Paraquat Exposure Reduces Nicotinic Receptor-Evoked Dopamine Release in Monkey Striatum

Kathryn T. O’Leary, Neeraja Parameswaran, Louisa C. Johnston, J. Michael McIntosh, Donato A. Di Monte, and Maryka Quik

The Parkinson’s Institute, Sunnyvale, California (K.T.O., N.P., L.C.J., D.A.D., M.Q.); and Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.)

Received June 5, 2008; accepted July 3, 2008

ABSTRACT

Paraquat, an herbicide widely used in the agricultural industry, has been associated with lung, liver, and kidney toxicity in humans. In addition, it is linked to an increased risk of Parkinson’s disease. For this reason, we had previously investigated the effects of paraquat in mice and showed that it influenced striatal nicotinic receptor (nAChR) expression but not nAChR-mediated dopaminergic function. Because nonhuman primates are evolutionarily closer to humans and may better model the effects of pesticide exposure in man, we examined the effects of paraquat on striatal nAChR function and expression in monkeys. Monkeys were administered saline or paraquat once weekly for 6 weeks, after which nAChR levels and receptor-evoked [3H]dopamine ([3H]DA) release were measured in the striatum. The functional studies showed that paraquat exposure attenuated dopamine (DA) release evoked by α3/α6β2* (nAChR that is composed of the α3 or α6 subunits, and β2; the asterisk indicates the possible presence of additional subunits) nAChRs, a subtype present only on striatal dopaminergic terminals, with no decline in release mediated by α4β2* (nAChR containing α4 and β2 subunits, but not α3 or α6) nAChRs, present on both DA terminals and striatal neurons. Paraquat treatment decreased α4β2* but not α3/α6β2* nAChR expression. The differential effects of paraquat on nAChR expression and receptor-evoked [3H]DA release emphasize the importance of evaluating changes in functional measures. The finding that paraquat treatment has a negative impact on striatal nAChR-mediated dopaminergic activity in monkeys but not mice indicates the need for determining the effects of pesticides in higher species.

Paraquat is an herbicide that is widely used in the agricultural industry but has been linked to lung, liver, and kidney toxicity in humans (Van Vleet and Schnellmann, 2003; Dudka, 2006; Dinis-Oliveira et al., 2008). Epidemiological studies have also implicated paraquat in the etiology of Parkinson’s disease (Di Monte et al., 2002; Di Monte, 2003; Brown et al., 2006). In fact, a dose-dependent relationship has been reported between the two, such that the risk for Parkinson’s disease increases in parallel with cumulative lifetime exposure to paraquat (Liou et al., 1997).

Although the exact molecular and cellular changes that result in these negative consequences are not entirely clear, we previously demonstrated that chronic paraquat treatment in mice results in alterations in striatal nicotinic acetylcholine receptors (nAChRs) (Khwaja et al., 2007). nAChRs are pentameric ligand-gated ion channels, with two main nAChR subtypes present in the striatum. One is composed of the α3 or α6, and β2 subunits (α3/α6β2*; the asterisk indicates the possible presence of additional subunits). Within the striatum, these nAChRs are localized exclusively on the dopaminergic terminals projecting from the substantia nigra (Champtiaux et al., 2002; Zoli et al., 2002). The second subtype, α4β2* (nAChR containing α4 and β2 subunits, but not α3 or α6), is expressed on both the dopamine (DA) terminals as well as on intrastriatal neurons (Zoli et al., 2002; Luetje, 2004; Salminen et al., 2004). The cholinergic and dopaminergic systems are closely associated in the striatum as demonstrated by colocalization of numerous molecular markers, including cholinergic measures such as choline acetyltransferase, acetylcholinesterase, and nAChRs, and dopaminergic markers such as dopamine, the dopamine transporter, and tyrosine hydroxylase (Fuxe et al., 1964; Fonnum, 1973; Zhou et al., 2001, 2002). A dense network of tonically active cholinergic neurites surrounds dopaminergic neurons and terminals, thereby regulating DA function (Bennett and Wilson,

ABBREVIATIONS: nAChR, nicotinic acetylcholine receptor; α3/α6β2*, nAChR that is composed of the α3 or α6 subunits, and β2; α4β2*, nAChR containing α4 and β2 subunits, but not α3 or α6; DA, dopamine; [3H]DA, [3H]dopamine; BSA, bovine serum albumin; ANOVA, analysis of variance.
with the Institute of Laboratory Animal Resources (1996) and were purchased from Worldwide Primates (Miami, FL) and quarantined for 1 month according to California State regulations between 0.5 and 0.7 kg were purchased from Worldwide Primates in injection of the same solution.

