Therapeutic Effect of Lecithinized Superoxide Dismutase against Colitis

Tomoaki Ishihara, Ken-Ichiro Tanaka, Yuichi Tasaka, Takushi Namba, Jun Suzuki, Tsutomu Ishihara, Susumu Okamoto, Toshifumi Hibi, Mitsuko Takenaga, Rie Igarashi, Keizo Sato, Yutaka Mizushima, and Tohru Mizushima

ABSTRACT

Ulcerative colitis (UC) involves intestinal mucosal damage induced by reactive oxygen species (ROS), in particular, superoxide anion. Superoxide dismutase (SOD) catalyzes dismutation of superoxide anion to hydrogen peroxide, which is subsequently detoxified by catalase. Lecithinized SOD (PC-SOD) is a new modified form of SOD that has overcome previous clinical limitations of SOD. In this study, we examined the action of PC-SOD using an animal model of UC, dextran sulfate sodium (DSS)-induced colitis. DSS-induced colitis was ameliorated by daily intravenous administration of PC-SOD. Unmodified SOD produced a similar effect but only at more than 30 times the concentration of PC-SOD. In vivo electron spin resonance analysis confirmed that the increase in the colonic level of ROS associated with development of colitis was suppressed by PC-SOD administration. The dose-response profile of PC-SOD was bell-shaped, but simultaneous administration of catalase restored the ameliorative effect at high doses of PC-SOD. Accumulation of hydrogen peroxide was observed with the administration of high doses of PC-SOD, an effect that was suppressed by the simultaneous administration of catalase. We also found that either a weekly intravenous administration or daily oral administration of PC-SOD conferred protection. These results suggest that PC-SOD achieves its ameliorative effect against colitis through decreasing the colonic level of ROS and that its ineffectiveness at higher doses is because of the accumulation of hydrogen peroxide. Furthermore, we consider that intermittent or oral administration of PC-SOD can be applied clinically to improve the quality of life of UC patients.
hydrogen peroxide, which is subsequently detoxified to oxygen and water by catalase or glutathione peroxidase (Kruidenier and Verspaget, 2002). Among three isoforms of human SOD, Cu/Zn-SOD mainly contributes to the SOD activity in IBD patients (Kruidenier et al., 2003a). Decreased expression of SOD, especially Cu/Zn-SOD, has been observed in IBD patients (Kruidenier et al., 2003a,b). Furthermore, administration of Cu/Zn-SOD suppresses the development of IBD-related colitis in the experimental animal models (Keshavarzian et al., 1990; Segui et al., 2004). These findings raised the prospect that SOD could be of therapeutic benefit in the treatment of IBD. However, subsequent clinical trials of Cu/Zn-SOD have proven unsuccessful, mostly because of its low affinity to the cell membrane, where superoxide anion is produced, and its low stability in plasma, with a half-life of only a few minutes (Greenwald, 1990; Tsao et al., 1991; Igarashi et al., 1992, 1994). Therefore, various drug delivery systems have been applied to SOD to overcome these limitations (Keshavarzian et al., 1990; Igarashi et al., 1992, 1994; Yasui and Baba, 2006).

Among these applications, lecithinized SOD (PC-SOD) is potentially beneficial for clinical treatment of IBD, especially UC. PC-SOD is lecithinized human Cu/Zn-SOD, in which four phosphatidylcholine-derivative molecules are covalently bound to each SOD dimer (Igarashi et al., 1992). In vitro experiments using cultured cells have shown that this modification drastically improves the cell membrane affinity of SOD without decreasing its SOD activity (Igarashi et al., 1992, 1994), whereas in vivo experiments using rats have demonstrated that it also greatly improves plasma stability (Igarashi et al., 1992). In phase I clinical studies, intravenously administered PC-SOD (40–160 mg) had a terminal half-life of more than 24 h, with good safety and tolerability (Broeyer et al., 2008; Suzuki et al., 2008a). Furthermore, intravenously administered PC-SOD ameliorated dextran sulfate sodium (DSS)-induced colitis in rats, an IBD-related colitis animal model (Hori et al., 1997), suggesting that PC-SOD is effective for the treatment of IBD patients. In fact, recent published results of phase II clinical study have shown that intravenously administered PC-SOD (40 or 80 mg) significantly improved the disease activity index (DAI) scores of UC patients (Suzuki et al., 2008b). However, the comparison of PC-SOD with unmodified SOD (U-SOD) based on pharmacological activity against colitis has not been undertaken, and a decrease in the ROS level with PC-SOD administration has not been demonstrated in vivo. In addition to U-SOD, a bell-shaped dose-response profile of PC-SOD has been reported for various pharmacological activities, including anti-colitis activity (Mao et al., 1993; Hori et al., 1997; Tamagawa et al., 2000; Tsubokawa et al., 2007). However, its underlying mechanism has remained unknown. Furthermore, when considering the quality of life (QOL) of patients, the present clinical protocol of PC-SOD administration (intravenous infusion once daily for 4 weeks) is expected to be improved. In this study, we compared PC-SOD and U-SOD for their pharmacological activity against DSS-induced colitis and found that PC-SOD has more than 30 times higher activity. In vivo electron spin resonance (ESR) analysis showed that administration of PC-SOD suppressed the increase in the ROS level induced by DSS treatment. We also provide evidence that the ineffectiveness of higher doses of PC-SOD is because of accumulation of hydrogen peroxide at the intestine. Furthermore, based on results obtained here, we propose that intermittent administration or oral administration of PC-SOD is a clinically viable option to improve the QOL of UC patients.

