ABSTRACT

Although the activation of cannabinoid receptor-1 (CB1) receptors by cannabinoids is known to inhibit neuronal hyperexcitability and reduce excitotoxic cell death, the mechanistic links between these two actions remain elusive. We tested the hypothesis that activation of CB1 receptors inhibits N-methyl-D-aspartic acid (NMDA)-mediated calcium influx and cell death via the inositol triphosphate (IP3) signaling pathway in both primary dorsal root ganglia neurons and a cultured neuronal cell line (F11 cells). These cells were pretreated with the cannabinoid agonist (R)-(+)-[2,3-dihydro-5-methyl-3-[4-morpholinylmethyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (R(+)-WIN 55,212-2; WIN) before exposure to NMDA. Concentrations of cytosolic calcium were measured with the ratiometric calcium indicator, Fura-2, and cell death was determined by a cell viability test. WIN dose-dependently attenuated both the calcium influx and cell death induced by NMDA. These effects were blocked by selective cannabinoid CB1 receptor antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A) or N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), but not CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methyl-benzyl)-pyrazole-3-carboxamide (SR144528). It is interesting to note that a transient Ca2+ signal was observed after the acute application of WIN. This Ca2+ increase was blocked by a CB1 receptor antagonist AM251, IP3 receptor antagonist 2-aminophenyl diphenylborinate, or by depleting intracellular Ca2+ stores with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin. Removal of extracellular Ca2+, on the other hand, had no effect on the CB1 receptor-induced Ca2+ increase. These data suggest that WIN triggers a cascade of events: it activates the CB1 receptor and the IP3 signaling pathway, stimulates the release of Ca2+ from intracellular stores, raises the cytosolic Ca2+ levels, and inhibits the NMDA-mediated Ca2+ influx and cell death through a process that remains to be determined.
(Lauckner et al., 2008). The CB1 receptor is involved in the integration of signals from both lipid- and peptide-derived signaling molecules. The two lipid endogenous agonists, anandamide and 2-arachidonoylglycerol, are well characterized and are derived from cell membrane lipids (Boyd, 2006; Di Marzo and Petrosino, 2007). In contrast, the two peptide endogenous agonists, RVD-Hpα and VD-Hpα, are newly discovered (Gomes et al., 2009) and are derived from the precursor α-hemoglobin, which is extensively expressed in many cell types including neurons and glia (Richter et al., 2009), in addition to erythrocytes. Previous studies have shown that cannabinoid receptor activation leads to the inhibition of adenyl cyclase activity, inhibition of calcium channels, and D-type potassium channels, increases in the phosphorylation of mitogen-activated protein kinases, and activation of A-type and inwardly rectifying potassium channels (Pertwee, 1997; Howlett and Mukhopadhyay, 2000; Pertwee and Ross, 2002). The endocannabinoid system is proposed to have important roles in many pathophysiological processes including Parkinson's disease, Alzheimer's disease, atrophic lateral sclerosis, multiple sclerosis, obesity, depression, inflammation, and neuropathic pain (Iversen and Chapman, 2002; Boyd, 2006; Di Marzo and Petrosino, 2007).

CB1 receptor agonists protect neurons from N-methyl-D-aspartic acid (NMDA)-induced excitotoxicity in in vitro experiments (van der Stelt and Di Marzo, 2005). The cellular mechanisms underlying the CB1 receptor-mediated neuroprotection may include inhibition of the presynaptic release of glutamate (Shen and Thayer, 1998), inhibition of NMDA-induced intracellular Ca2+ release (Zhuang et al., 2005), antioxidant activity (Marsicano et al., 2002), protein kinase A (PKA) signaling, and nitric oxide generation (Kim et al., 2006). Activation of CB1 receptors also protects cultured neuronal cells from the cytotoxic effects of excitatory amino acids (Abdo et al., 2001). The cannabinoid-mediated neuroprotection was used as a therapeutic approach to manage neurodegenerative conditions such as multiple sclerosis (Docagne et al., 2007). However, the mechanisms by which the cannabinoids protect spinal neurons remain elusive.

It is well established that excessive Ca2+ influx through NMDA channels triggers cytotoxic cell death in neurons, and suppression of the Ca2+ influx can protect cells from NMDA-induced cytotoxicity. In addition, the roles of NMDA receptor activation in the development of persistent neuropathic pain have been demonstrated previously (Woolf, 1983; Woolf and Salter, 2000). Cannabinoids may modulate NMDA-induced Ca2+ influx in different neurons through different mechanisms. The NMDA-induced Ca2+ increase was inhibited by a CB1 receptor-mediated membrane hyperpolarization in rat cortical and cerebellar slices (Hampson et al., 1998). In primary hippocampal cells, CB1 receptor activation was capable of inhibiting the calcium release, in a cAMP/PKA-dependent manner, from ryanodine-sensitive intracellular store (Zhuang et al., 2005). In contrast, CB1 receptor activation increased NMDA-evoked Ca2+ release from inositol triphosphate (IP3)-sensitive intracellular store in cerebellar granule neurons (Netzeband et al., 1999). Therefore, cannabinoids may enhance or inhibit the NMDA-induced increase in Ca2+ levels depending on the cell type, the type of cannabinoid ligands, and the subsequent signaling pathways activated.