Barbital and 50 mg of phenytoin sodium/ml) followed by a 2.2 ml/kg i.v. injection of euthanasia solution (390 mg of sodium pentobarbital and 50 mg of phenytoin sodium/ml) was performed. Fresh striatal tissue (~15 mg per region) was homogenized in 2 ml of ice-cold homogenization buffer (0.32 M sucrose, 5 mM HEPES, pH 7.5) and centrifuged at 12,000g for 20 min. P1 pellets were resuspended in 0.8 ml of uptake buffer (128 mM NaCl, 2.4 mM KCl, 3.2 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 25 mM HEPES, pH 7.5, 10 mM glucose, 1 mM ascorbic acid, and 0.01 mM pargyline) and incubated for 10 min at 37°C. A total of 4 µCi of [3H]DA (final concentration of 100 nM dopamine; PerkinElmer Life and Analytical Sciences, Waltham, MA) was then added, and the tissue was incubated for another 5 min. An 80-µl aliquot of synaptosomes (approximately 0.5–2 g of tissue) was placed on 5-mm diameter glass filter holders (Gelman Instrument Co., Ann Arbor, MI) and perfused with uptake buffer containing 0.1% bovine serum albumin (BSA) and 10 µM nomifensine for 10 min at a rate of 1 ml/min before fraction collection was initiated. After 54 s of sample collection, tissue was stimulated with either nicotine (0.03–30 µM) or 20 mM K+ buffer for 18 s. When the antagonist α-conotoxinMII (50 nM) (Cartier et al., 1996) was used, the tissue was pre-exposed for 3 min before agonist stimulation. For each tissue aliquot 15 fractions (18 s each) were collected, including basal release before and after stimulation. Scans were performed at 125I-scintillation cocktail (Research Products International, Mt. Prospect, IL) was added to the fractions, and radioactivity was quantified on a Beckman Coulter (Fullerton, CA) LS6500 scintillation counter.

Materials and Methods

Animals. Adult female squirrel monkeys (Stamiris sciureus) weighing between 0.5 and 0.7 kg were purchased from Worldwide Primates (Miami, FL) and quarantined for 1 month according to California State regulations. All care and treatments were carried out in accordance with the Institute of Laboratory Animal Resources (1996) and were approved by the Institutional Animal Care and Use Committee at the Parkinson's Institute. Monkeys were housed in a room with a 13:11-h light/dark cycle with food given once daily and water ad libitum. Animals were divided into two treatment groups: control (n = 6) and paraquat-treated (n = 8). The paraquat group received one s.c. injection of 2.5 mg/kg paraquat dihydrochloride hydrate (Sigma-Aldrich, St. Louis, MO) per week for 6 weeks and were euthanized 2 or 4 weeks after the final injection. This treatment paradigm was chosen for several reasons. We used a dose of 2.5 mg/kg paraquat because higher doses induced lung toxicity, as previously reported in other species including humans and mice (Tomita et al., 2007; Dinis-Oliveira et al., 2008). Injections were administered once weekly as in mouse studies (McCormack et al., 2002; Khwaja et al., 2007) and to protect against acute toxicity. General observations of the animals failed to detect any paraquat-induced behavioral abnormalities and thus are not discussed here. Animals were humanely killed 2 and 4 weeks after the last injection to allow for sufficient time for paraquat to induce its effects. No statistical differences were observed in results from animals euthanized at the two time points; therefore, data were pooled. All animals were euthanized according to the recommendations of the Panel on Euthanasia of the American Veterinary Medical Association. The animals were first given a 1.5-ml i.p. injection of euthanasia solution (390 mg of sodium pentobarbital and 50 mg of phenytoin sodium/ml) followed by a 2.2 ml/kg i.v. injection of the same solution.