Materials and Methods

Chemicals and Animals. Paraformaldehyde, O-diamisidine, phorbol 12-myristate 13-acetate (PMA), fetal bovine serum, and catalase from bovine liver (1340 U/mg) were obtained from Sigma-Aldrich (St. Louis, MO). RPMI 1640 was from Nissui (Tokyo, Japan). Enzymatic digest of animal tissue (Protease peptone) was from BD Biosciences (San Jose, CA). LPS was from List Biological Laboratories Inc. (Campbell, CA). Alexa Fluor 488 goat anti-rabbit immunoglobulin G was purchased from Invitrogen (Carlsbad, CA). Mounting medium for immunohistochemical analysis (Vectashield) was from Vector Laboratories (Burlingame, CA). 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was purchased from Labotec (Midrand, South Africa), lymphocyte isolation sterile solution (Ficoll-Paque Plus) from GE Healthcare (Chalfont St. Giles, UK), DSS (mol. wt., 5000; 15-20% sulfur content) and luminol from Wako Pure Chemicals (Tokyo, Japan), and Mayer’s hematoxylin, 1% eosin alcohol solution, and mounting medium for histological examination (Malinol) from MUTO Pure Chemicals (Tokyo, Japan). The RNasey kit was obtained from QIAGEN (Valencia, CA), the PrimeScript 1st strand cDNA Synthesis Kit was purchased from Takara (Kyoto, Japan), and mix for real-time RT-PCR (iQ SYBR Green Supermix) was from Bio-Rad Laboratories (Hercules, CA). α-(4-Pyridyl-1-oxide)-N-tert-butyl nitronitrone (POBN) was from Alexis Laboratories (San Diego, CA). SOD (5190 U/mg) and PC-SOD (3000 U/mg) were from our laboratory stock (Igarashi et al., 1992). SODs were dissolved in 5% xylitol and administered intravenously (tail vein) or orally. Diethyleneri-amine-N,N,N,N′,N′-pentaacetic acid (DTPA) and 4,6-diamidino-2-phenylindole (DAPI) were from DOJINDO Laboratories (Kumamoto, Japan). An antibody against phospho-nuclear factor (NF)κB p65 (Ser536) was from Cell Signaling Technology Inc. (Danvers, MA). Wild-type mice (8 weeks old, ICR, male) were used throughout. The experiments and procedures described here were carried out in accordance with the *Guide for the Care and Use of Laboratory Animals* as adopted and promulgated by the National Institutes of Health (Institute of Laboratory Animal Resources, 1996) and were approved by the Animal Care Committee of Kumamoto University.

Development of DSS-Induced Colitis and Measurement of Colon Length and DAI. DSS-induced colitis was induced in mice by the addition of 4% DSS (w/v, final concentration) to their drinking water as described previously (Tanaka et al., 2007). The first administration of PC-SOD was done just before the start of DSS administration. The animals were allowed free access to the DSS-containing water for 7 days. For measurement of myeloperoxidase (MPO) activity, expression of mRNAs, and the ROS level, we used rectum and distal colon tissue. After 7 days, animals were placed under deep ether anesthesia and sacrificed, the colons were dissected, and their length was measured from the ileocecal junction to the anal verge.

The DAI was determined macroscopically by an observer unaware of the treatment the mice had received, according to previously reported criteria (Tanaka et al., 2007). In brief, the DAI was calculated as the sum of the diarrheal stool score (0, normal stool; 1, mildly soft stool; 2, very soft stool; 3, watery stool) and the bloody stool score (0, normally colored stool; 1, brown stool; 2, reddish stool; 3, bloody stool).

