Activation by Zonisamide, a Newer Antiepileptic Drug, of Large-Conductance Calcium-Activated Potassium Channel in Differentiated Hippocampal Neuron-Derived H19-7 Cells

Chin-Wei Huang, Chao-Ching Huang, and Sheng-Nan Wu

ABSTRACT
Zonisamide (ZNS; 3-sulfamoylmethyl-1,2-benzisoxazole), as one of the newer antiepileptic drugs, has been demonstrated its broad-spectrum clinical efficacy on various neuropsychiatric disorders. However, little is known regarding the mechanism of ZNS actions on ion currents in neurons. We thus investigated its effect on ion currents in differentiated hippocampal 19-7 cells. In whole-cell configuration of patch-clamp technology, the ZNS (30 μM) reversibly increased the amplitude of K⁺ outward currents, and paxilline (1 μM) was effective in suppressing the ZNS-induced increase of K⁺ outward currents. In inside-out configuration, ZNS (30 μM) applied to the intracellular face of the membrane did not alter single-channel conductance; however, it did enhance the activity of large-conductance Ca²⁺-activated K⁺ (BKCa) channels primarily by decreasing mean closed time. In addition, the EC₅₀ value for ZNS-stimulated BKCa channels was 34 μM. This drug caused a left shift in the activation curve of BKCa channels, with no change in the gating charge of these channels. Moreover, ZNS at a concentration greater than 100 μM also reduced the amplitude of A-type K⁺ current in these cells. A simulation modeling based on hippocampal CA3 pyramidal neurons (Pinsky-Rinzel model) was also analyzed to investigate the inhibitory effect of ZNS on the firing of simulated action potentials. Taken together, this study suggests that, in hippocampal neurons during the exposure to ZNS, the ZNS-mediated effects on BKCa channels and A-type K⁺ current could be potential mechanisms through which it affects neuronal excitability.

Zonisamide (ZNS) is a benzisoxazole derivative with a nonarylamine sulfonamide group and is chemically unrelated to other antiepileptic drugs. It has been characterized as having broad-spectrum antiepileptic and neuroprotective effects (Leppik, 2004; Baulac, 2006). Previous reports have demonstrated the ability of this drug to block voltage-dependent Na⁺ channels and T-type Ca²⁺ channels (Schauf, 1987; Suzuki et al., 1992; Leppik, 2004). It also has been shown to inhibit the ryanodine-induced increase in basal levels of glutamate and GABA in the rat hippocampus (Yoshida et al., 2005). In addition, ZNS has been reported as potentially blocking glutamate activity in the frontal cortex (Huang et al., 2005) and the firing of action potentials in spinal cord neurons (Rock et al., 1989). A recent report showed that ZNS could improve depressive symptoms in acute bipolar depression (Ghaemi et al., 2006). However, the mechanisms through which this drug can halt seizures or modulate mood activity are largely unknown, despite its increased use in the treatment of epilepsy or bipolar disorders.

The large-conductance Ca²⁺-activated K⁺ (BKCa) channels, the products of a nearly ubiquitous, alternatively spliced gene (SLO or KCNMA1) (Butler et al., 1993), are distinguished from other K⁺ channels in that they are gated open in response to Ca²⁺ binding to sites located inside of the channel, as well as by depolarized membrane potentials (Ghatta et al., 2006; Wu et al., 2006). Their activities provide a link between the metabolic and electrical state of cells because they are sensitive to stimulation by increased intracellular Ca²⁺. BKCa channels in hippocampal pyramidal cells have been identified for their collaborative effect with voltage-gated K channels in repolarizing spike and fast afterhyperpolarization.

