Production and Actions of Hydrogen Sulfide, a Novel Gaseous Bioactive Substance, in the Kidneys

Min Xia, Li Chen, Rachel W. Muh, Pin-Lan Li, and Ningjun Li

Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia

Received December 18, 2008; accepted February 25, 2009

ABSTRACT

Hydrogen sulfide (H2S), a novel endogenous gaseous bioactive substance, has recently been implicated in the regulation of cardiovascular and neuronal functions. However, its role in the control of renal function is unknown. In the present study, incubation of renal tissue homogenates with L-cysteine (L-Cys) (as a substrate) produced H2S in a concentration-dependent manner. This H2S production was completely abolished by inhibition of both cystathionine β-synthetase (CBS) and cystathionine γ-lyase (CGL), two major enzymes for the production of H2S, using amino-oxyacetic acid (AOAA), an inhibitor of CBS, and propargylglycine (PPG), an inhibitor of CGL. However, inhibition of CBS or CGL alone induced a small decrease in H2S production. In anesthetized Sprague-Dawley rats, intra-renal arterial infusion of an H2S donor (NaHS) increased renal blood flow, glomerular filtration rate (GFR), urinary sodium (UNaV), and potassium (UkV) excretion. Consistently, infusion of both AOAA and PPG to inhibit the endogenous H2S production decreased GFR, UNaV, and UkV, and either one of these inhibitors alone had no significant effect on renal functions. Infusion of L-Cys into renal artery to increase the endogenous H2S production also increased GFR, UNaV, and UkV, which was blocked by AOAA plus PPG. It was shown that H2S had both vascular and tubular effects and that the tubular effect of H2S might be through inhibition of Na+/K+/2Cl− cotransporter and Na+/K+/ATPase activity. These results suggest that H2S participates in the control of renal function and increases urinary sodium excretion via both vascular and tubular actions in the kidney.

In addition to NO and CO, hydrogen sulfide (H2S) has recently been demonstrated to be the third gaseous bioactive substance produced in different mammalian cells (Kimura, 2002; Wang, 2002). Studies have indicated that H2S plays an important role in the regulation of cardiovascular functions. In this regard, both exogenous and endogenous H2S have been reported to cause vascular smooth muscle relaxation and decrease blood pressure, and inhibition of endogenous H2S production induces hypertension (Hosoki et al., 1997; Cheng et al., 2004; Yan et al., 2004; Webb et al., 2008). Furthermore, accumulating evidence has shown that H2S is involved in a variety of physiological and pathological processes in many other organs, such as brain (Éto et al., 2002), heart (Geng et al., 2004), lung (Bhatia et al., 2005; Baskar et al., 2007), liver (Fiorucci et al., 2005), intestine (Teague et al., 2002), pancreas (Bhatia et al., 2005; Yang et al., 2007), and cavernosum (Srilatha et al., 2007).

It has been reported that mammalian cells generate H2S from L-cysteine (L-Cys) mainly through two enzymes, cystathionine β-synthetase (CBS) and cystathionine γ-lyase (CGL) (Kimura, 2002; Wang, 2002; Zhao et al., 2003). The enzymatic pathways for H2S production are tissue-specific. For example, CBS is the predominant enzyme generating H2S in the nervous system and CGL in the vascular system (Wang, 2002; Zhao et al., 2003). Both CBS and CGL have been reported to be present in the kidneys (Stipanuk and Beck, 1982; House et al., 1997), mainly in renal proximal tubules (House et al., 1997; Ishii et al., 2004; Li et al., 2006). However, the production and actions of H2S in the kidneys are not clear. The present study determined the enzymatic pathways for the production of H2S in the renal tissue homogenates and examined the effects of exogenous and endogenous H2S on renal hemodynamics and excretory functions. The results provide evidence showing that H2S significantly participates in the control of renal functions, including glomerular and tubular functions.