MPO Activity. MPO activity in the colonic tissues was measured as previously described (Tanaka et al., 2007). After DSS treatment, colons were dissected, rinsed with cold saline, and cut into small pieces. Samples were homogenized, and protein concentrations of the samples were determined using the Bradford method. MPO activity was determined in 10 mM phosphate buffer with 0.5 mM O-dianisidine, 0.00005% (w/v) hydrogen peroxide, and 20 μg of protein. MPO activity was obtained from the slope of the reaction curve, and...
specific activity was expressed as the number of hydrogen peroxide molecules converted per minute per milligram of protein.

Real-Time RT-PCR Analysis. Real-time RT-PCR was performed as previously described (Mima et al., 2005), with some modifications. Total RNA was extracted from intestinal tissues or mouse peritoneal macrophages using an RNeasy kit according to the manufacturer’s protocol. Samples (2.5 μg of RNA) were reverse-transcribed using a first-strand cDNA synthesis kit. Synthesized cDNA was used in real-time RT-PCR (Chromo 4 instrument; Bio-Rad Laboratories) experiments using mix for real-time RT-PCR and analyzed with the Opticon Monitor Software. Specificity was confirmed by electrophoretic analysis of the reaction products and by inclusion of template- or reverse transcriptase-free controls. To normalize the amount of total RNA present in each reaction, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA was used as an internal standard.

Primers were designed using the Primer3 Web site (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). The primers used were as follows: Tnf-α, 5’-cgtagccaggtgcttatc-3’ (forward) and 5’-cggaactcggcaagtaag-3’ (reverse); Gapdh, 5’-aactttggctgctgtg-3’ (forward) and 5’-acaagttggttgaggaaggg-3’ (reverse); Il-1β, 5’-gatcagggaactaccaaa-3’ (forward) and 5’-ggaggaatcggctcaacta-3’ (reverse); Il-6, 5’-ctggagtcacagaaggagtgg-3’ (forward) and 5’-ggttggcgcaggtagatctaa-3’ (reverse); and Il-23p19, 5’-gccccgtatccagtgtgaag-3’ (forward) and 5’-gggatccttgccagagaa-3’ (reverse).

Histological and Immunohistochemical Analysis. Colonic tissue samples were fixed in 4% buffered paraformaldehyde, then embedded in paraffin before being cut into 4-μm sections. For histological examination, sections were stained first with Mayer’s hematoxylin and then with 1% eosin alcohol solution. Samples were mounted with mounting medium and inspected with the aid of an Olympus BX51 microscope (Olympus, Tokyo, Japan). For immunohistochemical analysis, sections were blocked with 3% bovine serum albumin, then incubated for 12 h with antibody against phospho-NF-κB (1:100 dilution) in the presence of 2.5% bovine serum albumin, and finally incubated for 1 h with Alexa Fluor 488 goat anti-mouse immunoglobulin G in the presence of DAPI (5 μg/ml). Samples were mounted with mounting medium and inspected using fluorescence microscopy (Olympus BX51).

Measurement of ROS in Neutrophils in Vitro. Human neutrophils were prepared as described previously (Kararakawa et al., 2008). In brief, polymorphonuclear leukocytes and mononuclear cells were separated using a gradient of lymphocyte isolation sterile solution. Red blood cells remaining in the polymorphonuclear leukocytes were lysed with 0.2% NaCl. The chemiluminescence (CL) response induced by the superoxide anion released from neutrophils was measured as described (Murakawa et al., 1997). Prepared neutrophils were mixed with 25 ng/ml PMA in RPMI 1640 medium containing 10 μM luminal and 500 μM DTPA. The CL response was continuously recorded for 10 min at room temperature using a luminometer (Advancell Co., Tokyo, Japan).

The level of superoxide anion was also assayed by ESR spin trapping with DMPO as previously described (Kararakawa et al., 2008). Prepared neutrophils were incubated with 10 ng/ml PMA in RPMI 1640 medium containing 500 μM DTPA and 25 mM DMPO for 5 min at room temperature. ESR spectra were recorded at room temperature on a JES-TE200 ESR spectrometer (JEOL, Tokyo, Japan) under the following conditions: modulation frequency, 100 kHz; microwave frequency, 9.43 GHz; microwave power, 40 mW; scanning field, 335.2 ± 5 mT; sweep time, 2 min; field modulation width, 0.25 mT; receiver gain, 100; and time count, 0.3 s. After recording the ESR spectra, the signal intensities of the DMPO-OH adducts were normalized against that of a manganese oxide marker.

