quantify an adequate number of cells for analysis (data not shown). However, robust YFP and CFP signals were evident after 10 h and the drug effects were time-dependent showing the greatest response at 30 h (Fig. 5). The time course study also suggested that the 20-h time point is on the dynamic portion of the temporal scale potentially allowing us to observe ratiometric changes in both directions as shown previously (Vidi et al., 2008a). Examination of the overall YFP and CFP intensities at 20 h indicated that the CP55,940-induced increase in the YFP/CFP ratio reflected a combined increase in the YFP signal (CB₁-D₂L) and a decrease in the CFP signal (D₂L-D₂L) compared with vehicle-treated cells. Specifically, the membrane showed an 11% increase in YFP and a 27% decrease in CFP intensity. Intracellularly, there was 33% increase in the YFP signal and a 15% decrease in the CFP signal (n = 4).

Drug-induced changes in the relative receptor dimer population were measured after treatment (20 h) with either D₂ (Fig. 6A) or CB₁ (Fig. 6B) receptor ligands. Persistent activation of the D₂L receptor with quinpirole (10 μM) resulted in a significant decrease in the Venus-to-Cerulean ratio consistent with an increase in CB₁-D₂L heterodimer relative to D₂L-D₂L homodimers. However, this effect was only significant in the intracellular compartment. The effect of quinpirole was prevented by coapplication of the selective D₂ receptor antagonist sulpiride (1 μM). Treatment with sulpiride alone or in combination with quinpirole resulted in a significant decrease in the Venus to Cerulean ratio in both the membrane and intracellular compartments. Because the observed alterations in receptor dimer population may involve changes in re-
ceptron expression, single point radioligand binding experiments were used to estimate relative receptor densities after drug treatment. The results of these studies revealed that persistent treatment with quinpirole (10 μM), sulpiride (1 μM), or quinpirole + sulpiride (Quin + Sulp) for 20 h, cells were incubated with 10 μM CP55,940 (CP), 10 μM AM281, or CP55,940 + AM281 (CP + AM281) for 20 h. Data represent the average median Venus-to-Cerulean ratio values normalized to percentage of vehicle treatment (± S.E.M.). ∗, p < 0.05 compared with vehicle, one-sample t test, n = 5–8).

MBiFC experiments were also performed using CB1 ligands. Persistent treatment with the CB1 receptor agonist CP55,940 (10 μM) led to a significant increase in the Venus-to-Cerulean ratio in both the plasma membrane and the intracellular regions compared with vehicle-treated cells (Fig. 6B). The addition of the CB1 receptor antagonist AM281 (10 μM) attenuated the CP55,940-induced increase in the Venus-to-Cerulean ratio. Dose-response experiments revealed that the average EC_{50} values for CP55,940 increasing the YFP/CFP ratio were 320 and 210 nM for membrane and intracellular signals, respectively (Fig. 7). Subsequent single point radioligand binding experiments revealed that 20-h treatment with CP55,940 had no effect on CB1 receptor density (106 ± 12%; n = 5); however, a modest decrease in D_{2L} receptor density (82 ± 3%; n = 5) was observed.