ABBREVIATIONS: ZNS, zonisamide, 3-sulfamoylmethyl-1,2-benzisoxazole; BKCa, large-conductance Ca²⁺-activated K⁺; riluzole, 2-amino-6-trifluoromethoxybenzothiazole; I-V, current-voltage; IᵥK, K⁺ outward current; IᵥCa,L, L-type Ca²⁺ current; IᵥA, A-type K⁺ current; IᵥNa, Na⁺ current; Pax, paxilline.
peripolarization (Storm, 1990; Shao et al., 1999). In addition, riluzole and cilostazol have been reported to enhance the activity of BK$_{Ca}$ channels in pituitary tumor (GH$_3$) cells (Wu and Li, 1999; Wu et al., 2004).

A recent study has demonstrated that mutation of the pore-forming α-subunit of BK$_{Ca}$ channels could cause generalized epilepsy, paroxysmal dyskinesia (Du et al., 2005), and mental deficiency disorder such as autism (Laumonnier et al., 2006). In addition, the increased activity of BK$_{Ca}$ channels, possibly associated with the peripheral antinoceptive action of meclozine and meloxicam (Ortiz et al., 2003, 2005), could counteract the deleterious effects of excitatory neurotransmitters following neurotoxic or ischemic injuries as well (Gribkoff et al., 2001; Ghatta et al., 2006). However, it remains unknown whether ZNS, as a potential neuropsychiatric modulator, produces any effects on the activity of these channels.

The hippocampal neuron-derived H19-7 cell line is known to possess the characteristics of hippocampal neurons (Morrione et al., 2000; Bhargava et al., 2002). This cell line has been used for studies on the development, plasticity, and commitment in hippocampal neurons (Morrione et al., 2000; Bhargava et al., 2002). Therefore, the goals of this study were to examine the effect of ZNS on K$^+$ outward current in differentiated hippocampal H19-7 cells, to address the issue of whether this drug can affect the activity and kinetic properties of BK$_{Ca}$ channels, and to determine whether it affects other types of ion currents present in these cells. Interestingly, these results indicate that ZNS can directly enhance the activity of BK$_{Ca}$ channels.

Materials and Methods

Cell Preparation. The H19-7 cell line was originally derived from hippocampal tissue dissected from embryonic day 17 Holtzman rat embryos and immortalized by retroviral transduction of temperature-sensitive tsA58 SV40 large T antigen. This cell line was obtained from American Type Culture Collection (CRL-2526; Manassas, VA) (Morrione et al., 2000; Huang et al., 2004). Cells were maintained in Dulbecco’s modified Eagle’s medium with 4 mM L-glutamine adjusted to contain 1.5 g/l sodium bicarbonate and 4.5 g/l glucose supplemented with 10% fetal bovine serum, 200 μM/ml G418, and 1 μg/ml puromycin in flasks that were coated with 15 μg/ml poly-L-lysine. They were equilibrated in a humidified atmosphere of 5% CO$_2$/95% air, at an air temperature with a permissive temperature (20–25°C) in normal Tyrode’s solution containing 1.8 mM CaCl$_2$. The recording pipettes were pulled from Kimax-51 glass capillaries (Kimble Glass, Vineland, NJ) using a two-stage microelectrode puller (PP-830; Narishige, Tokyo, Japan), and the tips were fire-polished with a microforge (MF-83; Narishige). When filled with pipette solution, their resistance ranged between 3 and 5 MΩ. Ion currents were recorded in a whole-cell or inside-out configuration of the patch-clamp technique, using an RK-400 patch-clamp amplifier (Bio-Logic, Clax, France) (Huang et al., 2006). All potentials were corrected for liquid junction potential, a value that would always develop at the tip of the pipette when the composition of the pipette solution was different from that in the bath. Tested drugs were applied through perfusion or added to the bath to obtain the final concentration indicated.