Tissue Preparation. Tissue was prepared as described previously (McCallum et al., 2005). Brains were removed and sectioned along the midline. Half was sliced into 6-mm-thick blocks in a Flexiglas mold, and blocks were quick frozen on glass slides in isopentane on dry ice and stored at ~80°C for future use. These blocks were sectioned (20 µm) on a cryostat (Leica Microsystems Inc., Deerfield, IL), mounted and air-dried on Superfrost Plus slides (Thermo Fisher Scientific, Waltham, MA), and stored at ~80°C for autoradiography experiments. The second half of the brain was sliced into 2-mm-thick sections. The medial and lateral caudate were dissected out from the region between 15 and 13.5 mm anterior to bregma (Emmers and Akert, 1963) and used fresh for [3H]DA release assays.

[3H]Dopamine Release. Striatal synaptosome preparation and [3H]DA release assays were performed as described previously (McCallum et al., 2005). Fresh striatal tissue (~15 mg per region) was homogenized in 2 ml of ice-cold homogenization buffer (0.32 M sucrose, 5 mM HEPES, pH 7.5) and centrifuged at 12,000g for 20 min. P1 pellets were resuspended in 0.8 ml of uptake buffer (128 mM NaCl, 2.4 mM KCl, 3.2 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 25 mM HEPES, pH 7.5, 10 mM glucose, 1 mM ascorbic acid, and 0.01 mM pargyline) and incubated for 10 min at 37°C. A total of 4 µCi of [3H]DA (final concentration of 100 nM dopamine; PerkinElmer Life and Analytical Sciences, Waltham, MA) was then added, and the tissue was incubated for another 5 min. An 80-µl aliquot of synaptosomes (approximately 0.5–2 g of tissue) was placed on 5-mm diameter glass fiber filters (Gelman Instrument Co., Ann Arbor, MI) and perfused with uptake buffer containing 0.1% bovine serum albumin (BSA) and 10 µM nomifensine for 10 min at a rate of 1 ml/min before fraction collection was initiated. After 54 s of sample collection, tissue was stimulated with either nicotine (0.03–30 µM) or 20 mM K+ buffer for 18 s. When the antagonist α-conotoxinMII (50 nM) (Cartier et al., 1996) was used, the tissue was pre-exposed for 3 min before agonist stimulation. For each tissue aliquot 15 fractions (18 s each) were collected, including basal release before and after stimulation. Scans were performed at 125I-scintillation cocktail (Research Products International, Mt. Prospect, IL) was added to the fractions, and radioactivity was quantified on a Beckman Coulter (Fullerton, CA) LS6500 scintillation counter.

[125]I-Epibatidine Autoradiography. [125]I-Epibatidine (GE Healthcare, Little Chalfont, Buckinghamshire, UK) binding was performed as described previously (Kulak et al., 2002). In brief, thawed sections were preincubated for 30 min at room temperature in Tris buffer (50 mM, pH 7.5, containing 120 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, and 1 mM MgCl2). α-ConotoxinMII (100 nM) was used to distinguish between [125]I-epibatidine binding to α3/α6β2* (α-conotoxinMII-sensitive) and α4β2* (α-conotoxinMII-resistant) nAChRs. Nicotine (100 µM) was used to define nonspecific binding. When used, these compounds were added to both preincubation and incubation buffers. Sections were incubated with 0.015 nM [125]I-epibatidine buffer for 40 min at room temperature, washed 2 × 5 min in 4°C buffer, and dipped in ice-cold water. They were air-dried and exposed to Kodak Biomax MR film (Carestream Health, Rochester, NY) with [125]I standards for several days.