The observations described above suggest that persistent activation of the CB1 receptor favors the formation of CB1-D_{2L} heterodimers without alterations in CB1 receptor expression. To investigate further the role of persistent activation on receptor dimerization, a constitutively active CB1 receptor mutant was constructed for use in the MBiFC experiments. Threonine 210 of the CB1 receptor was mutated to an isoleucine (CB1-T210I) to create a constitutively active receptor (D’Antona et al., 2006). The presence of an isoleucine at amino acid 210 disrupts the salt bridge in the DRY motif mimicking receptor activation, leading to enhanced agonist affinity and increased intracellular localization (D’Antona et al., 2006). We examined and compared the relative receptor heterodimer (CB1-D_{2L}) and homodimer (D_{2L}-D_{2L}) populations in cells expressing either the wild-type (CB1 wt) or the constitutively active CB1 receptor (CB1-T210I) using MBiFC (Fig. 8). The Venus- (CB1-D_{2L}) to-Cerulean (D_{2L}-D_{2L}) ratios at the plasma membrane were similar in cells expressing the wild-type or constitutively active CB1 (Fig. 8A). In contrast, expression of CB1-T210I resulted in a significant increase in the intracellular Venus-to-Cerulean ratio compared with the wild type CB1 (Fig. 8A). The intracellular-to-membrane ratio of the Venus signal (i.e., CB1 wt-D_{2L} or T210I-D_{2L} dimer) in cells expressing the CB1-T210I mutant was also significantly increased (approximately 150%) compared with cells expressing CB1 wt (Fig. 8, A and B). The overlapping expression patterns of CB1-D_{2L} and D_{2L}-D_{2L} dimers were markedly reduced in cells coexpressing CB1-T210I as indicated by a loss of white signal on the membrane in the merged images. Subsequent localization studies with the CB1-T210I-D_{2L} heterodimer revealed significant signal overlap with the endosomes and limited overlap in the ER consistent with enhanced endocytosis of the CB1-T210I mutant (D’Antona et al., 2006; Supplemental Fig. 3).

Discussion

Evidence for the existence and functional significance of CB1 and D_{2L} heterodimers has continued to evolve over the
Fig. 8. Effect of constitutively active CB₁ receptor (T210I) on relative dimer population at the plasma membrane or intracellular compartment. CAD cells were transiently transfected with either CB₁wt-VN or CB₁T210I-VN with D₂L-CC and D₂L-CN. A, left, quantitative image analyses of the Venus/Cerulean ratios were performed for the membrane and intracellular compartments as described under Materials and Methods. The Venus-to-Cerulean ratio induced by CB₁T210I was normalized to the Venus-to-Cerulean ratio measured in cells expressing CB₁wt receptor; *p < 0.05 (compared with wild type, one-sample t test). Right, quantitative image analyses of the intracellular/membrane ratios were determined for the CB₁-D₂L-Venus signal in cells either expressing CB₁wt or CB₁T210I. +*p < 0.05 (compared with wild type, one-sample t test). Data for both analyses were generated from the same experiments and represent the average median ± S.E.M. from three independent experiments. B, representative images of CAD cells expressing either CB₁wt (top) or CB₁T210I (bottom) to reconstitute the BiFC signals CB₁(wt or T210I)-D₂L-Venus and D₂L-D₂L-Cerulean and the membrane marker (mCherry-mem). The merge panel represents overlap of the three channels and overlapping pixel intensity is presented in white.

Past 10 to 15 years. However, investigations examining the regulation of these heterodimers and their homodimer counterparts are just beginning as new technological advances for studying protein-protein interactions are developed (Vidi and Watts, 2009). In the present study, we have applied MBiFC as a novel technique to study the dimerization of CB₁ and D₂L receptors, and we reveal for the first time the localization patterns of these receptor heterodimers in a neuronal cell model.

Early studies of CB₁ and D₂L function were central to the development of the concept of CB₁-D₂L heterodimer (for review, see Glass et al., 1997). Several studies suggest that the CB₁-D₂L dimer possesses stimulatory properties toward adenyl cyclase via the CB₁ receptor engaged in the heterodimer (Glass and Felder, 1997; Jarrahian et al., 2004; Kearn et al., 2005). However, conflicting conclusions from studies examining the regulation of CB₁ and D₂L receptor dimerization remain. One potential mechanism for regulating the CB₁-D₂ dimer is based on observations that the physical association of CB₁ and D₂L increases in the presence of acute coactivation of both receptors (Kearn et al., 2005). Activation of either CB₁ or D₂L receptor individually did not significantly increase the physical association, suggesting that coactivation of both receptors is necessary for enhanced receptor dimerization. It was also reported that expression (and not activation) of the D₂L receptor was sufficient to induce a switch in CB₁-G protein coupling to a stimulatory pathway, however, measurements of the CB₁-D₂L receptor dimer were not performed (Jarrahian et al., 2004). In addition, another study reported a lack of agonist-mediated increase in the FRET interaction between CB₁ and D₂ receptors under conditions of both single and concurrent receptor activation (Marcellino et al., 2008). The lack of consistency between the reports described above may reflect differences in the choice of receptor ligands, the model systems, technical approaches, or the complex pharmacology of the CB₁-D₂ dimer.