ABBREVIATIONS: H2S, hydrogen sulfide; L-Cys, L-cysteine; CBS, cystathionine β-synthetase; CGL, cystathionine γ-lyase; AOAA, amino-oxyacetic acid; PPG, propargylglycine; GFR, glomerular filtration rate; UV, urinary volume; UNaV, urinary sodium; UkV, urinary potassium; FF, fractional filtration; FeNa, fractional excretion of sodium; FeK, fractional excretion of potassium; MAP, mean arterial blood pressure; NKCC1, Na+/K+/2Cl− cotransporter; NCC, Na+/Cl− cotransporter; NKTA, Na+/K+/ATPase; RBF, renal blood flow; ANOVA, analysis of variance; G, group; BM, basolateral membrane; HPLC, high-performance liquid chromatography; Ks, glomerular ultrafiltration coefficient.
Materials and Methods

Animals

Experiments were performed on male Sprague-Dawley rats, weighing between 300 and 350 g, purchased from Harlan (Madison, WI). The rats were housed in the Animal Care Facility at the Virginia Commonwealth University with free access to food and water throughout the study, with the exception that they were fasted the night before the renal function experiments. All protocols were approved by the Institutional Animal Care and Use Committee of the Virginia Commonwealth University.

Measurement of H₂S Production in Renal Tissues

The production of H₂S by renal tissue homogenates was measured using spectrophotometry as described previously with slight modifications (Stipanuk and Beck, 1982; Zhao et al., 2001; Cheng et al., 2004). In brief, renal cortical tissues were homogenized in 50 mM ice-cold potassium phosphate buffer (pH 7.4). The tissue homogenates (0.25 ml) were incubated with L-Cys (0.5, 1, and 5 mM, respectively) and pyridoxal-5'-phosphate (2 mM) at 37°C for 90 min after the reaction tubes were flushed with N₂ and sealed. Fifty percent of trichloroacetic acid (0.125 ml) was injected into the reaction tubes to stop the reaction, followed by 0.125 ml of zinc acetate (15 mM) and 0.5 ml of borate buffer (pH 10.01). The tubes were then incubated at 37°C for another 60 min. The reaction solutions were mixed with 0.5 ml of N,N-dimethyl-p-phenylenediamine sulfate (20 mM, in sulfuric acid, pH 9.0) and 0.02 ml of FeCl₃ (3 M) at 37°C for an additional 30 min and then centrifuged at 5000g for 3 min and filtered with 0.45-μm syringe filters. The absorbance of resulting solution at 670 nm was measured with a spectrophotometer. The H₂S concentration was calculated against the calibration curve of the standard H₂S solutions.

For the measurement of endogenous H₂S levels in the kidneys, renal tissues (50 mg) were homogenized in 0.5 ml of zinc acetate (1%) and mixed with 0.5 ml of borate buffer (pH 10.01). Then, 0.5 ml of N,N-dimethyl-p-phenylenediamine (20 mM) and 0.5 ml of FeCl₃ (300 mM) were added into tissue homogenates. Reaction tubes were immediately sealed and incubated at 37°C for 30 min with shaking. After incubation, the samples were centrifuged, and the H₂S concentrations were measured as described above.

Zinc acetate can trap H₂S, and the reaction of H₂S with N,N-dimethyl-p-phenylenediamine produces methylene blue that can be detected at 670 nm with spectrophotometry to represent the levels of H₂S. This method is extensively used for the measurement of H₂S in the tissue (Stipanuk and Beck, 1982; Zhao et al., 2001; Cheng et al., 2004; Yan et al., 2004).

Effect of Exogenous and Endogenous H₂S on Renal Hemodynamics and Functions

Animal Preparation. Male Sprague-Dawley rats, weighing 300 to 350 g, were anesthetized with ketamine (30 mg/kg i.m.) (Phoenix Pharmaceuticals, St. Joseph, MO) and thiobutabarbital (inaction, 50 mg/kg i.p.) (Sigma-Aldrich, St. Louis, MO) and then surgically prepared for continuously monitoring mean arterial blood pressure (MAP), renal blood flow (RBF), and urine flow rate (U). Geriatric Pathways for the Production of H₂S in Renal Tissue Homogenates

Experimental Protocols. After a 1.5-h equilibration period and two 20-min control collections of urine and blood samples, different reagents were infused into left renal artery for 30 min (10-min clearance period and 20-min sample collection): group 1, infusion of NaHS, a H₂S donor, at 5, 10, 20, 40, and 80 mmol/min/kg; group 2, infusion of amino-oxyacetic acid (AOAA) (Sigma-Aldrich), a CBS inhibitor, and/or propargylglycine (PPG) (Sigma-Aldrich), a CGL inhibitor, to block the production of endogenous H₂S; group 3, infusion of L-Cys to increase the production of endogenous H₂S; and group 4, infusion of L-Cys + AOAA + PPG. At the end of the experiments, the kidneys were removed, snap-frozen in liquid N₂, and stored in −80°C for measurement of H₂S concentration as described above.