Data Recordings and Analyses. The signals consisting of voltage and current tracings were displayed on an analog/digital oscilloscope (HM 507; Hamag Inc., East Meadow, NY). The data were stored online in a laptop computer through an analog/digital interface (Digidata 1322A; Molecular Devices, Union City, CA), controlled by a commercially available software package (pCLAMP 9.0; Molecular Devices). The sampling rate for electrophysiological measurements was 10 kHz. Currents were low-pass filtered at 1 or 3 kHz. Ion currents recorded during experiments were stored and analyzed subsequently using pCLAMP 9.0 software (Molecular Devices), Origin 7.5 software (Microcal Software, Inc., Northampton, MA), SigmaPlot 7.0 software (SPSS, Inc., Apex, NC), or custom-made macros in Excel 2003 (Microsoft, Redmond, WA). The pCLAMP-generated voltage-step protocols were generally used to examine the current-voltage (I-V) relations for ion currents.

To calculate concentration-dependent stimulation of ZNS on the activity of BK$_{Ca}$ channels, H19-7 cells were bathed in a high-K$^+$ (145 mM) solution, and inside-out configuration was performed. Each excised patch was held at +60 mV, and the bath medium contained 0.1 mM Ca$^{2+}$. The concentration-dependent effect of ZNS at different concentrations (3–100 μM) was fitted with a Hill function. That is, relative open probability = \(\frac{E_{\text{max}} \times [C]^n}{E_{\text{max}} + [C]^n} \), where \([C] \) represents the ZNS concentration, \(E_{\text{max}} \) and EC$_{50}$ are Hill coefficients and the ZNS concentration needed to increase channel activity by 50%, respectively; and \(E_{\text{max}} \) is the ZNS-induced maximal stimulation of BK$_{Ca}$ channels.

Single-channel currents of BK$_{Ca}$ or K$_{ATP}$ channels were analyzed using pCLAMP 9.0 software (Molecular Devices). Multigaussian adjustments of the amplitude distributions between channels were used to determine unitary currents. The functional independence between channels was verified by comparing the observed stationary probabilities with the values calculated according to binomial law. The number of active channels in the patch N was counted at the end of each experiment and then used to normalize opening probability at each potential. The open probabilities were evaluated using an iterative process to minimize the χ2 calculated with a sufficiently large number of independent observations. The open or closed distribution of the channel was fit with a one- or two-exponential function.

The plots of the open probability of BK$_{Ca}$ channels as a function of membrane potential were constructed and fit with a Boltzmann function using nonlinear regression analysis with the Origin 7.5 (Microcal). That is, relative open probability = \(n_p / (1 + \exp \left(- \frac{V - V_{1/2}}{k} \right)) \), where \(n_p \) is the maximal probability of channel openings, \(V \) is the membrane potential in mV, \(V_{1/2} \) is the membrane potential for half-maximal activation, and \(k \) is the slope factor of the activation curve.

The averaged results are presented as the mean values ± S.E.M. The paired or unpaired Student’s t test and one-way analysis of
TABLE 1
Default parameters values used for the modeling of hippocampal CA3 pyramidal neurons

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cm</td>
<td>Membrane capacitance</td>
<td>3 μF</td>
</tr>
<tr>
<td>g_{Na}</td>
<td>Na$^+$ current conductance</td>
<td>18 nS</td>
</tr>
<tr>
<td>$g_{K_{dr}}$</td>
<td>Delayed rectifier K$^+$ current conductance</td>
<td>15 nS</td>
</tr>
<tr>
<td>g_{Ca}</td>
<td>Ca$^{2+}$ current conductance</td>
<td>1 nS</td>
</tr>
<tr>
<td>$g_{K_{a}cb}$</td>
<td>Afterhyperpolarization K$^+$ current conductance</td>
<td>0.8 nS</td>
</tr>
<tr>
<td>$g_{K_{a}ca}$</td>
<td>Ca$^{2+}$-activated K$^+$ current conductance</td>
<td>20 nS</td>
</tr>
<tr>
<td>$g_{K_{a}sp}$</td>
<td>ATP-sensitive K$^+$ current conductance</td>
<td>0.3 nS</td>
</tr>
<tr>
<td>V$_{Na}$</td>
<td>Na$^+$ reversal potential</td>
<td>+60 mV</td>
</tr>
<tr>
<td>V$_{K}$</td>
<td>K$^+$ reversal potential</td>
<td>-75 mV</td>
</tr>
</tbody>
</table>