Determination of ROS Level and the Amount of Hydrogen Peroxide in Vivo. In vivo ESR analysis was performed as described previously (Sato et al., 1992, 2002), with some modifications. After DSS administration for 7 days, animals were placed under deep anesthesia with chloral hydrate (250 mg/kg) and injected with POBN intraperitoneally (4 mmol/kg). After 1 h, mice were sacrificed, and the colons were dissected, and the lipid phase from the samples was extracted as described elsewhere (Sato et al., 1992, 2002). After evaporating the sample, ESR spectra were immediately recorded at room temperature in a JES-TE200 spectrometer under the following conditions: modulation frequency, 100 kHz; microwave frequency, 9.43 GHz; microwave power, 40 mW; scanning field, 335.2 ± 5 mT; sweep time, 2 min; field modulation width, 0.25 mT; receiver gain, 630; and time count, 0.3 s. Every buffer and solutions of the reaction mixture used for ESR measurement were treated with chelax 100 resin (Bio-Rad Laboratories) before use to remove metals.

For determination of hydrogen peroxide levels, colons were dissected, cut into small pieces, suspended in phosphate-buffered saline, and incubated for 30 min at room temperature with rotation. After centrifugation, the supernatants were applied to the NWLSS NWK-HYP01 assay kit (Northwest Life Science Specialties, LLC, Vancouver, WA).

Determination of the Amount of PC-SOD and TNF-α in Vivo. Determination of the amount of PC-SOD was carried out as described previously (Igarashi et al., 1992). After administration of PC-SOD, the blood was collected, and serum samples were obtained by centrifugation. On the other hand, colons were dissected, cut into small pieces, homogenized, and centrifuged to obtain the supernatants. Samples were analyzed using a human Cu/Zn-SOD enzyme-linked immunosorbent assay kit (ELISA) kit (Bender MedSystems Inc., Burlingame, CA). We used PC-SOD (or U-SOD) for drawing the standard curve of ELISA and determined the amount of PC-SOD (or U-SOD). The amount of TNF-α in serum was determined similarly by use of its ELISA kit from Pierce Chemical (Rockford, IL).

Preparation of Mouse Peritoneal Macrophages. Mouse peritoneal macrophages were prepared as described previously (Salimuddin et al., 1999). Mice were given 2 ml of 10% enzymatic digest of animal tissue by intraperitoneal injection, and peritoneal cells were harvested 3 days later. The cells were seeded in 60-mm culture dishes at 4 × 10⁶ cells/dish in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum. After incubation for 4 h, nonadherent cells were removed, and the adherent cells were cultured for use in the experiments. Virtually all of the adherent cells were macrophages, as previously described (Salimuddin et al., 1999).

Statistical Analysis. All values are expressed as the mean ± S.E.M. Two-way analysis of variance followed by the Tukey test or the Student’s t test for unpaired results were used to evaluate differences between more than three groups or between two groups, respectively. Differences were considered to be significant for values of P < 0.05.

Results

A Comparison of the Effect of PC-SOD and U-SOD on DSS-Induced Colitis. The severity of DSS-induced colitis can be monitored by various indices, such as DAI, length of colon, MPO activity, and histological analysis. We compared PC-SOD and U-SOD for their effect on the development of colitis induced by 4% DSS administration. The clinical study was performed with 40 and 80 mg PC-SOD (Suzuki et al., 2008b), which corresponds to 2 and 4 kU/kg; therefore, we chose the dose of 3 kU/kg for the following experiments. PC-SOD and U-SOD were intravenously administered once daily. There was no significant difference in the volume of water consumed by each group of mice (data not shown). Administration of 4% DSS increased the DAI, and this increase was significantly suppressed by the administration of PC-SOD (3 kU/kg) but not U-SOD (3 kU/kg) (Fig. 1A). DSS-induced colon shortening, used as a morphometric measure for the degree of inflammation, was significantly ameliorated.
in the PC-SOD-treated animals (Fig. 1B), as was colonic MPO activity, an indicator of leukocyte infiltration (Fig. 1C). Figure 1D shows the results of histological analyses of colonic tissues. Crypt loss and infiltration of leukocytes were observed in DSS-treated mice, and these phenotypes were improved by administration of PC-SOD and, to a lesser extent, U-SOD (Fig. 1D). Taken together, these findings demonstrate that PC-SOD is more effective than U-SOD for the amelioration of DSS-induced colitis.