Effect of H₂S on Na⁺/K⁺/2Cl⁻ Cotransporter and Na⁺/Cl⁻ Cotransporter in the Kidneys

Animal preparation was as described above. The effect of H₂S on Na⁺/K⁺/2Cl⁻ cotransporter was determined by intrarenal arterial infusion of NaHS (20 mmol/min/kg) and/or furosemide (0.75 μmol/min/kg) to compare the H₂S-induced increases in U₅Na-V in the absent and present of furosemide (Furo) (H₂S versus Furo + H₂S). Dose-dependent effects of furosemide on U₅Na-V were tested first, and the dose that caused maximal diuretic effect was used. Likewise, the effect of H₂S on Na⁺/Cl⁻ cotransporter was determined by comparing the increases in U₅Na-V induced by NaHS with increases by NaHS plus hydrochlorothiazide (Thia) (1.7 μmol/min/kg) (H₂S versus Thia + H₂S).

Effect of H₂S on Na⁺/K⁺-ATPase Activity in Basolateral Membranes from the Kidneys by HPLC Analysis

Basolateral membrane was prepared from the kidney tissue as described previously (Sheikh et al., 1982). HPLC analysis of renal Na⁺/K⁺-ATPase activity in the basolateral membranes was performed by detecting the conversion of ATP into ADP as reported previously (Sudo et al., 2000). ATP as substrate was incubated with renal basolateral membranes at 37°C for 20 min, and then the samples were subjected to HPLC analysis of ADP concentration after being centrifuged and filtered. Effect of H₂S on ouabain-sensitive ATPase activity was used to present the effect of H₂S on Na⁺/K⁺-ATPase activity. The assays included the following groups (G): G1, ATP + basolateral membrane (BM); G2, ATP + BM + ouabain (10 mM); G3, ATP + BM + ouabain + H₂S; and G4, ATP + BM + H₂S. The inhibition on ATPase activity was obtained as the difference in ATP production between G1 and the other groups. The effect of H₂S on Na⁺/K⁺-ATPase activity was calculated using inhibition rate in each group according to the following formula: (G4 – (G3 – G2))/G2. For example, if the productions of ADP in all groups are 300 (inhibition = 0) for G1, 200 (inhibition = 100) for G2, 180 (inhibition = 120) for G3, and 250 (inhibition = 50) for G4, respectively, the effect of H₂S on Na⁺/K⁺-ATPase activity will be (50/100) for G4, and 100 for G3. If H₂S has no effect on Na⁺/K⁺-ATPase activity, G3 will be equal to G2. If H₂S only inhibits Na⁺/K⁺-ATPase activity with no effect on other ATPase activity, G3 will be equal to G2.

Statistical Analysis

Data are presented as means ± S.E. The significance of differences in mean values within and between multiple groups was evaluated using analysis of variance (ANOVA), and any significant differences revealed by this procedure were further investigated using the Tukey multiple-range test. Student’s t test was used to evaluate statistical significance of differences between two groups. P < 0.05 was considered statistically significant.

Results

Enzymatic Pathways for the Production of H₂S in Renal Tissue Homogenates. As shown in Fig. 1A, incuba-
of NaHS. However, infusion of NaHS significantly increased RBF at a low dose. Higher doses of NaHS induced significant increases in RBF as well. Renal fractional filtration (FF), fractional excretion of sodium (FE_{Na}) and potassium (FE_{K}) were also increased by infusion of NaHS into the renal artery.

Effects of Inhibition of Endogenous Renal H_{2}S Production on Renal Hemodynamics and Excretory Functions. To evaluate the role of endogenous H_{2}S in the regulation of renal hemodynamics and excretory functions, inhibitors of CBS and CGL were infused into the renal artery to block the production of H_{2}S within the kidney. As summarized in Table 2, infusion of AOAA (0.25, 0.5, and 1 μmol/min/kg) plus PPG (4 μmol/min/kg) significantly reduced GFR, U-V, U_{Na}, and U_{K}V in a dose-dependent manner, whereas AOAA or PPG alone did not induce significant changes in the renal hemodynamics and excretory functions (data not shown).