In this study, we examined the effects of cannabinoid R-(-)-WIN 55,212-2 (WIN) on NMDA-induced cytotoxicity and NMDA-evoked Ca2+ influx. These experiments were carried out in dorsal root ganglia (DRG) neurons and murine F-11 cells (spinal DRG × neuroblastoma hybrid), both of which express CB1 receptors and NMDA receptors. We tested the hypothesis that activation of cannabinoid CB1 receptors inhibits NMDA-mediated calcium influx and cell death via the IP3 signaling pathway in both primary DRG neurons and cultured F-11 cells. We chose these two types of cells with different pharmacology for the release of calcium from intracellular stores so that we could identify the signaling pathways of WIN-induced calcium increase. Although both cell types are able to produce IP3, receptor-mediated Ca2+ signals, only DRG neurons are sensitive to stimulation with ryanodine receptor activator, caffeine, and express functional ryanodine receptors. The F-11 cells do not respond to caffeine, indicating that these cells lack endogenous ryanodine receptors (Yankura et al., 2003).

Materials and Methods

Cell Culture. All procedures used in the animal experiments were approved by the Institutional Animal Care and Use Committee of Cleveland Clinic Foundation. DRG neurons were obtained as described earlier (Dedov et al., 2001). In brief, DRG isolated from adult Sprague-Dawley rats (200–300 g) were incubated in Hanks' balanced saline solution (Invitrogen, Carlsbad, CA) with 0.05% collagenase and 0.25% trypsin for 20 min at 37°C. Neurons were dissociated by trituration of ganglia with fire-polished Pasteur pipettes of decreasing diameter, and afterward the cellular suspension was washed twice in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum and 2 mM L-glutamine. Freshly isolated neurons were plated onto collagen-coated coverslips and cultured in Dulbecco's modified Eagle's medium/F-12 Ham media containing 2 mM L-glutamine supplemented with 10% fetal bovine serum, HAT supplement (100 μM hypoxanthine, 400 nM aminopterin, 16 μM thymidine), 50 ng/ml nerve growth factor, 100 units/ml penicillin, and 100 μg/ml streptomycin. Cells were kept under 5% CO2 at 37°C and passed twice a week using nonenzymatic cell dissociation solution.

F-11 cells (purchased from Dr. Mark C. Fishman, Massachusetts General Hospital, MA) were cultured in F-12 Ham media containing 2 mM L-glutamine supplemented with 15% fetal bovine serum, HAT supplement, 100 units/ml penicillin and 100 μg/ml streptomycin. Cells were kept under 5% CO2 at 37°C and passed twice a week using nonenzymatic cell dissociation solution.

Cells were visualized by using bright-field illumination at 20x magnification on a Leica DMIRE inverted microscope (Leica Microsystems, Inc., Deerfield, IL). The images of the cells were captured 24 h before and after drug treatment by using a CCD video camera and QCapture Pro imaging software from Q Imaging (Surrey, BC, Canada).

Compound Preparation. WIN 55,212-2 and AM251 were purchased from BIOMOL International LP (Plymouth Meeting, PA). SR141716A and SR144528 were provided by the National Institute on Drug Abuse. Compounds were dissolved in 100% dimethyl sulfoxide (DMSO) as a 10 mM stock solution and diluted with Dulbecco's phosphate-buffered saline (DPBS; Invitrogen) to their final concentrations. Final concentrations of 10, 50, 100, and 500 nM of WIN 55,212-2 were used to activate CB1 receptors. SR141716A and AM251 were used at a final concentration of 500 nM to block CB1 receptor activation, and SR144528 was used at a final concentration of 500 nM to block CB2 receptor activation. NMDA (Sigma-Aldrich, St. Louis, MO) was dissolved in DPBS as a 10 mM stock. The final concentration of 100 μM NMDA was used to elicit Ca2+ signals. Thapsigargin (TG) (Research Biochemical, Natick, MA) was prepared as a 10 mM stock solution in DMSO. Final concentration of 150
nM TG was used in the experiments. 2-Aminoethyl diphenylborinate (2-APB) (Sigma-Aldrich) was prepared as a 1 mM stock solution in DMSO, and a final concentration of 100 μM was used in the experiments. Stock solutions were stored at −20°C. All dilutions of stock were prepared fresh before addition to the culture medium. All vehicles were confirmed to have no biological effects.