Results

Stimulatory Effect of ZNS on K$^+$ Outward Currents in Differentiated Hippocampal H19-7 Cells. In the initial set of experiments, the whole-cell configuration of the patch-clamp technique was used to investigate the effect of ZNS on macroscopic K$^+$ outward current (I$_K$). When H19-7 cells were bathed in normal Tyrode’s solution containing 1.8 mM CaCl$_2$, I$_K$ in response to a 1-s-long ramp pulse could be elicited. This current was found to be outwardly rectifying. Within 1 min of exposing the cells to ZNS (30 μM), the amplitude of I$_K$ evoked by the ramp pulse was significantly increased (Fig. 1). For example, at the level of +80 mV, ZNS (30 μM) significantly increased the amplitude of I$_K$ from 795 ± 59 to 1509 ± 74 pA (p < 0.05, n = 6). In addition, ZNS (30 μM) increased the slope conductance of I$_K$ at the level of +40 mV from 16.7 ± 2.3 (n = 5) to 24.2 ± 3.5 (n = 5) nS and at the level of +80 mV from 18.4 ± 2.5 to 35.7 ± 3.6 nS (n = 5). After washout of ZNS, the amplitude of I$_K$ returned to 822 ± 31 pA (n = 5). A further application of 1 μM paxilline could reduce I$_K$ to 812 ± 63 pA (p < 0.05, n = 5). In addition, iberiotoxin (200 nM), but not apamin (200 nM), significantly reversed the ZNS-induced increase of I$_K$. In addition, the value for reversal potential of I$_K$ measured in the presence of ZNS or ZNS plus paxilline was around −75 mV. The results suggest that the amplitude of I$_K$ in response to the ramp pulses can be sensitive to increases in ZNS. The ZNS-induced increase of I$_K$ can be blocked by paxilline or iberiotoxin.

Fig. 1. Effect of ZNS on I$_K$ in differentiated H19-7 cells. In these experiments, cells were bathed in normal Tyrode’s solution containing 1.8 mM CaCl$_2$ and CdCl$_2$ (0.5 mM). Each cell was held at −50 mV, and the ramp pulses from −80 to +100 mV with a duration of 1 s were applied. A, original current traces showing the effect of ZNS on I$_K$ obtained with or without a further application of paxilline. ZNS, 30 μM; paxilline (Pax), 1 μM; iberiotoxin (Iber), 200 nM; apamin (Apa), 200 nM. Each point represents the mean ± S.E.M. (n = 4–9), * p < 0.05 versus control. ** p < 0.05 versus ZNS-alone group.
Stimulatory Effect of ZNS on the Activity of BK_{Ca} Channels in Differentiated H19-7 Cells. Paxilline and iberiotoxin, known inhibitors of BK_{Ca} channels, could reverse ZNS-stimulated I_K. The increased macroscopic I_K could be due to the increased open probability, an increase in the number of active channels, or both. The effect of ZNS on BK_{Ca} channel activity in these cells was further investigated (Fig. 2). In these experiments, single-channel recordings with an inside-out configuration were performed in symmetrical K⁺ solution (145 mM) (Fig. 2A). Bath medium contained 0.1 μM Ca^{2+}, and holding potential was held at +60 mV. When ZNS (100 μM) was applied to the intracellular surface of the excised patch, the channel activity was significantly increased to 0.015 ± 0.004 (n = 5) from a control of 0.004 ± 0.001 (n = 5, p < 0.05). A further application of paxilline (1 μM) could decrease the channel activity to 0.005 ± 0.001 (n = 5). The channel activity in paxilline (1 μM) alone was 0.003 ± 0.001 (n = 5). Application of ZNS (3–1000 μM) was found to enhance the probability of channel openings in a concentration-dependent manner. The half-maximal concentration required for the stimulatory effect of ZNS on BK_{Ca} channel activity was 34 μM, and Hill coefficient was 1.2. Thus, the ZNS-induced increase in the amplitude of I_K in these cells could be associated with its increase in the open probability of BK_{Ca} channels, rather than changes in the number of active channels.