In the present study, we used MBiFC to show that persistent activation of either the CB₁ or D₂L receptor leads to the formation of more CB₁-D₂L heterodimers relative to the D₂L-D₂L homodimers. There are several differences between our study of CB₁-D₂L interactions and the previous work described above (e.g., cell type, methods to measure receptors, drug treatment); however, the drug treatment conditions and technology used to assess the receptor dimers probably have significant influence. Each of the drug treatments reported here represents an extended drug exposure (i.e., 10–30 h). Drugs were added 4 h after transfection and were present during the time of ongoing receptor biosynthesis and subsequent oligomerization. Therefore, the dimers observed in our studies probably involve mechanisms not reflected in shorter drug treatments or acute studies (Kearn et al., 2005; Marcellino et al., 2008). The present study used BiFC technology, which differs from FRET in that the complementation of fluorescent signal is essentially irreversible (Vidi and Watts, 2009). This property of MBiFC allows investigators to “capture” and subsequently measure drug-induced changes in receptor dimers over an extended period in which a sufficient signal can be collected.

Persistent D₂ agonist treatment with quinpirole favored the formation of CB₁-D₂L heterodimers versus D₂L-D₂L homodimers. This effect was accompanied by an increase in D₂L receptor expression and was prevented by the D₂ antagonist sulpiride. The increase in D₂L receptor expression may suggest a pharmacological chaperone effect on receptor dimer formation where D₂ ligands stabilize the receptor, somehow promoting CB₁-D₂L receptor interactions (Vidi et al., 2008b). However, treatment with the D₂ antagonist sulpiride also
increased D_{2L} receptor density, but instead favored the formation of D_{2L}-D_{2L} homodimers. These opposing effects of D_{2} agonists and antagonists on D_{2L}-D_{2L} versus CB_{1}-D_{2L} dimer formation argues against a simple role of increased D_{2L} receptor expression. One explanation for these differential effects may involve ligand-specific changes in receptor dimerization patterns (Vidi et al., 2008b). In addition to ligands, these dimerization patterns also appear to be influenced by the receptors under investigation. In a previous study of D_{2L} and A_{2A} receptor dimerization, quinpirole increased D_{2L}-D_{2L} homodimers relative to A_{2A}-D_{2L} heterodimers (Vidi et al., 2008b). The potential scenario gets increasingly complicated when considering a recent BiFC-BRET study providing evidence for a CB_{1}-D_{2}-A_{2A} receptor oligomer (Navarro et al., 2008). Linking the observations described above and the present results suggests a scenario where striatal neurons expressing D_{2L}, A_{2A}, and CB_{1} receptors would be subject to a very complicated receptor regulation scheme. For example, persistent D_{2} agonist treatment would increase overall D_{2L} receptor expression levels and perhaps promote the following pattern of receptor oligomers: D_{2L}-CB_{1} > D_{2L}-D_{2L} > A_{2A}-D_{2L}. The potential physiological and functional significance of these ligand-induced changes in heterodimers are intriguing and await biochemical and behavioral analysis (Marcellino et al., 2008). In addition to in vivo studies, new molecular tools to study these complex systems are becoming increasingly available as methods to study interactions of higher ordered GPCR oligomers (e.g., trimers and tetramers) such as BiLC-FRET, BiFC-FRET, and BiFC-BRET are developed (Vidi and Watts, 2009).