[125]I-α-ConotoxinMII Autoradiography. [125]I-α-ConotoxinMII was synthesized and radiolabeled as described previously (Whiteaker et al., 2000), and binding was performed as previously reported (Kulak et al., 2002). HEPES buffer (20 mM) containing 144 mM NaCl, 1.5 mM KCl, 2 mM CaCl2, and 1 mM MgSO4, pH 7.5, was used throughout the experiment. Thawed sections were preincubated at room temperature for 15 min in buffer plus 0.1% BSA and 1 mM phenylmethylsulfonyl fluoride. Sections were then incubated in buffer that included 0.5 nM [125]I-α-conotoxinMII, 0.5% BSA, 5 mM EDTA, 5 mM EGTA, and 1 µM each of aprotinin, leupeptin, and pepstatin A. Nicotine (100 µM) was used to define nonspecific binding and, when used, was added to both preincubation and incubation buffers. Sections were washed with 1× HEPES buffer plus 0.1% BSA buffer for 10 min at room temperature and then at 4°C, followed by 2 × 10 min in 4°C 0.1× buffer, and dipped in 4°C water twice. They were air-dried and exposed to Kodak Biomax MR film with [125]I standards for several days.

Data Analysis. [3H]DA release was quantified as described previously (McCallum et al., 2005). Release was plotted as counts per minute versus fraction number using a curve-fitting algorithm in SigmaPlot 5.0 for MS-DOS (SPSS Inc., Chicago, IL). Fractions before...
and after the peak were selected to calculate basal release by plotting values as a single exponential decay function. Baseline was subtracted out, and fractions above 10% of baseline were added to obtain evoked release. This value was then normalized to wet tissue weight per filter to obtain counts per minute/milligram tissue. \(\alpha_4 \beta_2 \) and \(\alpha_3 \alpha_6 \beta_2 \) nAChR components of release were discriminated by the addition of \(\alpha \)-conotoxinMII to perfusion buffer. Release remaining in the presence of \(\alpha \)-conotoxinMII was mediated by \(\alpha_4 \beta_2 \) nAChRs. The \(\alpha_3 \alpha_6 \beta_2 \) nAChR-mediated component was determined by subtraction of the \(\alpha_4 \beta_2 \) component from total release. \(R_{\text{max}} \) and \(E_{C_{50}} \) values for dose-response curves were calculated by nonlinear regression equations in GraphPad Prism (GraphPad Software Inc., San Diego, CA).

The ImageQuant program (GE Healthcare) was used to obtain optical density values from autoradiographic films. Specific binding was calculated by subtracting background tissue levels from total binding, and these values were converted to femtomole/milligram tissue using standard curves generated from \(^{125} \text{I} \) radioactivity standards. The binding value for each brain region from each animal was obtained from at least two independent experiments with 1 to 2 sections per experiment. Data are reported as mean ± S.E.M. of 6 to 8 animals. Sample optical density readings were within the linear range of the film.

Statistical Analysis. All statistical analyses were performed in GraphPad Prism. Statistical comparisons were conducted using either one-way analysis of variance (ANOVA) followed by Dunnett’s post hoc test or two-way ANOVA followed by Bonferroni post hoc test. A level of \(p < 0.05 \) was considered significant for all analyses. All data are expressed as mean ± S.E.M. for the indicated number of animals.

Results

Paraquat Treatment Selectively Reduces \(\alpha_3 \alpha_6 \beta_2 \) nAChR-Mediated \([H]DA Release from Medial and Lateral Caudate Synaptosomes. We first examined the effects of paraquat treatment on nicotine-evoked \([H]DA release from medial and lateral caudate synaptosomes. Both of these regions were tested because previous work has shown that the medial and lateral caudate are differentially affected by toxic insults with the lateral caudate more affected (Kish et al., 1988; Alexander et al., 1992; Moratalla et al., 1992; McCallum et al., 2005, 2006). Experiments were performed in the presence and absence of the \(\alpha_3 \alpha_6 \beta_2 \)-selective antagonist, \(\alpha \)-conotoxinMII to distinguish between DA release mediated by the two main nAChR subtypes (\(\alpha_3 \alpha_6 \beta_2 \) and \(\alpha_4 \beta_2 \)) located on presynaptic DA terminals in the striatum.