Effect of l-Cys, a Substrate for Endogenous H_{2}S Production, on Renal Hemodynamics and Excretory Functions. As summarized in Figs. 2 and 3, intrarenal arterial infusions of l-Cys had no effect on MAP and RBF but dose-dependently increased GFR, U-V, U_{Na}, and U_{K}V. To confirm that l-Cys increased these parameters due to the induction of H_{2}S, inhibitors of CBS and CGL were infused with l-Cys together. As shown in Figs. 2 and 3, inhibition of CBS and CGL considerably blocked the effects of l-Cys on GFR, U-V, U_{Na}, and U_{K}V. Infusion of l-Cys also significantly increased FF, F_{Na}, and F_{K}, which was blocked by AOAA plus PPG (Fig. 3).

H_{2}S Levels in the Kidney Tissues after Different Treatments. After each experiment, the kidney was removed and saved, and the H_{2}S levels within the kidney were measured. The data are summarized in Fig. 4. Intrarenal arterial infusion of AOAA plus PPG substantially reduced the H_{2}S levels in the kidneys. Infusion of l-Cys significantly increased the H_{2}S levels. The increases in H_{2}S levels induced by l-Cys were blocked by AOAA + PPG. In addition, infusion of NaHS into the renal artery also markedly increased the levels of H_{2}S in the kidneys.

Effect of H_{2}S on Specific Sodium Transporters in the Kidneys. The major renal sodium transporters include Na+/H+ exchanger, Na+/K+2Cl− cotransporter (NKCC), Na+/Cl− cotransporter (NCC), and epithelial Na+ channel on the apical side and Na+/K+/2Cl−-ATPase (NKA) on the basolateral side of the tubule. Carbonic anhydrase is also an important contributor to the Na+ reabsorption. In the current study, a substantial increase in U_{Na}V indicated that epithelial Na+ channel might not play an important role in H_{2}S-induced tubular effects. There was no significant change in urine pH.

Table 1

<table>
<thead>
<tr>
<th>NaHS (nmol/min/kg)</th>
<th>C</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP (mm Hg)</td>
<td>107.8 ± 1.74</td>
<td>107.7 ± 1.72</td>
<td>107.5 ± 1.80</td>
<td>107.8 ± 1.79</td>
<td>107.2 ± 1.89</td>
<td>105.5 ± 1.58</td>
</tr>
<tr>
<td>RBF (ml/min/g kwt)</td>
<td>5.99 ± 0.01</td>
<td>9.12 ± 0.94</td>
<td>9.12 ± 0.93</td>
<td>9.25 ± 0.93</td>
<td>9.73 ± 0.90*</td>
<td>10.59 ± 1.03*</td>
</tr>
<tr>
<td>GFR (ml/min/g kwt)</td>
<td>1.02 ± 0.10</td>
<td>1.04 ± 0.07</td>
<td>1.09 ± 0.08</td>
<td>1.28 ± 0.02*</td>
<td>1.33 ± 0.04*</td>
<td>1.57 ± 0.08*</td>
</tr>
<tr>
<td>U-V (μmol/min/g kwt)</td>
<td>17.7 ± 1.70</td>
<td>17.2 ± 0.89</td>
<td>19.8 ± 2.07</td>
<td>26.0 ± 1.31*</td>
<td>39.1 ± 4.94*</td>
<td>53.7 ± 5.87*</td>
</tr>
<tr>
<td>U_{Na}V (μmol/min/g kwt)</td>
<td>2.72 ± 0.35</td>
<td>2.71 ± 0.53</td>
<td>2.96 ± 0.22</td>
<td>3.69 ± 0.21*</td>
<td>5.27 ± 0.70*</td>
<td>12.28 ± 1.31*</td>
</tr>
<tr>
<td>U_{K}V (μmol/min/g kwt)</td>
<td>1.69 ± 0.16</td>
<td>1.73 ± 0.26</td>
<td>1.82 ± 0.22</td>
<td>2.14 ± 0.26*</td>
<td>2.37 ± 0.19*</td>
<td>4.46 ± 0.33*</td>
</tr>
<tr>
<td>F_{Na} (%)</td>
<td>20.39 ± 1.47</td>
<td>20.65 ± 1.36</td>
<td>21.51 ± 1.31</td>
<td>24.71 ± 1.06*</td>
<td>25.77 ± 1.28*</td>
<td>26.95 ± 1.29*</td>
</tr>
<tr>
<td>F_{K} (%)</td>
<td>1.53 ± 0.25</td>
<td>1.54 ± 0.21</td>
<td>2.04 ± 0.18</td>
<td>2.26 ± 0.08*</td>
<td>3.02 ± 0.11*</td>
<td>5.39 ± 0.15*</td>
</tr>
</tbody>
</table>