The ability of quinpirole to alter the formation of receptor oligomers involving D_{2L} receptors may provide insight into the disease states associated with persistent D_{2} receptor activation, as in the treatment of Parkinson's disease with L-DOPA and D_{2} dopamine receptor agonists (Hurley and Jenner, 2006). For example, persistent quinpirole treatment increases A_{2A}-A_{2A} homodimer formation and A_{2A} signaling (Vortherms and Watts, 2004; Vidi et al., 2008a). These observations may provide a molecular explanation for the beneficial clinical effects of A_{2A} antagonists in treating L-DOPA-induced dyskinesias (Morelli et al., 2007; Fuxe et al., 2008). The current results suggest that persistent treatment with D_{2} receptor agonist drugs may promote the formation of CB_{1}-D_{2L} heterodimers. The increase in CB_{1}-D_{2L} dimer formation may allow the CB_{1} receptor to have enhanced agonistic effects over the D_{2} receptor signaling (Marcellino et al., 2008). This scenario would provide for increased CB_{1} signaling after a dopamine receptor-dependent increase in endocannabinoid release (Giuffrida et al., 1999; Piomelli, 2008). This scenario would provide for increased CB_{1} signaling after a dopamine receptor-dependent increase in endocannabinoid release (Giuffrida et al., 1999; Piomelli, 2008). In addition, evidence linking the CB_{1}-D_{2L} heterodimer to a stimulatory pathway (Glass and Felder, 1997; Kearn et al., 2005) may provide a mechanism for CB_{1} antagonism of D_{2} signaling at the intracellular level (i.e., cAMP). Further in vivo investigations of CB_{1} receptor and CB_{1}-D_{2L} heterodimer signaling after persistent D_{2} receptor activation are warranted; however, studies suggest that the CB_{1} receptor antagonists/inverse agonists may have beneficial effects in the management of Parkinson's disease. For example, the CB_{1} antagonist 1-[7-(2-chlorophenyl)-8-(4-chlorophenyl)-2-methylpyrazolo[1,5-a][1,3,5]triazin-4-yl]-3-ethylaminoazetidine-3-carboxylic acid amide benzenesulfonate dose-dependently enhances the anti-Parkinson’s activity of L-DOPA (Cao et al., 2007). Another study revealed that rimonabant, a CB_{1} receptor inverse agonist, had beneficial effects in managing L-DOPA-induced dyskinesias (van der Stelt et al., 2005).

Similar to the D_{2L} receptors, the precise mechanism by which persistent activation of the CB_{1} receptor favors the formation of CB_{1}-D_{2L} heterodimers relative to D_{2L}-D_{2L} homodimers remains largely unknown. Our observations suggest that the formation of the heterodimer is mediated by receptor activation and not alterations in CB_{1} receptor expression. It is possible that the activated conformational state of the CB_{1} receptor possesses enhanced affinity for the D_{2L} receptor and that persistent activation promotes CB_{1}-D_{2L} heterodimerization. This hypothesis is supported by the report that the CB_{1} receptor increases the association with the D_{2L} receptor in a dose-dependent manner (Kearn et al., 2005). Furthermore, the present study demonstrated that expression of a constitutively active CB_{1} mutant, CB_{1}T210I, promoted more CB_{1}-D_{2L} heterodimerization. Although the identification of a molecular mechanism awaits further study, it is tempting to consider that CB_{1}-D_{2L} interactions will represent a new CB_{1} receptor signaling pathway that may be subject to functional selectivity (Glass and Northup, 1999; Mukhopadhyay and Howlett, 2005; Urban et al., 2007).