To compare the specific activity of PC-SOD and U-SOD, we determined their dose-response profiles. As shown in Fig. 2A, PC-SOD produced the maximum beneficial effect at 1.5 to 3 kU/kg, whereas higher doses (6–12 kU/kg) had no significant effect on DAI. A similar bell-shaped profile has also been reported in a rat model of DSS-induced colitis (Hori et al., 1997). In the case of colon shortening and colonic MPO activation, the maximal effect was again observed in response to 1.5 to 3 kU/kg PC-SOD (Fig. 2, B and C). In contrast, U-SOD at the much higher concentration of 48 kU/kg only ameliorated DSS-induced colitis to a similar extent to that obtained
Fig. 2. Dose-response profile of effect of PC-SOD and U-SOD on development of DSS-induced colitis. Mice were treated with DSS and PC-SOD (A–C) or U-SOD (D–F), and colitis was assessed as described in the legend of Fig. 1. Values are mean ± S.E.M. *, P < 0.05; **, P < 0.01 (versus without PC-SOD or U-SOD).
with 1.5 kU/kg PC-SOD (Fig. 2, D–F), indicating that the specific activity of PC-SOD is more than 30 times that of U-SOD. We next used an ELISA assay to compare the level of PC-SOD and U-SOD in serum and colonic tissues after their intravenous administration. As shown in Table 1, after daily intravenous administration for 7 days and 6 h after the final injection, PC-SOD was detected in serum and colonic tissues at a concentration of 3.3 μg/ml and 0.23 ng/mg, respectively. However, U-SOD was not detected in either preparation, suggesting that the enhanced activity of PC-SOD is partly because of its greater stability in vivo.

We also examined the effect of DSS-treatment on the level of PC-SOD after intravenous administration. As shown in Table 2, DSS treatment significantly increased the level of PC-SOD in colonic tissues but not so clearly in serum, suggesting that PC-SOD can be enriched in damaged or inflamed tissues, which is an advantage for its clinical application for UC.

Involvement of ROS in Amelioration of DSS-Induced Colitis by PC-SOD. Previous studies have suggested that PC-SOD is more potent than U-SOD for decreasing the superoxide anion released from activated neutrophils in vitro by showing that PC-SOD showed higher activity than U-SOD for the suppression of endothelial cell damage induced by activated neutrophils and that more PC-SOD than U-SOD remains on the surface of neutrophils after washing (Igarashi et al., 1994). In this study, we investigated this directly by measuring the superoxide anion by ESR. As shown in Fig. 3A, a radical spin adduct of the ESR spectrum corresponding to superoxide anion (DMPO-OOH adduct) was observed for PMA-activated human neutrophils. Preincubation of neutrophils with PC-SOD lowered the peak of DMPO-OOH adduct in a dose-dependent manner, showing that PC-SOD decreases the level of superoxide anion. U-SOD produced a similar, but less pronounced, effect (Fig. 3, A and B). We also quantitatively measured the activity of PC-SOD and U-SOD based on CL analysis. An increase in CL, in other words, the amount of superoxide anion released from activated neutrophils, decreased in the presence of PC-SOD and U-SOD. Again, PC-SOD was more potent than U-SOD (Fig. 3, C and D), perhaps because of its higher cell membrane affinity, as previously reported (Igarashi et al., 1994).

Although it is generally believed that administration of PC-SOD decreases the level of ROS in vivo, no direct evidence in support of this idea has been reported. In this study, we examined the effect of PC-SOD administration on the intestinal level of ROS measuring the lipid-derived free radical. As shown in Fig. 4, A and B, the intestinal level of ROS (the height of the ESR peak shown by the bar) was increased by DSS administration, an effect that was suppressed by the administration of PC-SOD. This is the first direct evidence that PC-SOD decreases the level of ROS in vivo.

We also examined the effect of PC-SOD on the mRNA expression of various cytokines (TNF-α, IL-1β, IL-6, and IL-23) in the intestine by real-time RT-PCR analysis. The mRNA expression of TNF-α and IL-1β was up-regulated by DSS treatment, and this up-regulation was suppressed by administration of PC-SOD (3 kU/kg) (Figs. 4C and 5E). On the other hand, administration of either DSS or PC-SOD did not affect the mRNA expression of IL-6 and IL-23p19 (Fig. 4C). The effect of PC-SOD on mRNA expression of TNF-α and IL-1β was also examined in vitro. Treatment of peritoneal macrophages prepared from wild-type mice with LPS induced the mRNA expression of TNF-α and IL-1β, and this induction was partially suppressed by simultaneous treatment of cells with PC-SOD (Fig. 4D). These results suggest that PC-SOD suppresses the expression of TNF-α and IL-1β by lowering the intestinal level of ROS, resulting in the amelioration of DSS-induced colitis.

As described in the introduction, a bell-shaped dose-response profile has been observed for various pharmacological activities of PC-SOD (Hori et al., 1997; Tamagawa et al., 2000; Tsukobokawa et al., 2007). One possible explanation for the ineffectiveness of high doses of PC-SOD is the accumulation of hydrogen peroxide because of the relatively higher activity of SOD compared with catalase (Mao et al., 1993); however, this idea has not been proved. In this study, we tested this idea by examining the effect of simultaneous administration of catalase; if the ineffectiveness of higher doses of PC-SOD is because of the accumulation of hydrogen peroxide, the effect would be restored by simultaneous administration of catalase that detoxifies hydrogen peroxide into oxygen and water. Administration of a high dose of PC-SOD (6 kU/kg) improved the DAI score in DSS-treated mice in the presence of simultaneous intravenous administration of catalase but not in its absence (Fig. 5A). Administration of catalase alone tended to improve the DAI, but this effect was not statistically significant (Fig. 5A). Similar results were observed for DSS-induced colon shortening and colonic MPO activation (Fig. 5, B and C). These findings suggest that the ineffectiveness of high doses of PC-SOD on DSS-induced colitis is caused by accumulation of hydrogen peroxide.