Cytotoxicity Analysis. Cells were plated in poly-D-lysine-coated 96-well plates at a density of 10⁶ cells/well in their respective culture media. Cells were allowed to adhere for 12 h before the medium was replaced with Mg²⁺ and serum-free medium: DME/F-12 supplemented with 2% B27 (Sigma-Aldrich). Cell death was induced by incubating with 0.001 to 10 mM NMDA for 20 ± 2 h. To determine the effects of cannabinoids, cells were incubated with or without NMDA (100 μM) in presence or absence of WIN 55,212-2 (10, 50, 100, 500 nM) for 24 h. To determine the cannabinoid receptor subtype specificity, cells were treated with SR141716A (500 nM) for 20 to 30 min before incubating with NMDA and WIN 55, 212-2. In experiments where the effects of cannabinoids on intracellular calcium levels and cytotoxicity were investigated, cells were pretreated with 150 nM TG for 10 min, before cells were coincubated with cannabinoids and NMDA. The cell viability was assayed by measuring the conversion of a tetrazolium salt, 2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), into its formazan derivative by cellular dehydrogenases. The assay was performed according to the manufacturer’s instruction (Trevigen TACS XTT Cell Proliferation Assay, Trevigen, Gaithersburg, MD). The absorbance was read on a VICTOR®V plate reader by using a 490-nm filter (PerkinElmer Life and Analytical Sciences, Waltham, MA). For each condition, four wells of cells were measured and the experiments were repeated three times (n = 12 for each condition). The cytotoxicity index (CI) was calculated as follows: CI = (control well absorbance – treatment well absorbance)/control well absorbance – Triton-treated well absorbance.

Calcium Imaging. Cytosolic Ca²⁺ was monitored with the ratiometric indicator Fura-2 (InCyt Im2 Dual-wavelength Fluorescence Imaging System; Intracellular Imaging, Cincinnati, OH). Cells were grown on glass coverslips coated with collagen (MatTek Corporation, Ashland, MA) and then washed twice in DPBS before incubation in 2 ml of DPBS containing 2.0 to 3.0 μM Fura-2 AM and 0.066% Pluronic F-127 (Invitrogen). After incubating for 60 to 75 min at 37°C in darkness, cultures were washed twice in DPBS to remove extracellular dye and kept at room temperature in the dark for more than 30 min before use in the experiments. All measurements were performed in DPBS or, where specified, in Ca²⁺-free DPBS. Drugs were added in a volume of 200 μl to cells in 3 ml of DPBS to make the final volume less than 4 ml in the Petri dishes. The dishes with dye-loaded cells were mounted on the stage of Nikon TS-100 fluorescence inverted microscope with a Cohu model 4915 charge-coupled device (CCD) camera (Nikon, Melville, NY). Fluorescent images were captured alternately at the excitation wavelengths of 340 and 380 nm with an emission wavelength of 520 nm, which were analyzed with InCyt Im2 version 4.62 imaging software (Intracellular Imaging).

A standard curve was used to derive experimental [Ca²⁺]i values. The standard curve was generated by using various concentrations of Ca²⁺ (Calcium Calibration Buffer Kit) in the presence of indicator dye Fura-2 free acid (Invitrogen). During each experiment, background fluorescence was estimated for a region without cells, and this value was automatically subtracted from the measured emission of each channel. The F₃₄₀/F₅₂₀ ratios of cell emissions were compared with the standard curve stored in the computer, and both the ratio and [Ca²⁺]i were displayed on screen. Preliminary measurement of [Ca²⁺]i, was taken on various cells in the field before any drug application. Only cells with basal [Ca²⁺]i in the range of 90 to 120 nM were chosen for the experiments described here.

Experimental Paradigm. All pharmacological agents were solved in DPBS and applied by brief microperefusion from micropetites placed near the cells of interest. The concentration and duration (<2 s) of application were adjusted under control conditions for each experiment to produce Ca²⁺ signals with peak amplitude (150–350 nM) that could be easily quantified.

Ca²⁺ levels in the presence of TG and cannabinoids were typically measured 5 to 20 min after the initial drug exposure. NMDA was added 10 min after the responses returned to baseline. For a majority of the experiments, the bath saline (e.g., DPBS) used during control recordings contained DMSO concentration equivalent to that used in the presence of thapsigargin or cannabinoid agents. Separate vehicle control experiments showed that DMSO (<0.15%) did not affect the measurements under study.