Lack of Effect of ZNS on Single-Channel Conductance of BK_{Ca} Channels. In the next series of experiments, the effect of ZNS on single-channel conductance was investigated. In inside-out configuration, the cells were bathed in symmetrical K⁺ solution (145 mM), and the bath medium contained 0.1 μM Ca^{2+}. Figure 3A illustrates averaged I-V relationships of BK_{Ca} channels obtained in the absence and presence of ZNS (30 μM). The single BK_{Ca} channel conductance calculated from a linear I-V relationship in control (i.e., in the absence of ZNS) was $166 \pm 11 \text{pS}$ (n = 8) with a reversal potential of $0 \pm 2 \text{mV}$ (n = 8). The value of single-channel conductance was not found to differ significantly from that ($168 \pm 10 \text{pS}$, n = 8, p > 0.05) measured during the exposure to ZNS (30 μM). These results indicate that this drug does not cause any modification in single-channel conductance, despite its ability to increase the open probability of these channels.

Effect of ZNS on the Activation Curve of BK_{Ca} Channels. Figure 3B shows the activation curve of BK_{Ca} channels in the absence and presence of ZNS (30 μM). The plot of open probability of channel openings as a function of membrane potential was fitted with a Boltzmann function as described under Materials and Methods. In control, $n_p = 1$, $V_1/2 = 56 \pm 5 \text{mV}$, and $k = 11.6 \pm 2.1 \text{mV}$ (n = 6), whereas in the presence of ZNS (100 μM), $n_p = 1.6 \pm 0.2$, $V_1/2 = 42 \pm 6 \text{mV}$, and $k = 11.5 \pm 1.9 \text{mV}$ (n = 6). The data thus indicate that the ZNS-increased channel activity can be accompanied by a significant shift of the steady-state activation toward less positive potentials, although the slope factor of activation curve remained unaltered. Taken together, ZNS applied to the intracellular surface of the channel is capable of affecting the activation curve with no change in the gating charge of these channels.

Effect of Internal Ca^{2+} Concentrations on ZNS-Stimulated BK_{Ca} Channel Activity. We next examined whether the ZNS-induced increase in the activity of these channels is associated with the level of internal Ca^{2+} concentrations. In these experiments, when an excised patch was formed, various concentrations of Ca^{2+} in the bath before and during exposure to ZNS (30 μM) were applied. As shown in Fig. 3C, the extent of ZNS-stimulated BK_{Ca} channels was not altered by changes in the level of intracellular Ca^{2+} concentration. For example, at the level of +60 mV, ZNS (30 μM) increased the open probability at an internal Ca^{2+} concentration of 0.1, 1, and 10 μM to a similar magnitude (i.e., 1.6-fold).

Effect of ZNS on Kinetic Behavior of BK_{Ca} Channels in Differentiated H19-7 Cells. The effect of ZNS on mean...
open and closed time of BK_{Ca} channels in these cells was examined and analyzed during recordings from patches showing only single-channel openings. As shown in Fig. 4, in control cells, the closed time histogram of BK_{Ca} channels at -60 mV can be fitted by a two-exponential function with a mean closed time of 5.2 ± 0.9 and 54.5 ± 1.6 ms (n = 5). ZNS (30 μM) decreased the lifetime of the closed time to 3.2 ± 0.8 and 19.6 ± 1.1 ms (n = 5, p < 0.05). However, no change in the component of open time distribution was observed in the presence of ZNS (30 μM) (1.62 ± 0.05 versus 1.64 ± 0.04 ms, n = 5, p > 0.05). Taken together, the data suggest that the stimulation by this drug of BK_{Ca} channels in these cells is largely due to an increase in open probability accompanied by the decreased closed time.