We further tested this idea by direct measurement of the colonic level of hydrogen peroxide. As shown in Fig. 5D, DSS treatment increased the colonic level of hydrogen peroxide,
and administration of a low dose (3 kU/kg) of PC-SOD suppressed this effect. However, in the case of a high dose of PC-SOD (12 kU/kg), a significant effect was only observed in the presence of simultaneous administration of catalase (Fig. 5D), which alone did not significantly suppress the increase (Fig. 5D). Similar, but less pronounced, results were obtained with 6 kU/kg PC-SOD as compared with a 12 kU/kg dose (data not shown).

We also examined the effect of catalase on the mRNA expression of *Tnf-α* in the presence of a high dose of PC-SOD. The up-regulated mRNA expression of *Tnf-α* by DSS treatment was not suppressed by administration of a high (6 kU/kg) dose of PC-SOD (Fig. 5E). However, simultaneous administration of catalase with the high dose of PC-SOD significantly suppressed the DSS-induced mRNA expression of *Tnf-α* (Fig. 5E). We also determined the serum level of TNF-α and found that the level was increased by DSS treatment, and this increase was suppressed by administration of a low (3 kU/kg) dose of PC-SOD and a high (6 kU/kg) dose of PC-SOD with catalase (Fig. 5F). Being different from the case of mRNA expression in the intestine (Fig. 5E), the serum level of TNF-α was decreased by administration of catalase alone. These results suggest that TNF-α plays an important role in the ameliorative effect of PC-SOD against DSS-induced colitis.

Immunohistochemical analysis with antibody against the phosphorylated form of NF-κB p65 at Ser536 (active form of NF-κB p65) demonstrated that DSS administration increases the level of active NF-κB in the colonic mucosa (Fig. 5G), suggesting that the inflammatory response occurs in epithelial cells and infiltrated leukocytes. Again, this increase in the level of active NF-κB expression was suppressed by administration of a low (3 kU/kg) dose of PC-SOD and a high (6 kU/kg) dose of PC-SOD with catalase.

Effect of Modified Methods of PC-SOD Administration. To obtain some useful clues for refining the clinical guidelines for administration of PC-SOD, we tested the outcome of other protocols and routes of administration in the treatment of DSS-induced colitis. As illustrated in Fig. 6A, we first intravenously administered PC-SOD once at the start of DSS treatment (day 0), then monitored the DAI for 7 days. Although the dose found to be effective with daily administration (3 kU/kg) did not improve the DAI score, a higher dose (6–24 kU/kg) produced a significant improve-
ment (Fig. 6A). However, higher doses of 48 to 96 kU/kg worsened the DAI during the early stage of colitis development (Fig. 6A). The effectiveness of a one-shot administration of PC-SOD (12–24 kU/kg) was also shown by measuring colon shortening and colonic MPO activation (Fig. 6, B and C). The findings suggest that intermittent (for example, once weekly) administration of PC-SOD, a regime that greatly improves the QOL of UC patients, is a viable clinical protocol.

Fig. 4. Effect of PC-SOD on the level of ROS and expression of cytokines. DSS and PC-SOD were administered to mice, as described in the legend of Fig. 1 (A–C). After 7 days, POBN was administered and the colons were dissected and subjected to radical adduct ESR spectrum analysis (A). The intensity of the ESR signal (shown by the bar in A) was determined (B). Samples of colonic mRNA were subjected to real-time RT-PCR, using a specific primer set for Il-1β, Il-6, and Il-23p19. Values were normalized to Gapdh, expressed relative to the control sample (i.e., without DSS treatment) (C). Mouse peritoneal macrophages were preincubated with or without indicated concentration of PC-SOD for 1 h and further treated with LPS (1 μg/ml) in the presence of same concentration of PC-SOD as in the preincubation step for 3 h. The mRNA fractions were prepared and analyzed by real-time RT-PCR as described above (D). Values are given as the mean ± S.E.M. (n = 3) (B and C) or S.D. (D). * or #, P < 0.05; ** or ##, P < 0.01; n.s., not significant; CTRL, control.
Fig. 5. The effect of simultaneous administration of catalase on the ameliorative effect of PC-SOD on DSS-induced colitis, colonic level of hydrogen peroxide, TNF-α, and NF-κB. Mice were treated with DSS and PC-SOD (A–G), and colitis was assessed (A–C), as described in the legend of Fig. 1. Catalase was intravenously administered once daily (A–G). Colonic tissues were removed and the amount of hydrogen peroxide was determined (D). Samples of colonic mRNA were subjected to real-time RT-PCR as described in the legend of Fig. 4 (E). The serum levels of TNF-α were determined by ELISA (F). Sections of intestinal tissues were prepared and subjected to immunohistochemical analysis with an antibody against phospho-NF-κB p65 and DAPI staining as described under Materials and Methods (G). Values are mean ± S.E.M. * or †, or ††, P < 0.05; ** or †††, P < 0.01; n.s., not significant.
When we monitored the level of PC-SOD after this single-dose administration (12 kU/kg), we found that it dropped below detectable limits 72 (in serum) or 24 (in colonic tissues) h after the injection (Table 3).