In general, Ca²⁺ levels at rest or in response to challenges were measured simultaneously for 10 to 30 cells within a microscopic field, with three to five microscopic fields measured per condition. One microscopic field was measured in each Petri dish. Each cell was tested under only one condition. Resting Ca²⁺ levels were subtracted from amplitude measurements for individual cells to yield peak Ca²⁺ values.

Data Analysis. A between-cell comparison was used to determine the effects of the tested compounds on Ca²⁺ levels or cytotoxicity. For each group of studies, data from at least five individual Petri dishes were pooled for summary analysis. Each drug was tested on at least two different days, with concurrent interleaved controls. Averages are reported as the mean ± S.E.M., and the number of cells and/or cultures studied is given. Raw data were analyzed with appropriate parametric tests: paired or unpaired t test or analysis of variance (performed with SPSS software; SPSS Inc., Chicago, IL). When analysis of variance was used, post hoc analysis for group differences was performed by using Scheffe’s F test or Dunnett’s test for unequal sample sizes. Statistical significance was determined at a significance level of p < 0.05.
Results

Cannabinoid R-(-)-WIN Inhibited NMDA-Induced Cytotoxicity in Both DRG and F-11 Cells. Long-term treatment of both DRG and F-11 cells with NMDA (100 µM) produced significant cytotoxic effects. A 24-h exposure to NMDA reduced the viability of the DRG neurons by ~70% and the viability of F-11 cells by ~80% (Fig. 1). These cytotoxic effects were blocked by adding the cannabinoid receptor agonist R-(-)-WIN (500 nM) to the culture medium (F(1,19) = 21.25 for DRG neurons, F(1,13) = 12.16 for F-11 cells, p < 0.05). The protective effects of WIN were reversed by CB1 receptor antagonist SR141716A (500 nM) but not by CB2 receptor antagonist SR144528 (500 nM) (p > 0.05), suggesting a specific CB1 receptor-mediated effect. Figure 2 shows representative microphotographs of DRG neuron cultures in control (Fig. 2A), treated with NMDA (100 µM) (Fig. 2B), treated with the combination of NMDA (100 µM) and WIN (500 nM) (Fig. 2C), or treated with WIN (500 nM) alone. After 24 h of drug treatment, DRG neurons exposed to NMDA exhibited signs of cytotoxicity that was prevented by treatment with WIN. The cytotoxicity of NMDA and the protective effects of WIN were quantified by using a commercial assay for cell viability and proliferation (see Materials and Methods).

WIN Dose-Dependently Inhibited the Ca2+ Rise Induced by NMDA. Many toxic effects of NMDA are mediated by increases in cytoplasmic Ca2+ levels ([Ca2+]i). Therefore, we examined the effects of R-(-)-WIN 55,212-2 on the NMDA-induced increase in [Ca2+]i. Figure 3A (Control) shows that NMDA (100 µM) elicited an increase in [Ca2+]i, which was characterized by a relatively rapid initial rise in intracellular Ca2+ to a peak amplitude of ~600 nM that was followed by a slow recovery to baseline. All of the cells tested responded to NMDA (100 µM). Ca2+ levels increased approximately 400% above baseline for both the DRG neurons and F-11 cells (Fig. 3B). Resting Ca2+ levels in DRG neurons and F-11 cells were fairly consistent within and between experimental trials and typically ranged from 85 to 105 nM.