*P < 0.05 vs. control (C) by repeated measures ANOVA.
TABLE 2

Effect of intrarenal infusion of CBS and CGL inhibitors on renal hemodynamics and urinary excretory functions

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>C</th>
<th>0.25</th>
<th>0.5</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP (mm Hg)</td>
<td>114.75 ± 2.77</td>
<td>116.50 ± 1.35</td>
<td>113.63 ± 3.23</td>
<td>116.38 ± 1.16</td>
<td>115.00 ± 1.37</td>
</tr>
<tr>
<td>RBF (ml/min)</td>
<td>8.97 ± 0.36</td>
<td>8.93 ± 0.35</td>
<td>8.81 ± 0.39</td>
<td>8.53 ± 0.32</td>
<td>8.34 ± 0.37</td>
</tr>
<tr>
<td>GFR (ml/min/g kwt)</td>
<td>1.11 ± 0.05</td>
<td>1.09 ± 0.06</td>
<td>0.98 ± 0.05</td>
<td>0.75 ± 0.03</td>
<td>0.50 ± 0.09</td>
</tr>
<tr>
<td>UV (µl/min/g kwt)</td>
<td>18.52 ± 0.58</td>
<td>19.15 ± 0.93</td>
<td>16.47 ± 0.31</td>
<td>12.70 ± 0.86*</td>
<td>11.72 ± 1.07*</td>
</tr>
<tr>
<td>UNaV (µmol/min/g kwt)</td>
<td>2.42 ± 0.22</td>
<td>2.32 ± 0.13</td>
<td>1.94 ± 0.09</td>
<td>1.61 ± 0.06*</td>
<td>1.55 ± 0.12*</td>
</tr>
<tr>
<td>UF (µmol/min/g kwt)</td>
<td>1.80 ± 0.99</td>
<td>1.85 ± 0.13</td>
<td>1.51 ± 0.10</td>
<td>1.26 ± 0.07*</td>
<td>1.10 ± 0.07*</td>
</tr>
<tr>
<td>FF (%)</td>
<td>21.10 ± 0.53</td>
<td>19.93 ± 1.20</td>
<td>18.09 ± 1.51</td>
<td>14.71 ± 0.75*</td>
<td>11.81 ± 1.32*</td>
</tr>
<tr>
<td>FENa (%)</td>
<td>1.50 ± 0.30</td>
<td>1.47 ± 0.16</td>
<td>1.37 ± 0.13</td>
<td>1.48 ± 0.13</td>
<td>2.15 ± 0.09*</td>
</tr>
<tr>
<td>FEK (%)</td>
<td>32.39 ± 1.26</td>
<td>33.98 ± 1.58</td>
<td>30.94 ± 1.38</td>
<td>33.41 ± 1.60</td>
<td>44.06 ± 0.52*</td>
</tr>
</tbody>
</table>

* P < 0.05 vs. control (C) by repeated measures ANOVA.

Discussion

Our results indicated that both CBS and CGL were functioning to produce H2S in the kidneys and that the inhibition of CBS or CGL alone could be compensated by the increase in the activity of the other enzyme in H2S production. This is consistent with a previous study, which showed that inhibition of CGL activity by 93% lowered H2S production by only 30% (Stipanuk and Beck, 1982). A recent report suggested that CBS was an essential enzyme for the synthesis of endogenous H2S in the kidneys based on the findings that PPG prevented the recovery of renal function after ischemic injury, whereas exogenous H2S protected the kidney from ischemic injury (Tripathara et al., 2008). The results from this report might not be able to rule out that inhibition of endogenous H2S production requires blockade of both CBS and CGL in the kidneys, because the enhanced renal injury after PPG administration could be a nephrotoxic effect of PPG (Konno et al., 2000) under the ischemic conditions.

Given the facts that H2S plays an important role in the regulation of vascular function (Hosoki et al., 1997; Zhao et al., 2004; Yan et al., 2004; Webb et al., 2008) and that the control of renal function is largely associated with the regulation of renal vascular functions, H2S may significantly participate in the control of renal functions. In the present study, intrarenal arterial infusion of an H2S donor increased RBF and GFR, which was accompanied by increases in FF, indicating that H2S may produce greater vasodilation in preglomerular arterioles than in postglomerular arterioles. In addition, the present study demonstrated that H2S increased UV, UNaV, and UF much more than RBF and GFR, implying that H2S has direct effects on renal tubular functions. Indeed, both FENa and FEK were increased by NaHS, suggesting an inhibitory effect of H2S on ion transport in the renal tubules. It was also shown that H2S exhibited more potent effects on tubular activity than vascular activity.

