The Modulation of Synaptic GABA_A Receptors in the Thalamus by Eszopiclone and Zolpidem

Fan Jia, Peter A. Goldstein, and Neil L. Harrison

C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Cornell Medical College, New York, New York (F.J., P.A.G., N.L.H.); and Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York (F.J., N.L.H.)

Received September 19, 2008; accepted November 24, 2008

ABSTRACT

Eszopiclone (Lunesta; Sepracor, Marlborough, MA) and zolpidem [N,N,6-trimethyl-2-[(4-methylphenyl)-imidazo[1,2-a]pyridine-3-acetamide] are among the most commonly prescribed hypnotics in use in the United States. The thalamus plays a pivotal role in sleep regulation and rhythmicity. Two distinct subtypes of synaptic GABA_A receptors (GABA_A-Rs), α₁β₂γ₂ and α₃β₂γ₂, are expressed in thalamocortical relay neurons and in interneurons of the RTN (reticular thalamic nucleus), respectively. Thalamocortical neurons also express extrasynaptic GABA_A-Rs composed of α₃β₂δ subunits. In this study, we compared the effects of eszopiclone and zolpidem on miniature inhibitory postsynaptic currents (IPSCs), spontaneous IPSCs, and tonic inhibition in the mouse thalamus. Eszopiclone (0.1–1 μM) slowed the decay phase of IPSCs from VB neurons, whereas zolpidem was less effective and increased the decay time constant only at ≥0.3 μM. IPSCs of RTN neurons were more sensitive to eszopiclone than zolpidem at all concentrations tested. On the other hand, IPSCs of relay neurons in the ventrobasal nucleus (VB) were more sensitive to zolpidem than eszopiclone. Zolpidem (0.1–1 μM) prolonged the decay of IPSCs from VB neurons, whereas eszopiclone increased the decay time constant only at ≥0.3 μM. Neither of these two hypnotics affected tonic inhibition in relay neurons. Our results demonstrate that eszopiclone has greater efficacy at synaptic GABA_A-Rs of RTN neurons than in relay neurons, whereas zolpidem exerts bigger effects on relay neurons than RTN neurons. This distinct pattern of activity on thalamic neurons may contribute to some of the observed differences in the clinical effects of these two hypnotics.

Benzodiazepines (BZs) have long been used as anxiolytics, and these drugs have also found widespread use in the treatment of a variety of sleep disorders. The BZs exert their pharmacological effects by binding to specific allosteric BZ sites on GABA_A-Rs (GABA_A-Rs) and thereby modulating the function of these receptors. In recent years, awareness of several undesirable effects of the BZs resulted in the development of a new generation of nonbenzodiazepine hypnotics, including the “Z drugs”: zopiclone and zolpidem (Ambien; Sanofi-aventis, Bridgewater, NJ). Zolpidem is an imidazopyridine, whereas zopiclone is a cyclopyrrolone. The sedative and anxiolytic effects of zopiclone in rodents are produced mainly by eszopiclone (Lunesta; Sepracor, Marlborough, MA), the (S)-enantiomer of zopiclone (Carlson et al., 2001).

Both eszopiclone and zolpidem are believed to promote sleep by interacting with GABA_A-Rs in a way similar to BZs. Although they are structurally distinct from BZs (Drover, 2004), the Z drugs probably bind to sites on GABA_A-Rs that are similar to, and overlapping with, the BZ sites. Mammalian GABA_A-Rs in the central nervous system are pentameric structures consisting of distinct subunits, which can include α₁, β_{1–6}, β₃, and γ_{1–6} or δ (Sieghart and Sperk, 2002). Zolpidem is highly selective for α₁β₂γ₂ GABA_A-Rs (Pritchett and Seeburg, 1990; Wingrove et al., 2002), which have been implicated in the hypnotic actions of the BZs (Rudolph and Möhler, 2004). The selectivity of eszopiclone is not yet fully understood, although the drug has also been shown to act at γ₂-containing GABA_A-Rs, including α₁β₂γ₂.

The thalamus plays an important role in sleep regulation, and damage to the thalamus interferes with normal sleep (Steriade and Timofeev, 2003). Both GABAergic interneurons in the reticular nucleus (RTN) of the thalamus and thalamocortical relay neurons in relay nuclei contribute to the generation of the characteristic oscillations seen in the EEG during sleep, including sleep spindles (7–12 Hz) and the slow waves associated with non-REM sleep (1–4 Hz) (McCormick and Bal, 1997; Steriade and Timofeev, 2003).