We also examined the effect of oral administration (once daily) of PC-SOD. As shown in Fig. 7A, significant improvement in the DAI score was observed at most of the doses tested. The ameliorative effect of oral administration of PC-SOD was also observed in terms of colon shortening and colonic MPO activation (Fig. 7, B and C). This suggests that oral administration of PC-SOD, a regime that greatly improves the QOL of UC patients, is a viable clinical protocol and is also clinically viable. We found that the level of PC-SOD in serum did not increase at any time points (6–48 h) after the oral administration of PC-SOD (48 kU/kg) (Table 4), suggesting that orally administered PC-SOD is not absorbed and reaches the intestinal mucosa directly. By employing an ELISA assay, we detected the PC-SOD in the colonic tissues 24 h after its oral administration (48 kU/kg) (Table 4). However, low doses (0.75–1.5 kU/kg) proved undetectable (data not shown).

TABLE 3
Serum and colonic levels of PC-SOD
Mice were intravenously administered 12 kU/kg PC-SOD once on day 0 and treated with DSS for 3 days. Blood and colonic tissue samples were taken periodically. The levels of PC-SOD in the samples were determined by ELISA. Values are mean ± S.E.M.

<table>
<thead>
<tr>
<th></th>
<th>Serum (µg/ml)</th>
<th>Tissue (ng/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min</td>
<td>170 ± 5.7</td>
<td>1.6 ± 0.69</td>
</tr>
<tr>
<td>24 h</td>
<td>2.3 ± 0.67</td>
<td><0.031</td>
</tr>
<tr>
<td>48 h</td>
<td>0.41 ± 0.12</td>
<td><0.031</td>
</tr>
<tr>
<td>72 h</td>
<td><0.16</td>
<td><0.031</td>
</tr>
</tbody>
</table>

Discussion

The efficacy of PC-SOD for the treatment of UC patients has already been demonstrated by a phase II clinical study (Suzuki et al., 2008b). However, the mechanism of its action is not fully understood. Given that determining the underlying mechanism is important to advance the further development of this drug, in the present study, we examined the action of PC-SOD in an animal model of UC, DSS-induced colitis. Furthermore, because the current clinical protocol for
the administration of PC-SOD (once daily intravenous infusion for 4 weeks) does not provide patients with good QOL, we also tested other dosing regimes in our animal model.

The superior character of PC-SOD to U-SOD has been shown both in vitro (high cell membrane affinity) and in vivo (high stability in plasma). However, a direct comparison of their pharmacological activity has not been reported. In this study, we have demonstrated that the ameliorative effect of PC-SOD against DSS-induced colitis is more than 30 times higher than that of U-SOD. The higher stability in serum (Table 1) and higher activity for decreasing superoxide anion (Fig. 3) of PC-SOD could contribute to this effect. Analysis of intestinal ROS level in vivo is difficult; thus, the decrease in the level of ROS by PC-SOD has not been directly shown. In this study, we have demonstrated this by use of radical spin adduct ESR spectrum analysis. This analysis should also be useful for detecting the alteration in the intestinal level of ROS associated with various other diseases and for evaluation of drugs for the treatment of such conditions.