The effects of WIN on the NMDA-elicited [Ca2+]i increase were studied by pretreating cells with 10, 100, and 500 nM WIN 5 min before the application of NMDA (100 µM). WIN produced a dose-dependent depression of the calcium rise elicited by NMDA over the entire testing period (Fig. 3A). Likewise, WIN also depressed NMDA-elicited [Ca2+]i increase in F-11 cells in a dose-dependent manner (data not shown). Figure 3B shows pooled data for the effects of 500 nM WIN on the NMDA-evoked Ca2+ increase. The depression of NMDA-induced Ca2+ rise by WIN was observed in both DRG neurons and F-11 cells (F(2,34) = 7.69 for DRG neurons, F(2,18) = 8.14 for F-11 cells, p < 0.05 versus NMDA alone; Fig. 3B). The effects of WIN were reversed by pretreatment with the selective CB1 receptor antagonist, SR141716A (500 nM) (F(3,34) = 6.39 for DRG neurons F(1,21) = 5.82 for F-11 cells, p < 0.05 versus NMDA + WIN), but not by the CB2 antagonist SR144528 (500 nM) (Fig. 3B), suggesting that the effects of WIN were mediated by the CB1 receptors.
WIN-Evoked a Dose-Dependent Calcium Rise in Primary DRG Neurons and F-11 Cells. Cells were challenged with different concentrations of WIN (10, 50, 100, and 500 nM) while the intracellular Ca\(^{2+}\) levels were monitored. WIN-evoked a dose-dependent intracellular calcium rise in both DRG neurons (Fig. 4A) and F-11 cells (Fig. 4B). Ca\(^{2+}\) signals increased upon WIN application, peaked within 30 s, and returned to baseline within 2 min (Fig. 4, A and B). This transient calcium increase was observed in 92% DRG neurons and 87% F-11 cells. Figure 4C shows that the average peak amplitudes of WIN-induced calcium rise was dose-dependent (\(F_{(2,9)} = 8.07\) for DRG neurons, \(F_{(1,5)} = 6.14\) for F-11 cells, \(p < 0.05\) versus Control; Fig. 4C). The calcium rise induced by WIN was blocked by the CB2 antagonist AM251 (500 nM) but not the CB2 antagonist SR144528 (500 nM; Fig. 4D), suggesting that it was mediated by CB1 receptors in both DRG neurons and F-11 cells (\(F_{(2,38)} = 9.73\) for DRG neurons, \(F_{(1,22)} = 6.58\) for F-11 cells, \(p < 0.05\) versus WIN treatment (500 nM); Fig. 4D), suggesting that it was mediated by CB1 receptors in both DRG neurons and F-11 cells (\(F_{(2,38)} = 9.73\) for DRG neurons, \(F_{(1,22)} = 6.58\) for F-11 cells, \(p < 0.05\) versus WIN treatment (500 nM); Fig. 4D). AM251 and SR144528 did not significantly change [Ca\(^{2+}\)]\(_{i}\) for either cell type (\(p > 0.05\)).

Sources of the WIN- and NMDA-Induced Calcium Increase. The WIN- and NMDA-induced increase in [Ca\(^{2+}\)]\(_{i}\), could come from either an extracellular calcium source or from intracellular calcium stores such as the endoplasmic reticulum (ER). Influx of extracellular calcium was assessed by using a calcium-free medium (0 Ca\(^{2+}\) DPBS). Release from intracellular calcium store was determined by depleting ER stores with a sarco/endooplasmic reticulum Ca\(^{2+}\) (SERCA) pump inhibitor, TG, before NMDA or WIN challenge. WIN-induced [Ca\(^{2+}\)]\(_{i}\) increase (Fig. 5A, Con) was significantly reduced by pretreatment of both DRG neurons and F-11 cells with TG (\(F_{(2,16)} = 10.56\) for DRG neurons, \(F_{(1,10)} = 9.33\) for F-11 cells, \(p < 0.05\) versus WIN treatment (500 nM)), whereas removal of extracellular calcium (Ca\(^{2+}\), 0 nM) did not affect the signals (\(p > 0.05\); Fig. 5A). These data suggest that Ca\(^{2+}\) released from the ER contributes to the WIN-induced calcium increase. Pretreating cells with TG for 15 min in 0 Ca\(^{2+}\) DPBS has been shown to be sufficient to deplete TG-sensitive intracellular calcium stores (Chen et al.,...
Cannabinoids Inhibit NMDA-Induced Calcium Signaling

The ability of thapsigargin to deplete the intracellular Ca\(^{2+}\) stores was tested by stimulating Ca\(^{2+}\) release from IP\(_3\)-sensitive stores with a type 1 muscarinic receptor agonist, carbachol (Cruzblanca et al., 1998). We found that the same thapsigargin treatment almost abolished the Ca\(^{2+}\) increase produced by 1 mM carbachol (data not shown). In contrast, the NMDA-induced [Ca\(^{2+}\)]\(_i\) increase (Fig. 5B, Con) was not affected by thapsigargin (Fig. 5B). Instead, it was significantly reduced by removal of extracellular calcium (Ca\(^{2+}\), 0 nM), suggesting that the [Ca\(^{2+}\)]\(_i\) evoked by NMDA comes from an influx of extracellular calcium, at least initially (\(F_{(1,17)} = 5.89\) for DRG neurons, \(F_{(1,14)} = 7.24\) for F-11 cells, \(p < 0.05\) versus NMDA alone; Fig. 5B).

We further tested the role of IP\(_3\) signaling pathway in the cannabinoid-evoked intracellular calcium release. Cells were pretreated with IP\(_3\) receptor blocker, 2-APB (100 \(\mu\)M), for 5 min before they were exposed to WIN (500 nM). Pretreatment with 2-APB reduced the WIN-evoked calcium release in both DRG neurons and F-11 cells (\(F_{(1,17)} = 6.47\) for DRG neurons, \(F_{(1,12)} = 5.83\) for F-11 cells, \(p < 0.05\) versus WIN treatment; Fig. 5A). These results suggest that the cannabinoid-induced increase in [Ca\(^{2+}\)]\(_i\) was mediated by IP\(_3\) receptors.