ABBREVIATIONS: BZ, benzodiazepine; GABA_A-R, GABA_A receptor; RTN, reticular thalamic nucleus; EEG, electroencephalogram; REM, rapid eye movement; IPSC, inhibitory postsynaptic current; mIPSC, miniature IPSC; VB, ventrobasal thalamic nucleus.
A variety of GABA_A-R subtypes exist in the thalamus; synaptic inhibition in thalamocortical relay neurons involves α₁β₃γ₂ receptors, whereas synaptic inhibition in the RTN is mediated by α₃β₃γ₂ receptors (Huntsman et al., 1999; Pirker et al., 2000; Jia et al., 2005). In addition, a tonic form of inhibition in thalamocortical relay neurons is generated via persistent activation of extrasynaptic α₁β₃δ receptors (Porcillo et al., 2003; Belelli et al., 2005; Cope et al., 2005; Jia et al., 2005, 2008; Chandra et al., 2006; Bright et al., 2007; Peden et al., 2008). In the present study, we compared the actions of eszopiclone and zolpidem on these three populations of GABA_A-Rs in the mouse thalamus.

Materials and Methods

Electrophysiological Recordings in Brain Slices. Experiments were performed in accordance with institutional and federal guidelines, using mice between 20 and 60 days old (C57BL/6) by methods we have described previously (Jia et al., 2005). Animals were anesthetized with halothane, and brains were removed and placed in ice-cold slicing solution, which contained: 2.5 mM KCl, 26 mM NaHCO₃, 1.25 mM NaH₂PO₄, 220 mM sucrose, 1.25 mM NaH₂PO₄, and 10 mM glucose. Whole-cell patch clamp recordings from visually identified thalamic neurons were performed at room temperature as described previously (Jia et al., 2005). Intracellular solution for voltage-clamp recordings contained the following: 130 mM CsCH₃SO₃, 8.3 mM NaCl, 1.7 mM NaCl, 1 mM CaCl₂, 10 mM EGTA, 2 mM Mg₂-ATP, 0.3 mM Na-GTP, and 10 mM HEPES; pH was adjusted to 7.2 with CsOH. Spontaneous inhibitory postsynaptic currents and miniature IPSCs (in the presence of 0.5 μM tetrodotoxin) were recorded at 0 mV and isolated by bath application of 3 to 5 mM kynurenic acid. Zolpidem or eszopiclone was applied for at least 10 min.

Drugs and Data Analysis. All drugs except eszopiclone were obtained from Sigma-Aldrich (St. Louis, MO), dissolved in artificial cerebrospinal fluid, and applied by perfusion. Each slice was only treated with one drug. Eszopiclone was kindly provided by Sepracor. Off-line analysis was performed using MiniAnalysis 5.5 (Synaptosoft, Decatur, GA), SigmaPlot 6.0 (SPSS Inc., Chicago, IL), and Excel 2003 (Microsoft, Redmond, WA). Spontaneous IPSCs were detected and analyzed using MiniAnalysis as described previously (Jia et al., 2005). Numeric data are expressed as mean ± S.E.M., except where indicated. The statistical significance of results was assessed using Student’s t test or one-way analysis of variance, and a level of p < 0.05 was considered significant.

Results

Effects of Eszopiclone on IPSCs in RTN Neurons. We began by investigating whether eszopiclone modulates spontaneous IPSCs in RTN neurons. The majority of GABA_A-Rs in RTN neurons are located at synaptic sites and are composed of α₃β₃γ₂ subunits (Huntsman et al., 1999; Pirker et al., 2000; Jia et al., 2005). In our recordings, spontaneous IPSCs are readily observed in RTN neurons, with a mean amplitude of 31 ± 5 pA and weighted decay time constant (τ_W) of 68 ± 4 ms (n = 21). A low concentration of eszopiclone (0.1 μM) increased τ_W by 20 ± 9% (p < 0.05, n = 8). At 0.3 μM, eszopiclone increased τ_W by 39 ± 6% (p < 0.01, n = 8) and amplitude by 23 ± 7% (p < 0.05, n = 8). At 1 μM, eszopiclone significantly increases both τ_W (59 ± 9%, p < 0.001, n = 8) and amplitude (32 ± 9%, p < 0.05, n = 8; Fig. 1A).