The physiological significance and functional consequences of CB_{1} receptor-induced CB_{1}-D_{2L} dimers may have implications in the use of clinical cannabinoids to treat chronic pain as well as chronic marijuana use. Such conditions would involve persistent CB_{1} receptor activation, providing an impetus to understand the molecular adaptations that occur in the nervous system (Cooper and Haney, 2008). Although we were able to study drug-induced changes of the CB_{1}-D_{2L} and D_{2L}-D_{2L} receptor dimers, a low BiFC signal between CB_{1} receptors prevented us from examining the ratios of CB_{1}-CB_{1} homodimers to CB_{1}-D_{2L} heterodimers. In the absence of CB_{1} CB_{1} studies, the CP55,940-induced increase in the CB_{1}-D_{2L} heterodimer may reflect a relative decrease in D_{2L}-D_{2L} homodimers and perhaps D_{2L} function. Consistent with this possibility we observed a modest CP55,940-induced decrease (approximately 15–25%) in D_{2L} receptor expression and D_{2L}-D_{2L} homodimers. These observations may suggest that persistent CB_{1} receptor activation and subsequent CB_{1}-D_{2L} heterodimer formation could reduce D_{2L} receptor expression. In partial support of this hypothesis, it has been shown in rats and humans that chronic prenatal exposure to marijuana decreases the expression of dopamine D_{2} receptors in the brain (Walters and Carr, 1986; Wang et al., 2004).

In the present report, we have visualized simultaneously the localization patterns of CB_{1}-D_{2L} heterodimers and D_{2L}-D_{2L} homodimers in living cells and provided evidence for agonist-regulated effects on receptor dimerization patterns. Recent studies propose that an increasing number of GPCRs may participate in higher order receptor oligomers or “receptor mosaics” and that these structures may mediate many signaling events (for review, see Fuxe et al., 2008). The present work and other recent studies are consistent with this concept (Carriba et al., 2008; Navarro et al., 2008). We anticipate the continued development of new technologies will allow investigators to examine these receptor mosaics in greater detail. Finally, the use of MiBiFC provides a new tool to study drug-induced changes in receptor oligomerization and may offer an important asset relevant to the future of drug discovery in the area of receptor heterodimers.
Acknowledgments

We thank Dr. Karin Ejendal, Jason Conley, and Benjamin Chemel for careful reading of the manuscript and David Przybyla for assistance in preparing the figures.

References

Glass M and Fielder CC (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments AMP accumulation in striatal neurons: evidence for a G(s) linkage to the CB1 receptor. J Neurosci 17:5327–5333.

Sibley DR and Neve KA (1997) Regulation of dopamine receptor function and expression, in The Dopamine Receptors (Neve KA and Neve RL eds) pp 383–442, Humana Press, Totowa, NJ.

Address correspondence to: Dr. Val J. Watts, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Dr., RPH 210, West Lafayette, IN 47907-2091. E-mail: wattsv@purdue.edu
Flowchart of the analysis of microscopic multicolor BiFC measurements. Fluorescent BiFC signals (CB₁-VN/D₂L-CC and D₂L-CN/-D₂L-CC), as well as mCherry-Mem fluorescent signals, are imaged by epifluorescence microscopy. The mCherry-Mem membrane marker signals were used to select cells for image analysis and to normalize BiFC signals. The fluorescent signal intensity maximum at the membrane was determined by drawing a perpendicular line through the membrane using the mCherry-Mem image (see A.). The average BiFC signal intensity in the intracellular space was determined by outlining the intracellular compartment (excluding the plasma membrane, see B.).
A. BiFC complementation in CAD cells. Co-expression of CB₁-VN + D₂L-CC or D₂L-VN +
CB₁-CC in CAD cells produced robust Venus signals in CAD cells. B. Fluorescent signals from
Venus complementation (VN-VC) in CAD cells transfected with CB₁-VN + D₂L-CC, CB₁-VN +
M₄-CC, or D₂L-CC + M₄-VN. Whole cell signals were quantified by measuring the average
signal intensity in the Venus channel.
Supplemental Figure 3

Intracellular localization patterns of CB$_1$T210I-D$_{2L}$ heteromers. CAD cells were transiently transfected with CB$_1$T210I-CC and D$_{2L}$-CN (cyan signal) along with YFP fluorescent marker proteins for the endosomes or the ER (yellow signal). The merged image (overlapping signal in yellow) represents an overlap of the BiFC signal (depicted in red) and the fluorescent marker signal (depicted in green). Images are representative of 2 independent transfections.