WIN-Induced Calcium Release Is Related to Its Inhibition of the NMDA-Mediated Ca\(^{2+}\) Influx. We tested whether the WIN-induced [Ca\(^{2+}\)]\(_i\) increase was necessary to depress the NMDA-induced Ca\(^{2+}\) influx. DRG neurons and F-11 cells were preincubated with TG or 2-APB to inhibit the intracellular calcium store depletion (Fig. 6B). Instead, it was significantly reduced by removal of extracellular calcium (Ca\(^{2+}\), 0 nM), suggesting that the [Ca\(^{2+}\)]\(_i\) evoked by NMDA comes from an influx of extracellular calcium, at least initially (\(F_{(1,17)} = 5.89\) for DRG neurons, \(F_{(1,14)} = 7.24\) for F-11 cells, \(p < 0.05\) versus NMDA alone; Fig. 5B).

We further tested the role of IP\(_3\) signaling pathway in the cannabinoid-evoked intracellular calcium release. Cells were pretreated with IP\(_3\) receptor blocker, 2-APB (100 \(\mu\)M), for 5 min before they were exposed to WIN (500 nM). Pretreatment with 2-APB reduced the WIN-evoked calcium release in both DRG neurons and F-11 cells (\(F_{(1,17)} = 6.47\) for DRG neurons, \(F_{(1,12)} = 5.83\) for F-11 cells, \(p < 0.05\) versus WIN treatment; Fig. 5A). These results suggest that the cannabinoid-induced increase in [Ca\(^{2+}\)]\(_i\) was mediated by IP\(_3\) receptors.

WIN-Induced Calcium Release Is Related to Its Inhibition of the NMDA-Mediated Ca\(^{2+}\) Influx. We tested whether the WIN-induced [Ca\(^{2+}\)]\(_i\) increase was necessary to depress the NMDA-induced Ca\(^{2+}\) influx. DRG neurons and F-11 cells were preincubated with TG or 2-APB to inhibit the WIN-evoked increase in [Ca\(^{2+}\)]\(_i\), before exposure to NMDA. Application of thapsigargin (150 nM) caused a robust transient rise in [Ca\(^{2+}\)]\(_i\) in DRG neurons, which is indicative of intracellular calcium store depletion (Fig. 6B). After the [Ca\(^{2+}\)]\(_i\) returned to baseline, application of 500 nM WIN did not produce rises in [Ca\(^{2+}\)]\(_i\) in DRG neurons, whereas the subsequent application of NMDA produced near normal Ca\(^{2+}\) increase. Similar results were seen in F-11 cells (data not shown). The differential effects of thapsigargin on the modulation of Ca\(^{2+}\) levels by WIN and NMDA are summarized in Fig. 7A. For both DRG neurons and F-11 cells, thapsigargin inhibited the WIN-induced Ca\(^{2+}\) increase (\(F_{(1,34)} = 9.66\) for DRG neurons, \(F_{(1,21)} = 7.45\) for F-11 cells, \(p < 0.05\) versus NMDA alone; Fig. 7A), but not the NMDA (100 \(\mu\)M)-elicited Ca\(^{2+}\) rise (\(F_{(1,24)} = 8.74\) for DRG neurons, \(F_{(1,15)} = 6.27\) for F-11 cells, \(p < 0.05\) versus NMDA + WIN; Fig. 7A). These results suggest that TG abolished the ability of WIN to inhibit the NMDA-induced Ca\(^{2+}\) influx and that Ca\(^{2+}\) release from intracellular stores was therefore required for this effect.

Likewise, the WIN-induced depression of NMDA-mediated calcium influx was blocked by the IP\(_3\) receptor blocker, 2-APB (100 \(\mu\)M), in DRG neurons and F-11 cells (Figs. 6C and 7B). Pretreatment with 2-APB before WIN application abolished the WIN-evoked intracellular Ca\(^{2+}\) rise (\(F_{(1,28)} = 7.53\) for DRG neurons, \(F_{(1,18)} = 6.92\) for F-11 cells, \(p < 0.05\) versus WIN alone; Fig. 7B). In addition, 2-APB blocked the WIN-induced inhibition of NMDA-mediated Ca\(^{2+}\) influx (\(F_{(1,23)} = 11.32\) for DRG neurons, \(F_{(1,19)} = 9.53\) for F-11 cells, \(p < 0.05\) versus NMDA + WIN; Fig. 7B). These data suggest that WIN-induced [Ca\(^{2+}\)]\(_i\) release is mediated by the IP\(_3\) signaling pathway and is responsible for the inhibition of NMDA-mediated Ca\(^{2+}\) influx.
WIN-Induced Ca2+ Release Is Responsible for the Inhibition of NMDA-Induced Cytotoxicity. We tested whether WIN-induced Ca2+ release is necessary for the protective effects of WIN on NMDA-evoked cytotoxicity in both DRG and F-11 cells. Coincubation of WIN (500 nM) with NMDA (100 µM) blocked the NMDA-induced cytotoxicity in both DRG and F-11 cells ($F_{1,24} = 33.96$ for DRG neurons, $F_{1,24} = 19.55$ for F-11 cells, $p < 0.05$ versus NMDA alone; Figs. 1 and 8). This protective effect was reversed by thapsigargin (150 nM) for both cell types ($F_{1,42} = 41.66$ for DRG neurons, $F_{1,27} = 34.19$ for F-11 cells, $p < 0.05$ versus NMDA + WIN; Fig. 7). These data suggest that WIN-induced [Ca2+]i rise is required for WIN to protect cells from NMDA-induced cytotoxicity. Thapsigargin alone did not produce any significant cell viability ($<30\%$ for both cell types, $p > 0.05$).