The properties of spontaneous IPSCs can be influenced by both pre- and postsynaptic factors because most spontaneous

![Image](image-url)
IPSCs are driven by action potentials generated in presynaptic neurons. To isolate the postsynaptic effects of the drugs, we also examined the effects of eszopiclone on miniature IPSCs (mIPSCs), which are isolated by recording in 1 μM tetrodotoxin. Eszopiclone (0.1 μM) increased τ\textsubscript{w} of mIPSCs by 14 ± 4% (p < 0.05, n = 8). At 0.3 μM, eszopiclone significantly increased τ\textsubscript{w} by 43 ± 5% (p < 0.01, n = 8), and at 1 μM, eszopiclone significantly increased τ\textsubscript{w} (68 ± 13%, p < 0.001, n = 8) and amplitude (25 ± 9%, p < 0.05, n = 8).

Effects of Zolpidem on IPSCs in RTN Neurons. We then tested the effects of zolpidem on IPSCs in RTN neurons. The amplitude of spontaneous IPSCs of RTN neurons is not significantly changed by zolpidem (0.1–1 μM). However, zolpidem (0.3 μM) did increase the weighted decay time constant by 12 ± 5% (p < 0.05, n = 10), and 1 μM zolpidem significantly increased τ\textsubscript{w} by 21 ± 6% (p < 0.01, n = 10; Fig. 1B). Zolpidem had similar effects on mIPSCs. Zolpidem (0.3 μM) increased τ\textsubscript{w} by 13 ± 6% (p < 0.05, n = 6), and 1 μM zolpidem significantly increased τ\textsubscript{w} by 22 ± 5% (p < 0.01, n = 6).

The prolongation of IPSC decay phase in RTN neurons by zolpidem and eszopiclone is compared in Fig. 2. Eszopiclone has a greater efficacy than zolpidem at all three concentrations (0.1–1 μM) on both spontaneous and miniature IPSCs. The receptors mediating IPSCs in RTN neurons seem to be more sensitive to eszopiclone than to zolpidem.

Effects of Eszopiclone on IPSCs in VB Neurons. Synaptic GABA\textsubscript{A}-Rs in VB neurons are thought to be mainly the α\textsubscript{2}β\textsubscript{2}γ\textsubscript{2} subtype (Pirker et al., 2000; Jia et al., 2005). The mean time constant of IPSCs recorded from VB relay neurons (16.2 ± 1.2 ms, n = 22) is much smaller than that of RTN neurons, in agreement with previous studies (Zhang et al., 1997; Huntsman and Huguenard, 2000; Schofield and Huguenard, 2007). At low concentrations (0.1 μM), eszopiclone did not change any properties of spontaneous IPSCs in VB neurons. At 0.3 μM, eszopiclone significantly increased τ\textsubscript{w} by 12 ± 4% (p < 0.01, n = 9). At 1 μM, eszopiclone produced a small increase in both amplitude (10 ± 4%, p < 0.05, n = 10) and τ\textsubscript{w} (20 ± 4%, p < 0.001, n = 10; Fig. 3A). The effects of eszopiclone on τ\textsubscript{w} were reversible after washout of the drug (n = 2). Zolpidem also significantly increases mIPSC amplitude by 11 ± 3% (p < 0.05, n = 6) and by 15 ± 4% (p < 0.01, n = 7; Fig. 3B) at 1 μM.

The effects of eszopiclone and zolpidem on IPSCs in VB neurons were compared, as shown in Fig. 4. Eszopiclone is less efficacious than zolpidem at all three concentrations (0.1–1 μM) on both spontaneous and miniature IPSCs. It seems that the receptors mediating IPSCs in VB neurons are more sensitive to zolpidem than to eszopiclone.

GABA\textsubscript{A}-R Subtype Selectivity of Eszopiclone and Zolpidem. The percentage changes by eszopiclone on IPSCs of VB neurons and RTN neurons were compared (Fig. 5, A and B). Both spontaneous and miniature IPSCs in RTN neurons are more sensitive to eszopiclone (at all three concentrations tested) than those in VB neurons. In contrast, IPSCs in RTN neurons are less sensitive to zolpidem than those in VB neurons (Fig. 5, C and D).