Our data suggest that Na+/H+ exchanger and carbonic anhydrase were unlikely the central factors mediating the effect of H2S. Therefore, we examined the effects of H2S on NKCC, NCC, and NKA. NaHS + furosemide induced a significant increase in UNaV compared with furosemide alone. However, NaHS-induced increases in UNaV were significantly reduced in the present of furosemide compared with NaHS alone, indicating an inhibition of NKCC by H2S (Fig. 5A). There was no significant difference in NaHS-induced increases in UNaV between the animals treated with NaHS and NaHS + thiazide, indicating that NCC was not involved in the tubular effects of H2S (Fig. 5B). We were unable to conduct the similar in vivo experiment to examine the effect of H2S on NKA, as we did on NKCC and NCC, due to the strong vessel contractile effect of the NKA inhibitor (Aalkjaer and Mulvany, 1985). Therefore, we detected the effect of H2S on NKA in vitro using isolated renal basolateral membrane. Figure 5C shows that the HPLC chromatogram clearly separated ATP and ADP and detected the production of ADP after the incubation of renal basolateral membrane with ATP. NaHS inhibited NKA activity in a concentration-dependent manner with a maximal inhibition of 41% (Fig. 5D). Although H2S did not inhibit NKA activity by 100%, 1 µM NaHS induced an inhibition of 19%, suggesting that H2S is relatively a potent Na+/K+-ATPase inhibitor. Partial inhibitions of NCCK and NKA by H2S may be because the doses/concentrations of NaHS used in these experiments were not the maximal ones.
versus Cys by ANOVA with Tukey’s post hoc test.

Fig. 3. Effects of infusion of L-Cys into renal artery on renal excretory function. *, $P < 0.05$ versus control (0) by repeated measures ANOVA with Tukey’s post hoc test; #, $P < 0.05$ versus inhibitor-treated animals by t test ($n = 5$).

Fig. 4. H$_2$S levels in the kidney tissues after infusion of different enzyme inhibitors, substrate, or H$_2$S donor into renal arteries. C, control; A, AOAA; P, PPG; Cys, l-cysteine; *, $P < 0.05$ versus control; and #, $P < 0.05$ versus Cys by ANOVA with Tukey’s post hoc test. $n = 5$.

Although the above results from exogenous H$_2$S indicate that H$_2$S may play an important role in the regulation of renal function, the conclusion cannot be drawn until the role of endogenous H$_2$S is confirmed. Our results showed that combined inhibition of CBS and CGL significantly attenuated GFR, U-V, U$_{Na}$-V, and U$_{K}$-V, revealing that endogenous H$_2$S is important in the maintenance of basal renal filtration and tubular functions. Inhibition of either CBS or CGL alone did not have a marked effect on renal hemodynamics and excretery functions. This is probably due to the observation that inhibition of either one of these two enzymes only reduced a small portion of H$_2$S production; the effect of this small change in H$_2$S production could not be detected in the complicated in vivo environment.

It should be noted that although PPG, an inhibitor of CGL used in the present study, was shown to be toxic to renal proximal tubular cells (Konno et al., 2000), the effects of PPG in the present study were unlikely due to its nephrotoxicity, because nephrotoxicity of PPG needs a large dose (300 versus 13.6 mg/kg in the present study) and induces an increase in urine volume (Konno et al., 2000). It has been shown that PPG at a dose of 50 mg/kg does not cause histological abnormalities in the kidneys (Triguero et al., 1997).