Discussion

The data from this study showed that the cannabinoid R(+)-WIN 55,212-2 produced a CB1-mediated neuroprotection against NMDA-induced cytotoxicity in both primary DRG neurons and F-11 cells. These effects were blocked by a SERCA pump inhibitor, thapsigargin, and an IP\textsubscript{3} receptor inhibitor, 2-APB, suggesting that Ca2+ release from intracellular stores via the IP\textsubscript{3} signaling pathway is critical for the CB1-mediated neuroprotection (Fig. 8). This work is the first demonstration that the IP\textsubscript{3} signaling pathway has been implicated in the cannabinoid-induced neuroprotection of spinal neurons.

The biochemical mechanisms of cannabinoid protection from NMDA-induced neuronal cytotoxicity are just beginning to be understood. It has been shown that WIN protects neurons against NMDA toxicity by activation of CB1 receptor and downstream inhibition of PKA signaling and nitric oxide generation in cultured cortical neurons (Kim et al., 2006). A natural extract from cannabis plant, Δ9-tetrahydrocannabinol, functions as an antioxidant to increase cell survival in NMDA-induced neurotoxicity in a mesencephalic cell line (Chen et al., 2005). In contrast, the data of this study indicate that the cannabinoid-mediated neuroprotection from NMDA-induced cytotoxicity in spinal neurons is largely attributable to its suppression of NMDA-induced Ca2+ influx through the IP\textsubscript{3} signaling pathway. We demonstrated that blocking CB1 receptor activation or the subsequent increase in [Ca2+]i, abolished the cannabinoid-mediated inhibition of Ca2+ influx and cytotoxicity induced by NMDA in primary DRG neurons. We also confirmed these findings for the F-11 cells.

The NMDA-induced cytosolic Ca2+ increase in spinal neurons could come from either an influx of extracellular Ca2+ through NMDA receptor ion channels and voltage-gated calcium channels (Reichling and MacDermott, 1993) or from release of intracellular Ca2+ stores (Qu et al., 1995). The data of this study suggest that activation of CB1 receptors primarily inhibits the influx of extracellular Ca2+. Removal of extracellular Ca2+ significantly reduced NMDA-mediated cytosolic Ca2+ signals, whereas the SERCA pump inhibitor thapsigargin, in contrast, did not affect the NMDA-induced calcium increase. Therefore, the CB1-mediated inhibition of the Ca2+ increase in these neurons is probably due to inactivation of NMDA receptor channels and/or voltage-gated calcium channels. It has been shown that cannabinoids inhibit NMDA-elicited Ca2+ signals by blocking voltage-gated calcium channels in rat brain cerebellar and cortical slices (Hampson et al., 1998). However, it remains to be determined whether this is the case in the DRG neurons.

An interesting finding of this study is that the cannabinoid-mediated suppression of NMDA-induced Ca2+ influx depended on Ca2+ release from intracellular stores. CB1-mediated Ca2+ release from intracellular stores has been demonstrated in hippocampal neurons (Lauckner et al., 2005) and other cell types. The Ca2+ release was thought to be mediated through either G\textsubscript{IA} β\textsubscript{γ} or G\textsubscript{iα}-coupled phospholipase C signaling pathway, depending on the cell types and drug concentrations. For example, WIN induced Ca2+ signals from IP\textsubscript{3}-sensitive ER stores in hippocampal neurons and transfected HEK293 cells (Lauckner et al., 2005). The data of this study are consistent with this finding. The short duration of Ca2+ signal surge (<40 s) observed in these experiments, compared with the reported long-lasting Ca2+ rise (>100 s), may be due to differences in WIN concentrations. A relatively low concentration (500 nM) was used in the experiments of this study, whereas high doses (5 µM) were used by others.