Effect of Riluzole on BK_{Ca} Channels in Differentiated Hippocampal H19-7 Cells. Riluzole has been previously reported as stimulating BK_{Ca} channels (Wu and Li, 1999). We also examined whether the stimulatory effects of ZNS and riluzole on these channels are additive. Interestingly, as shown in Fig. 5, riluzole (30 μM) increased the channel open probability; however, a subsequent application of ZNS (30 μM) did not increase the channel activity further. Riluzole (30 μM) significantly increased the probability of channel openings from 0.12 ± 0.02 to 0.24 ± 0.03 (n = 6, p < 0.05).

Fig. 3. Effect of ZNS on the I-V relationship and the Ca²⁺ sensitivity of BK_{Ca} channels in differentiated H19-7 cells. Experiments in excised patches were conducted in symmetrical K⁺ solution (145 mM) and a bath medium containing 0.1 μM Ca²⁺. A, averaged I-V relationship of BK_{Ca} channels in the absence (■) and presence (□) of 100 μM ZNS. Data are the mean ± S.E.M. (n = 6–10). Notably, there is no significant change in single-channel conductance between the absence and presence of ZNS. B, relationships between membrane potential and the open probability of BK_{Ca} channels obtained in the absence (■) and presence (□) of 30 μM ZNS. Data are the mean ± S.E.M. (n = 5–8). C, lack of ZNS effect on Ca²⁺ sensitivity of BK_{Ca} channels. Potential was held at -60 mV, and various concentrations of Ca²⁺ in the bath were applied before and during exposure to ZNS (30 μM). Data are the mean ± S.E.M. (n = 4–6). *, significantly different from controls (i.e., in the absence of ZNS) (p < 0.05).

Fig. 4. Effect of ZNS on mean open (top) and closed (bottom) time of BK_{Ca} channels in differentiated H19-7 cells. Inside-out configuration was performed in these experiments, and the potential was held at -60 mV. Cells were bathed in symmetrical K⁺ solution (145 mM), and bath medium contained 0.1 μM Ca²⁺. The open (top) and closed (bottom) time histograms after application of ZNS are shown in the right. Control data were obtained from measuring 296 channel openings with a total record time of 1 min, whereas those obtained in the presence of ZNS were measured from 339 channel openings with a total record time of 30 s. The dashed lines shown in each lifetime distribution are placed at the values of the time constant in an open or closed state.
concentration of 300 μM resulted in a decrease in $I_{\text{Ca,L}}$ (Fig. 6). For example, when cells were depolarized from −50 to 0 mV, the peak amplitude of $I_{\text{Ca,L}}$ was slightly but significantly decreased from 85 ± 12 to 79 ± 11 pA ($n = 5$, $p < 0.05$). In addition, a further application of nifedipine (0.3 μM), a known blocker of $I_{\text{Ca,L}}$, almost abolished the amplitude of $I_{\text{Ca,L}}$. Thus, the results indicate that this drug can stimulate Ca$^{2+}$-activated K$^+$ current in a manner unlikely to be associated with an increase in the amplitude of $I_{\text{Ca,L}}$.

Effect of ZNS on Rapidly Inactivating A-Type K$^+$ Current in Differentiated H19-7 Cells. Previous studies at our laboratory have demonstrated that lamotrigine, another antiepileptic drug, could block A-type K$^+$ current (I_A) in these cells in a concentration- and state-dependent manner (Huang et al., 2004). In this study, we further examined whether ZNS causes any effect of I_A. As shown in Fig. 7, ZNS at a concentration of 100 or 300 μM could block the amplitude of I_A significantly. When the cells were exposed to ZNS, the amplitude of I_A was suppressed throughout the entire voltage-clamp step. The averaged I-V relations for the peak amplitude of I_A in the absence and presence of ZNS are shown in Fig. 7B. The results indicate that ZNS at a concentration greater than 100 μM is able to block I_A in these cells.