\(\alpha_4 \beta_2 \) nAChR-mediated nicotine-evoked \([H]DA release was defined as that remaining in the presence of \(\alpha \)-conotoxinMII. The difference between total and \(\alpha_4 \beta_2 \)-mediated release represented \(\alpha_3 \alpha_6 \beta_2 \) receptor-stimulated release.

Paraquat treatment decreased nicotine-evoked \(\alpha_3 \alpha_6 \beta_2 \)-mediated \([H]DA release from medial and lateral caudate synaptosomes (Fig. 1). The synaptosomal nicotine dose-response curve from paraquat-exposed animals was significantly lower than that from synaptosomes from control monkeys (\(p < 0.05 \) and \(p < 0.01 \) in medial and lateral caudate, respectively). In contrast, paraquat did not affect nicotine-evoked \(\alpha_4 \beta_2 \) nAChR-mediated \([H]DA release in either region, although there was a trend toward an increase in release in lateral caudate (Fig. 2). Paraquat also did not alter \(E_{C_{50}} \) values for either nicotine-evoked \(\alpha_3 \alpha_6 \beta_2 \) or \(\alpha_4 \beta_2 \) nAChR-mediated release in either region (Table 1).

\(\alpha_3 \alpha_6 \beta_2 \) and \(\alpha_4 \beta_2 \) nAChR Expression Is Differentially Affected by Paraquat Treatment. We used two autoradiographic approaches to determine the effects of paraquat treatment on \(\alpha_3 \alpha_6 \beta_2 \) nAChRs. First, \(^{125} \text{I} \) -conotoxinMII binding was used to provide a direct measure of \(\alpha_3 \alpha_6 \beta_2 \) nAChR binding sites in the caudate. Paraquat exposure did not change \(\alpha_3 \alpha_6 \beta_2 \) nAChR expression levels in either medial or lateral caudate (Fig. 3, A and B). We also examined \(^{125} \text{I} \) -epibatidine binding in the presence and absence of 100 nM \(\alpha \)-conotoxinMII to assess \(\alpha_3 \alpha_6 \beta_2 \) nAChR binding sites because previous results suggest that the \(\alpha_3 \alpha_6 \beta_2 \) nAChR sites measured using this approach are not identical to those measured using \(^{125} \text{I} \) -conotoxinMII (Quik et al., 2003a; Khwaja et al., 2007). Paraquat treatment did not alter \(^{125} \text{I} \) -epibatidine binding to \(\alpha_3 \alpha_6 \beta_2 \) nAChRs (\(\alpha \)-conotoxinMII-sensitive) in either the medial or lateral caudate (Fig. 3, C and D), consistent with results using \(^{125} \text{I} \) -conotoxinMII.

Paraquat produced a significant reduction in \(\alpha \)-conotoxinMII-resistant \(^{125} \text{I} \) -epibatidine binding in both medial (13.0%,...
Paraquat exposure did not affect nicotine-evoked \(\alpha 4\beta 2^* \) nAChR-mediated \([3H] \)DA release. Paraquat treatment did not alter \(\alpha 4\beta 2^* \) nAChR-mediated \([3H] \)DA release from either medial (A) or lateral (B) caudate synaptosomes. Animals were administered 2.5 mg/kg paraquat once weekly for six weeks. \(\alpha 4\beta 2^* \) nAChR-mediated release was determined as described under Results. Dose-response curves were generated by nonlinear regression analysis in GraphPad Prism. All values represent mean ± S.E.M. of 6 to 8 animals.

Discussion

The present results are the first to show that paraquat exposure reduces nAChR-evoked dopaminergic activity in monkey striatum. This seems to be caused by a decrease specifically in \(\alpha 3/\alpha 6\beta 2^* \) nAChR-mediated DA release with no change in function of \(\alpha 4\beta 2^* \) nAChRs located on nigrostriatal terminals. \(\alpha 3/\alpha 6\beta 2^* \) nAChRs are responsible for the majority of nAChR-evoked DA release (~70%) and thus play a key role in the regulation of striatal dopaminergic activity (Kulak et al., 1997; Quik et al., 2001, 2002; McCallum et al., 2005). The observed changes in synaptosomal \(\alpha 3/\alpha 6\beta 2^* \) nAChR-mediated DA release may therefore be indicative of substantial paraquat-induced alterations in overall striatal dopaminergic function in vivo.