Tonic Currents in VB Neurons Are Insensitive to Eszopiclone and Zolpidem. In addition to synaptic GABA\textsubscript{A}-Rs, extrasynaptic α\textsubscript{2}β\textsubscript{2}δ receptors are also expressed in VB relay neurons (Porcello et al., 2003; Belelli et al., 2005; Cope et al., 2005; Jia et al., 2005; Chandra et al., 2006; Bright et al., 2007; Jia et al., 2008; Peden et al., 2008). Gaboxadol (4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol), an experimental hypnotic drug that is an agonist at α\textsubscript{2}β\textsubscript{2}δ receptors, has been shown to enhance tonic inhibition in VB neurons (Belelli et al., 2005; Cope et al., 2005; Jia et al., 2005). We examined whether eszopiclone or zolpidem modulates tonic currents mediated by extrasynaptic GABA\textsubscript{A}-Rs. In fact, neither 1 μM eszopiclone (0.2 ± 1.1 pA, n = 7) nor 1 μM zolpidem (0.5 ± 1.2 pA, n = 7) had any effect on the resting membrane current in VB neurons (Fig. 6).

![Fig. 2. The percentage change of decay time constant in RTN neurons by eszopiclone and zolpidem. A, summarized figure shows the averaged potentiation ratio of spontaneous IPSC decay time constant in RTN neurons. Spontaneous IPSCs in RTN neurons are more sensitive to eszopiclone than zolpidem at all three concentrations (0.1–1 μM). B, similarly, miniature IPSCs in RTN neurons are also more sensitive to eszopiclone in comparison with zolpidem. *, p < 0.05; **, p < 0.01; ***, p < 0.001.](image-url)
Discussion

In this study, we compared the pharmacological effects of eszopiclone and zolpidem on synaptic and tonic inhibition in the mouse thalamus. We found that IPSCs recorded from RTN neurons are more sensitive to eszopiclone than zolpidem, whereas IPSCs from VB relay neurons are more sensitive to zolpidem. Tonic inhibition in VB neurons is insensitive to both hypnotics.

The diverse family of GABA_A-R subunits is extensive and includes six isoforms of the α subunit that show considerable sequence diversity, unlike the β subunit isoforms, which are >90% identical at the amino acid level. This variety of α subunits confers substantial anatomical, functional, and pharmacological heterogeneity upon GABA_A-Rs. There are discrete patterns of localization of the different α subunits, at the regional (Fritschy and Möhler, 1995; Sperr et al., 1997; Pirker et al., 2000), subcellular, and synaptic levels (Nusser et al., 1996). A great deal of functional diversity exists among the α subunits. For example, the α subunit isoform influences BZ pharmacology (Pritchett et al., 1989; Pritchett and Seeburg, 1990; Hadingham et al., 1993). Two types of BZ binding sites were proposed in the 1980s, and we now know that GABA_A-Rs with BZ 1 sites contain α₁ subunits, whereas those with BZ 2 sites contain α₂, α₃, or α₅ subunits. Zolpidem has a selective high affinity for BZ 1 sites and a very low affinity and extremely low efficacy at receptors that contain α₅ subunits (Pritchett and Seeburg, 1990; Wingrove et al., 2002), whereas the subunit specificity of eszopiclone has not yet been fully described.

Among the GABA_A-R subunits, the α1 and α4 subunits are heavily expressed in thalamic relay nuclei that comprise the VB, but both seem to be absent from the RTN, as is the δ subunit. In contrast, α3 subunits are apparently absent from VB but present in RTN. A variety of experimen-
tal data suggest that GABA\textsubscript{A}-Rs in RTN neurons act as synaptic receptors and are likely to consist almost exclusively of \(\alpha 3, \beta 3, \gamma 2\) subunits (Fritschy and Möhler, 1995; Oh et al., 1995; Gibbs et al., 1996; Huntsman et al., 1999; Browne et al., 2001). In contrast, both synaptic and extrasynaptic GABA\textsubscript{A}-Rs have been identified in thalamic relay neurons. Synaptic GABA\textsubscript{A}-Rs mainly contain \(\alpha 1, \beta 2, \gamma 2\) subunits, whereas extrasynaptic GABA\textsubscript{A}-Rs are composed of \(\alpha 4, \beta 2, \delta\) subunits (Belelli et al., 2005; Cope et al., 2005; Jia et al., 2005; Chandra et al., 2006).