![Fig. 5](image)

Fig. 5. Effects of riluzole, ZNS, riluzole plus ZNS, ZNS plus cilostazol, and riluzole plus cilostazol on the activity of BK$_{Ca}$ channels. Channel activity of each excised patch was measured at +60 mV. ZNS, 30 μM zonisamide; Ril, 30 μM riluzole; Cil, 30 μM cilostazol. A, channel activities with ZNS or riluzole plus cilostazol, cilostazol was subsequently applied in the continued presence of ZNS or riluzole. B, bar graphs show the relative open probability in these experiments. Each point represents the mean ± S.E.M. ($n = 5–9$). *, significantly different from control group. **, significantly different from ZNS-alone group. ***, significantly different from the riluzole-alone group.

![Fig. 6](image)

Fig. 6. Inhibitory effect of ZNS on voltage-dependent L-type Ca$^{2+}$ current ($I_{\text{Ca,L}}$) in differentiated H19-7 cells. In these experiments, the cells were bathed in normal Tyrode's solution that contained 1.8 mM CaCl$_2$, 1 μM tetrodotoxin, and 10 mM tetraethylammonium chloride. The recording pipettes were filled with a Cs$^+$-containing solution. A, original currents showing the effects of ZNS and ZNS plus nifedipine on $I_{\text{Ca,L}}$. The cell was depolarized from −50 to 0 mV at a rate of 0.05 Hz. B, bar graph showing the effect of ZNS on the amplitude of $I_{\text{Ca,L}}$ with or without addition of nifedipine. ZNS, 300 μM; nifedipine (Nif), 0.3 μM. *, significantly different from control ($p < 0.05$). **, significantly different from the ZNS-alone group ($p < 0.05$).
In this modeled neuron, when the conductance of Ca\(^{2+}\) was readily reduced, along with the decreased firing of action potentials (Fig. 8A). When the conductance of Ca\(^{2+}\) was decreased from 18 to 17 nS, the peak amplitude of \(I_{\text{Na}}\) was readily reduced, along with the decreased firing of action potentials (Fig. 8A). When the conductance of Ca\(^{2+}\)-activated K\(^+\) current was increased from 20 to 40 nS, the frequency of action potential firing was further reduced (Fig. 8B). As a result, the reduced \(I_{\text{Na}}\) and the increased Ca\(^{2+}\)-activated K\(^+\) current, which mimics the ZNS action, can combine to cause a reduction in the firing of neuronal action potentials. The simulation results can be used to predict that the activity of BK\(_{\text{Ca}}\) channels could contribute to the electrical behavior of hippocampal neurons.

Discussion

The major findings of this study are as follows. First, in differentiated hippocampal H19-7 cells, ZNS, a newer antiepileptic drug, increased the amplitude of \(I_{\text{Na}}\) outward current. Second, ZNS increased the activity of BK\(_{\text{Ca}}\) channels in a concentration-dependent fashion with no change in single-channel conductance. Third, this drug had no effect on the open time but decreased the time constants of the closed time, thereby increasing the open probability of BK\(_{\text{Ca}}\) channels. Fourth, a high concentration of ZNS could block the amplitude of \(I_{\text{Na}}\). Fifth, the simulation model predicted that the decreased conductance of \(I_{\text{Na}}\) and the increased conductance of Ca\(^{2+}\)-activated K\(^+\) current, which mimics ZNS action, could decrease the firing of action potentials in modeled hippocampal neurons. The effects on ion channels could be important mechanisms underlying ZNS-induced action.