In our previous studies in mice, paraquat exposure influenced only the expression of striatal \(\alpha 3/\alpha 6\beta 2^* \) nAChRs, with no change in receptor-mediated function (Khwaja et al., 2007). This is in contrast to our current results in monkey caudate, which demonstrate paraquat-induced changes in \(\alpha 3/\alpha 6\beta 2^* \) nAChR function but not expression. In rodents, \(\alpha 3/\alpha 6\beta 2^* \) nAChRs account for ~15% of all striatal nAChRs and mediate ~40% of nAChR-evoked DA release, compared with 40 and 70%, respectively, in monkeys (Kulak et al., 1997; Whiteaker et al., 2000; Quik et al., 2001, 2002, 2003b; Salminen et al., 2004; McCallum et al., 2005). These differences in relative proportions of the main striatal nAChR subtypes may play a role in the differential effects of paraquat exposure that we observed in the two species. There are also numerous other species differences between monkeys and mice that may contribute to these differential results. Given the fact that nonhuman primates more closely resemble humans than do mice, the paraquat-induced alterations...
Paraquat treatment significantly reduced α4β2* nAChR expression in the monkey striatum that we report here may better model functional changes in the human striatum that arise as a consequence of paraquat exposure.

The present results show that changes in nAChR subtype-mediated DA release do not correlate with alterations in expression levels of the corresponding receptor subtype. The discrepancies between the observed changes in nAChR subtype function and expression after paraquat exposure may be a reflection of several factors. First, the decrease in α4β2* nAChR numbers in the absence of a corresponding reduction in α4β2* nAChR-mediated DA release from striatal synaptosomes may be caused by a loss of receptors located on striatal cell bodies as opposed to nigrostriatal DA terminals. Such a change would not be detectable by our functional assays, which use only isolated nerve terminals. However, the observed decrease in α4β2* nAChRs may lead to alterations in DA release via an indirect pathway that would only be evident in experimental preparations that retain striatal circuitry. In addition, it is not uncommon for receptor binding and functional assays to yield disparate results because of inherent experimental differences between these two techniques. For instance, radioligand binding studies typically quantify both intracellular and extracellular receptors regardless of their functionality, and binding assay conditions favor desensitized receptors. In contrast, functional measures reflect only activatable membrane-bound receptors. The use of pharmacologically distinct ligands used in the two techniques may also contribute to the apparent inconsistencies in paraquat-induced alterations in nAChR subtype function versus expression because specific ligands may differentially interact with different subpopulations of the α3/α6β2* and α4β2* nAChR subtypes. Our results emphasize the importance of performing functional studies, which may be more reflective of the ultimate behavioral consequences of nigrostriatal damage.

In conclusion, paraquat treatment significantly reduced α3/α6β2* nAChR-mediated [3H]DA release in monkey medial and lateral caudate as well as α4β2* nAChR expression. These data suggest that chronic paraquat may modulate nicotinic receptor-mediated function, resulting in a consequence decline in dopaminergic neurotransmission. Such a mechanism may be linked to the increased risk of neurological disorders, such as Parkinson’s disease, associated with environmental exposure to this herbicide.

Acknowledgments
We thank Mirium Khwaja and Amy Kim for assistance with some of the experiments.

References
Kulak JM, McIntosh JM, and Quik M (2002) Loss of nicotinic receptors in monkey striatum after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment is due to a decline in alpha-conotoxin MII sites. Mol Pharmacol 61:230–238.

Address correspondence to: Dr. Maryka Quik, The Parkinson’s Institute, 675 Almanor Ave., Sunnyvale, CA 94085-2934. E-mail address: mquik@parkinsonsinsstitute.org