To further evaluate the physiological significance of H$_2$S in the regulation of renal function, we infused L-Cys into the renal artery to determine the effect of increased endogenous H$_2$S production on renal functions. Previous studies have documented that incubation of isolated arteries with L-Cys increases H$_2$S production and induces vasodilation (Cheng et al., 2004). Our results showed that L-Cys dose-dependently increased GFR, U-V, U$_{Na}$-V, and U$_{K}$-V. Because there was no significant increase in RBF after infusion of L-Cys, the increase in GFR was probably due to the increases in FF and glomerular ultrafiltration coefficient (K_v). It has been documented that glomerular mesangial cells and podocytes contain contractile proteins and respond to vasoactive hormones, thereby modulating the K_v (Stockand and Sansom, 1998; Pavenstädt, 2000). It is possible that H$_2$S has a direct effect on mesangial cells or through an unknown mechanism increases K_v and consequently GFR. Our results also confirmed that L-Cys-induced changes in renal functions were attributed to increased production of H$_2$S, because inhibition of CBS and CGL in combination abolished the L-Cys-induced effects on renal hemodynamics and excretions. This was consistent with the results in our biochemical analyses. These data further demonstrate that endogenous H$_2$S participates in the regulation of renal functions. The results from the measurement of renal H$_2$S concentrations showed that renal H$_2$S concentrations were well associated with the changes in
renal functions, which additionally indicates an important role of H$_2$S in the regulation of renal functions.

There was a concern that infusion of L-Cys, unlike NaHS, did not increase RBF despite the fact that it increased H$_2$S in the kidney. This discrepancy indicates that L-Cys may produce other effects in addition to the enhancement of H$_2$S production. L-Cys has been reported to be a weak inhibitor of S-adenosylhomocysteine hydrolase (Knudsen and Yall, 1972), an enzyme that produces adenosine (Kloor et al., 2003). Adenosine is well known for increasing afferent arteriolar resistance and decreasing efferent arteriolar resistance, which is accompanied by little change in total RBF (Spielman and Thompson, 1982). Infusion of L-Cys may decrease the production of adenosine within the kidneys, resulting in a preglomerular vessel relaxation and postglomerular vessel constriction. This postglomerular vessel constriction may then counteract the effect of H$_2$S on RBF.

As a result, L-Cys induced little change in RBF in the current study. Slightly higher FF in L-Cys-infused rats may be taken in support of the notion that there are adenosine-mediated effects of L-Cys. However, this adenosine-mediated effect may not be a major portion of L-Cys-induced action because inhibition of CBS and CGL abolished the effect of L-Cys on renal function, suggesting that H$_2$S-mediated action of L-Cys is predominant. The speculation concerning the effect of L-Cys on RBF needs to be proven in future studies. In addition, there are possibly other mechanisms that may explain the differences between L-Cys- and NaHS-induced effects on RBF, such as the possibility that L-Cys or NaHS may be metabolized in a different manner that produces other unknown renal active metabolites.

To determine which sodium transporter is responsible for the inhibitory effect of H$_2$S on sodium reabsorption, we performed experiments to dissect the effects of H$_2$S on specific
sodium transporters along the renal tubule. Our results dem-
strated that the tubular effects of H$_2$S might be partially through inhibition of NKCC and NKA activity. The inhibi-
tory effects of H$_2$S on both NKCC and NKA are similar to those of NO (Ortiz and Garvin, 2002). The interaction be-
tween H$_2$S and NO in this regard may need further attention. It should be noted that H$_2$S exhibits both vascular and tubu-
ard effects and that the inhibitors of NKCC, NCC, and NKA also have effects on renal hemodynamics (Langård et al., 1984; Okusa et al., 1989; Sawaya et al., 1991; Dobrowolski et al., 2000; Dobrowolski and Sadowski, 2005; Lorenz et al., 2006). Therefore, there is a possibility that there are interac-
tions/counteractions between the vascular effects of H$_2$S and those of Na$^+$ transport inhibitors. These interac-
tions/counteractions can also change U$_{Na}V$ and may be re-
sponsible for the further increases or no further effect in U$_{Na}V$ when NaHS is infused in combination with different Na$^+$ transport inhibitors. Moreover, it cannot be ruled out that H$_2$S affects other tubular transporters simultaneously in addition to its effects on NKCC and NKA, because such effects, if there are any, may be covered in the complicated signal interactions/counteractions in the in vivo experiments. Thus, the results from the current study are not conclusive regarding the effects of H$_2$S on specific sodium transporters. A study using isolated and perfused different tubular seg-
ments will clarify the effects of H$_2$S on specific tubular trans-
porters in the future.

In summary, the present study demonstrated that the kidney tissues were capable of producing H$_2$S from L-Cys via CBS and CGL; exogenous H$_2$S produced dose-related in-
creases H$_2$S and NO in this regard may need further attention.

References

Krusellas RC and Valli I (1972) Partial purification and characterization of S-
adenozylhomocysteine hydrolase isolated from Saccharomyces cerevisiae. J Bacteri-
ol 112:569–575.