Fig. 5. GABA\textsubscript{A}-Rs subtype selectivity of eszopiclone and zolpidem. A, summarized figure shows the averaged potentiation ratio of spontaneous IPSC decay time constant in RTN and VB neurons by eszopiclone. Spontaneous IPSCs of RTN neurons are more sensitive to eszopiclone in comparison with those of VB neurons at all three concentrations (0.1–1 \(\mu\)M). B, likewise, miniature IPSCs of RTN neurons are more sensitive to eszopiclone in comparison with those of VB neurons. C, in contrast, spontaneous IPSCs in VB neurons are more sensitive to zolpidem compared with those from RTN neurons. D, miniature IPSCs in VB neurons are also more sensitive to zolpidem compared with those from RTN neurons. \(* p < 0.05; **, p < 0.01; ***, p < 0.001.

Fig. 6. Eszopiclone and zolpidem have no effect on tonic currents. A, typical recording illustrates that 1 \(\mu\)M eszopiclone failed to change the holding current in a VB neuron. B, exemplar trace shows that 1 \(\mu\)M zolpidem also failed to change the holding current in another VB neuron. C, gabazine, a GABA\textsubscript{A}-R antagonist, induced a current shift (~20 pA) corresponding to the tonic background inhibitory currents mediated by extrasynaptic GABA\textsubscript{A}-Rs.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\mu)M Eszopiclone</td>
<td>1 (\mu)M Zolpidem</td>
<td>20 (\mu)M Gabazine</td>
</tr>
</tbody>
</table>

80 Sec | 50 Sec | 30 Sec
In the present study, we tested the actions of eszopiclone and zolpidem on three populations of GABA\(_A\)-Rs in the thalamus: synaptic GABA\(_A\)-Rs in RTN neurons (\(\alpha_3\beta_3\gamma_2\) subtype) and synaptic (\(\alpha_1\beta_2\gamma_2\)) and extrasynaptic GABA\(_A\)-Rs in VB neurons (\(\alpha_4\beta_2\gamma_2\)). Our results demonstrate that RTN synaptic GABA\(_A\)-Rs are more sensitive to eszopiclone and that VB synaptic GABA\(_A\)-Rs are more sensitive to zolpidem. Unlike synaptic GABA\(_A\)-Rs, extrasynaptic GABA\(_A\)-Rs are insensitive to both hypnotics. These data are in agreement with previous reports that GABA\(_A\)-Rs that contain \(\alpha_1\) subunits have a high affinity for zolpidem and that there is no BZ site in GABA\(_A\)-Rs that contain \(\alpha_4\) subunits (Knoflach et al., 1996; Whittomore et al., 1996; Wingrove et al., 2002). Our results also suggest that eszopiclone has a greater efficacy at \(\alpha_3\beta_3\gamma_2\) than at \(\alpha_1\beta_2\gamma_2\) GABA\(_A\)-Rs (see Fig. 2). Although eszopiclone and zolpidem show quite distinct patterns of preference for the two subtypes of GABA\(_A\)-Rs, both drugs modulate the activity of GABA\(_A\)-Rs through binding to BZ sites.

The primary clinical indication for eszopiclone and zolpidem is in the treatment of insomnia. Both drugs induce and maintain sleep and increase sleep duration, with reduced residual (“morning after”) effects and less rebound insomnia compared with the BZs. Zolpidem induces EEG rhythms that are different from those seen with BZs, whereas the effects of eszopiclone on the EEG during sleep resemble those of BZs more closely (Drover, 2004; Sanger, 2004). Eszopiclone prolonged non-REM sleep and elicited a significant increase in total REM sleep, whereas zolpidem did not (Drover, 2004; Sanger, 2004). In addition to its hypnotic effects, eszopiclone has been found to have anxiolytic effects that may be beneficial in certain classes of patient. In clinical studies, significant improvements in both sleep quality and depressive symptoms have been observed when patients with insomnia and coexisting major depressive disorder were treated with eszopiclone and fluoxetine simultaneously (Fava et al., 2006; Krytal et al., 2007).

The origin of these distinctions between the clinical pharmacology of the two drugs is not clear. Zolpidem is known for its relative specificity for receptors containing GABA\(_A\)-Rs. Further work is needed to explore the drug sensitivity and roles of GABA\(_A\)-Rs that contain \(\alpha_2\) or \(\alpha_3\) subunits in the brain.

References

Address correspondence to: Dr. Neil Harrison, Department of Anesthesiology, The College of Physicians and Surgeons, Columbia University, West 168th Street, PH 505C, New York, NY 10065. E-mail: neh2001@med.cornell.edu