We demonstrated in this study that the CB1-induced calcium release from intracellular stores attenuated NMDA-induced Ca2+ influx, and subsequently the NMDA-induced cytotoxicity in DRG neurons. This finding is consistent with the reports that increases in [Ca2+]i inactivates NMDA receptors in spinal dorsal horn neurons (Kyrozis et al., 1996) and hippocampal neurons (Kotecha and MacDonald, 2003). The NMDA receptor inactivation in response to increase in [Ca2+]i, was mediated by activation of Ca2+-dependent signaling proteins, such as calmodulin and calcineurin. However, it should be noted that cytosolic calcium increase can also activate NMDA receptors via a Ca2+-dependent Src kinase pathway (Nishizuka, 1988; Ben-Ari et al., 1992; Lu et al., 1999). Therefore, one signaling molecule (e.g., Ca2+) can have opposite effects on the same receptors, possibly depending on the intensity and/or timing of the calcium transient. For example, it has been shown that [Ca2+]i > 400 nM will result in excitotoxicity in neural crest-derived sensory neurons, whereas [Ca2+]i, between 200 to 400 nM will promote survival in these cells (Johnson et al., 1992). Consistent with
the previously published literature, we found that an \(\sim 550 \text{ nM} \) increase in the \([\text{Ca}^{2+}]_i\), evoked by NMDA was toxic to both DRG neurons and F-11 cells, but a smaller increase produced by WIN (\(\sim 350 \text{ nM} \)) was cytotoxic and even protected cells from NMDA-induced cytotoxicity. The temporal pattern of the elevation in the \([\text{Ca}^{2+}]_i\) can also produce different survival effects. In addition, synaptic transmission in hippocampal neurons could either be enhanced (long-term potentiation) by a brief increase of \([\text{Ca}^{2+}]_i\) with relatively high magnitude or suppressed (long-term depression) by a prolonged modest rise of \([\text{Ca}^{2+}]_i\) (Yang et al., 1999). Consistent with this argument is our finding that NMDA-evoked \([\text{Ca}^{2+}]_i\) influx was inhibited by a short duration (<30 s) and long amplitude increase in \([\text{Ca}^{2+}]_i\) (<300 nM) induced by WIN but not by a more sustained (>100 s) and higher amplitude (>400 nM) \([\text{Ca}^{2+}]_i\), rise triggered by thapsigargin. The temporal and spatial characteristics of the \([\text{Ca}^{2+}]_i\) signals may be related to the differential sensitivities of distinct signaling pathways. For example, short duration and low amplitude \([\text{Ca}^{2+}]_i\) signals preferably stimulate calcineurin and lead to dephosphorylation of various signaling proteins and subsequent inactivation of NMDA receptors (Tong et al., 1995). In contrast, sustained and spatially diffuse and homogenous \([\text{Ca}^{2+}]_i\) signals may simultaneously activate both “potentiation” and “depression” pathways that converge upon NMDA receptors, resulting in a cancellation effect (Harvey and Collingridge, 1992; Simpson et al., 1993). The temporal and spatial characteristics of calcium signaling may also be determined by the types of cannabinoid ligands. It has been recently demonstrated that two distinct “endogenous” ligands that differ in their chemical nature (lipid versus peptide) activate the same receptor to initiate distinct signaling pathways (Gomes et al., 2009). It is known that CB1 receptors can couple to different G proteins (Lauckner et al., 2005) and that the same G protein-coupled receptors can activate distinct signaling pathways after activation by different ligands (Drake et al., 2008).

Taken together, the data of this study provided significant insight into the interactions between the cannabinoid system and glutamate receptor activation in DRG neurons through the modulation of cytosolic calcium dynamics and the IP\(_3\) signaling pathway (Fig. 9). Given the fact that the DRG neurons are critical for sensory-motor integration, understanding the mechanisms underlying the cannabinoid protection of these neurons and the mechanisms underlying the cannabinoid-mediated antinociception is necessary for the design of specific and efficacious therapies. Recent studies have demonstrated the neuroprotective potential of cannabinoids in various neurodegenerative diseases, such as multiple sclerosis (Pertwee, 2007) and amyotrophic lateral sclerosis, which are characterized by selective death of spinal neurons (Centonze et al., 2007). Also important is the recent recognition of the role of cannabinoids in antinociception and the cannabinoid system as an emerging target for chronic pain pharmacotherapy (Walker and Hohmann, 2005; Pacher et al., 2006).

Acknowledgments

We thank Dr. Lyle Fox for editorial assistance.

References

Drake MT, Violin JD, Whalen JD, Wisler JW, Shenoy SK, and Lefkowitz RJ (2008)