The concentration-dependent stimulation of BK\(_{\text{Ca}}\) channel activity with an \(EC_{50}\) value of 34 \(\mu\)M was observed in the presence of ZNS. This concentration of ZNS is compatible with clinically relevant concentrations, ranging from 50 to 200 \(\mu\)M (Peters and Sorkin, 1993; Tasaki et al., 1995; Oomen and Mathews, 1999; Huang et al., 2005). The observed effect of ZNS in this study is likely to occur at a concentration achievable in humans. It is thus reasonable to assume that BK\(_{\text{Ca}}\) channels present in neurons are a relevant “target” for the action of ZNS. The ability of ZNS to activate BK\(_{\text{Ca}}\) channels may constitute an important component regulating neuronal function, aiding in understanding the broad-spectrum efficacy in epilepsy and various neuropsychiatric disorders.

Our study demonstrates that ZNS does not modify single-channel conductance of BK\(_{\text{Ca}}\) channels, although it increases the channel open probability significantly. The increased am-
plitude of macroscopic I_K is thought to be primarily due to the increased probability of channel openings accompanied by a decrease in mean closed time. In addition, when applied to the internal face of the membrane, it did not merely increase the activity of BKCa channels in the patch but also increased a shift of voltage sensitivity of the channel to less positive potentials. The sensitivity to this drug in neurons would be expected to depend on the preexisting level of resting potential, the firing rate of action potentials, or the ZNS concentration used.

It is noteworthy that, unlike the molecule of clostazol, ZNS was found to possess an intramolecular hydrogen bond with a short interatomic distance and an aromatic ring poor of electrons, the properties of which are shared by other inhibitors of carboxy anhydrase (Tricarico et al., 2004). The present results also demonstrate that the stimulatory effect of ZNS and riluzole on the activity of BKCa channels is not additive. Riluzole has been previously reported as an opener of BKCa channels in pituitary tumor (GH3) cells (Wu and Li, 1999). It is likely that these two components, which are structurally related, may interact with the same binding site in the channel.

Previous reports have shown that some of the indole diterpenes, which are potent inhibitors of BKCa channels, are associated with their tremorogenic activity (Knaus et al., 1994; Smith et al., 1997). Recent reports have demonstrated that compared with β blocker, zonisamide is effective in treating essential tremor (Morita et al., 2005; Ondo, 2006). Further studies are needed to determine the extent to which ZNS-stimulated activity of BKCa channels contributes to its treatment of essential tremor.

ZNS at a concentration greater than 100 μM was found to block I_{Na} in differentiated hippocampal H17-7 neurons. Lack of A-type K^+ channels has been proposed to decrease the seizure threshold in the cortical malformation of methyla-zoxymethanol-exposed rats (Castro et al., 2001). Although no report on ZNS-worsening seizures has been noted, ZNS has been recently reported to improve depressive symptoms in bipolar disorders (Ghaemi et al., 2006). Whether its inhibition of the I_{Na} channels has potential psychotropic benefits in treating underlying cellular disturbances in bipolar disorders, as described previously, remains to be further clarified.

Our simulation results also imply that both blockade of I_{Na} and direct stimulation of BKCa channels caused by ZNS may synergistically act to affect the functional activity of hippocampal neurons in vivo. Taken together, in addition to the blockade of I_{Na}, our results lead us to suggest that ZNS-mediated antiepileptic action could be partly associated with the direct stimulation of BKCa channels expressed in hippocampal neurons.

Acknowledgments

We thank Okada Motohiro (Hirosaki University, Japan) for comments on zonisamide pharmacology. We also thank Ming-Wei Lin for technical assistance.

References

Castro PA, Cooper EC, Lowenstein DH, and Baraban SC (2001) Hippocampal heter-}

Mediated antiepileptic action could be partly associated with blockade of...
anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats. *FASEB J* **18**:760–761.

Address correspondence to: Dr. Sheng-Nan Wu, Department of Physiology, National Cheng Kung University Medical College, 1 University Road, Tainan 70101, Taiwan. E-mail: snwu@mail.ncku.edu.tw