The bell-shaped dose-response profile of PC-SOD is of clinical concern because this may reflect side effects of the drug. In this study, we have revealed that the efficacy of higher doses of PC-SOD is restored by simultaneous administration of catalase that converts hydrogen peroxide to water and oxygen. Furthermore, we have directly determined the colonic level of hydrogen peroxide and found that low doses of PC-SOD suppress the DSS-induced increase in the intestinal level of hydrogen peroxide and that simultaneous administration of catalase with high doses of PC-SOD but not the PC-SOD alone produces a similar effect. These results suggest that the ineffectiveness of high doses of PC-SOD on DSS-induced colitis is caused by accumulation of hydrogen peroxide. Although catalase is abundant, recent studies have...
suggested that its activity fluctuates during the development of colitis (Kruidenier et al., 2003a; Mahgoub et al., 2003). This may affect the clinical efficacy of PC-SOD, and individual examination of catalase activity before the administration of the drug may result in safer and more effective treatment. Hydrogen peroxide is not itself a major cause of ROS-mediated cell damage, but it does react with \(\text{Fe}^{2+} \) to produce a potent hydroxy radical according to the Fenton reaction (Mao et al., 1993). Furthermore, it has been reported that among various ROS, hydrogen peroxide is the most potent activator of NF-\(\kappa \)B, a strong inducer of inflammation through induction of proinflammatory cytokines, especially TNF-\(\alpha \) (Schmidt et al., 1995; Marikovsky et al., 2003) and that NF-\(\kappa \)B plays an important role in intestinal colitis (Schreiber et al., 1998; Herfarth et al., 2000). Here, we have shown that activation of NF-\(\kappa \)B, the mRNA expression of \(\text{Tnf}\cdot \alpha \), and the serum level of TNF-\(\alpha \) are induced when the colonic level of hydrogen peroxide increases, suggesting that hydrogen peroxide damages the intestinal mucosa both through induction of inflammation via activation of NF-\(\kappa \)B and through direct cell damage mediated in conjunction with hydroxy radical formation.

In the present study, we have also demonstrated that administration of a single high dose of PC-SOD at the start of DSS treatment significantly suppresses colitis. The serum or intestinal level of PC-SOD dropped below detectable limits 72 or 24 h, respectively, after the injection (Table 3), suggesting that the existence of PC-SOD in the early stages of development of colitis is important for its ameliorative effect. The present clinical protocol for PC-SOD administration to UC patients enforces their hospitalization. Our results suggest that intermittent (for example, once weekly) administration of PC-SOD, thereby allowing ambulatory administration of the drug, may be an effective and preferable treatment for UC patients.

We also found that oral administration of PC-SOD (0.75–48 kU/kg) significantly suppressed DSS-induced colitis. The serum level of PC-SOD did not increase after the oral administration, suggesting that orally administered PC-SOD is not absorbed but reaches the colonic mucosa directly. However, based on ELISA assay, we only detected PC-SOD in colonic tissues after administration of the highest dose tested (48 kU/kg), the tissue level being similar to that obtained after intravenous administration of a 3 kU/kg dose (Table 1). Thus, it seems that a very small amount of PC-SOD (under the limit of detection) is effective when administered orally. The distribution of PC-SOD at the intestine may differ depending on the route of administration, and this may contribute to the higher specific activity of PC-SOD after oral treatment. The fact that a bell-shaped dose-response profile was not observed upon oral administration of PC-SOD (Fig. 7) supports this idea. On the other hand, it is also possible that PC-SOD is modified at the gastric and intestinal mucosa in such a way that it is not recognized by the ELISA assay, although its activity is maintained. If oral administration of PC-SOD is applied clinically, it should greatly improve the QOL of patients treated with the drug. We used human SOD, not mouse protein, for the examination of the effect of oral administration of PC-SOD on DSS-induced colitis in mice. Human SOD may modify the mucosal immunological reaction in mice, and this modification may stimulate the beneficial effect of PC-SOD against colitis in mice. In this case, oral administration of PC-SOD may not give beneficial effects for human.

Glucocorticoids, 5-aminosalicylic acid, and immunosuppressive drugs are currently used for the clinical treatment of IBD (Podolsky, 2002; Baumgart and Sandborn, 2007). Although some new types of drugs, such as infliximab, have been developed recently, a number of clinical problems, such as side effects, have yet to be addressed (Keane et al., 2001; Bongartz et al., 2006; Baumgart and Sandborn, 2007). Thus, IBD remains a disease for which the development of new types of drugs remains therapeutically important. Clinical studies have suggested that PC-SOD is a relatively safe drug. Furthermore, it has a mechanism of action that is different from that of other currently used drugs and those that are under clinical development. Thus, PC-SOD remains a therapeutically beneficial option for UC patients, either through a single administration or in combination with other types of drugs.

ROS play an important role in the progression of not only IBD but also various other diseases, such as focal cerebral ischemic injury, pulmonary fibrosis, chemotherapy-induced cardiotoxicity, and motor dysfunction after spinal cord injury. Therefore, it is worth noting in conclusion that a number of animal studies have suggested that PC-SOD is also effective in the treatment of these conditions (Tamagawa et al., 2000; Chikawa et al., 2001; Nakajima et al., 2001; den Hartog et al., 2004; Tsubokawa et al., 2007). Thus, the results obtained in this paper should provide useful evidence when considering the most appropriate clinical protocol for therapeutic administration of PC-SOD against these diseases.

References

