Anti-Inflammatory Mechanisms of Isoflavone Metabolites in Lipopolysaccharide-Stimulated Microglial Cells

Jin-Sun Park, Moon-Sook Woo, Dong-Hyun Kim, Jin-Won Hyun, Won-Ki Kim, Jae-Chul Lee, and Hee-Sun Kim

Department of Neuroscience and Medical Research Institute, College of Medicine (J.-S.P., M.-S.W., H.-S.K.) and Division of NanoScience (W.-K.K., J.-C.L.), Ewha Womans University, Seoul, Republic of Korea; Department of Microbial Chemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea (D.-H.K.); and Department of Biochemistry, College of Medicine, Cheju National University, Jeju, Republic of Korea (J.-W.H.)

Received September 19, 2006; accepted December 22, 2006

ABSTRACT

The microglial activation plays an important role in neurodegenerative diseases by producing several proinflammatory cytokines and nitric oxide (NO). We found that three types of isoflavones and their metabolites that are transformed by the human intestinal microflora suppress lipopolysaccharide (LPS)-induced release of NO and tumor necrosis factor (TNF-\(\alpha\)) in primary cultured microglia and BV2 microglial cell lines. The inhibitory effect of the isoflavone metabolites (aglycon form) was more potent than that of isoflavones (glycoside form). The RNase protection assay showed that the isoflavone metabolites regulated inducible nitric oxide synthase (iNOS) and the cytokines at either the transcriptional or post-transcriptional level. A further molecular mechanism study was performed for iridoidone, a metabolite of kakkalide, which had the most potent anti-inflammatory effect among the six isoflavones tested.

Irisolidone significantly inhibited the DNA binding and transcriptional activity of nuclear factor (NF)-\(\kappa\)B and activator protein-1. Moreover, it repressed the LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation without affecting the activity of c-Jun N-terminal kinase or p38 mitogen-activated protein kinase. The level of NF-\(\kappa\)B inhibition by iridoidone correlated with the level of iNOS, TNF-\(\alpha\), and interleukin (IL)-1\(\beta\) suppression in LPS-stimulated microglia, whereas the level of ERK inhibition correlated with the level of TNF-\(\alpha\) and IL-1\(\beta\) repression. Overall, the repression of proinflammatory cytokines and iNOS gene expression in activated microglia by isoflavones such as iridoidone might have therapeutic potential for various neurodegenerative diseases including ischemic cerebral disease.

Microglia are the primary immune cells of the brain that are activated in response to brain injury and release of various neurotrophic factors supporting neuronal cell survival or neurotoxic factors, including nitric oxide (NO) and proinflammatory cytokines such as TNF-\(\alpha\) and IL-1\(\beta\) (Kreutzberg, 1996). There is accumulating evidence suggesting that microglial activation is not just a single phenotype but is also a complex array of responses (Town et al., 2005). It was suggested that once activated, microglial cells exist in at least two functionally distinct states, namely a phagocytic phenotype (innate activation) or an antigen-presenting phenotype (adaptive activation), as determined by their stimulatory environment. The imbalance of these states can render microglial activation either beneficial or detrimental to neurons.

A number of studies have reported that neuronal cell death causes microglial activation by releasing various signaling molecules (Aldskogius et al., 1999; Kim et al., 2005), which suggests that neuroinflammation is the result of an ongoing disease process. On the other hand, several studies have suggested that activated microglia play a role as a possible cause of Alzheimer’s disease by secreting proinflammatory cytokines such as TNF-\(\alpha\) and IL-1\(\beta\), which have been shown to promote neuronal injury at high levels (Tan et al., 1999, ABBREVIATIONS: NO, nitric oxide; TNF, tumor necrosis factor; IL, interleukin; LPS, bacterial lipopolysaccharide; NF, nuclear factor; ERK, extracellular signal-regulated kinase; PD98059, 2’-amino-3’-methoxyflavone; U0126, 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene; PDTC, pyrrolidone dithiocarbamate; MG132, carbobenzoxy-L-Leucyl-L-leucyl-L-lucinal; MEM, modified Eagle’s medium; FCS, fetal calf serum; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; ELISA, enzyme-linked immunosorbent assay; TBST, Tris-buffered saline/Tween 20; MAPK, mitogen-activated protein kinase; JNK, c-Jun N-terminal kinase; AP, activator protein; iNOS, inducible nitric-oxide synthase; EMSA, electrophoretic mobility shift assay.

DOI: 10.1124/jpet.106.114322.
2002; Lim et al., 2000, 2001). In addition, the etiological role of microglial activation has been reported in other neurodegenerative diseases (McGeer et al., 1988; Gao et al., 2003). Although the relationship between microglial activation and neurodegenerative diseases is not completely understood, it is evident that microglial activation plays an important role in the progression of several neurodegenerative diseases (Wyss-Coray and Mucke, 2002; Wyss-Coray, 2006). Therefore, the inhibition of microglial activation would be an effective therapeutic approach to alleviating the progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis.

Isoflavones are biologically active compounds that are found in a variety of plants, with relatively high levels being found in soybean. Recently, a series of isoflavonoids including kakkalide, tectoridin, and glycitein were isolated from the flowers of *Pueraria thunbergiana* (Leguminoseae), which are used in traditional Chinese medicine (Park et al., 1999). Because most traditional medicines are administered orally, their components inevitably come into contact with the intestinal microflora in the alimentary tract (Han et al., 2003). These intestinal bacteria transform most of the components before they are absorbed through the gastrointestinal tract. The human intestinal bacteria transform kakkalide, tectoridin, and glycitein into isorutoside, tectorigenin, and glycitein, respectively (Ba et al., 1999; Yamaki et al., 2002). The transformed metabolites have more potent hepatoprotective and anti-inflammatory activity than the glycoside form of isoflavones (Yamaki et al., 2002; Han et al., 2003). This suggests that kakkalide, tectoridin, and glycitein are prodrugs that can be transformed into the active compounds by human intestinal bacteria.

The isoflavones isolated from the rhizomes of *P. thunbergiana* have been used in traditional medicine as antipyretics and analgesics in treatment of the cold and whose flowers have been used to treat diabetes mellitus, ethanol-induced cell mortality, and hepatic injury (Kim, 1996). Recently, there have been several reports showing the anti-inflammatory effects of isoflavones in peripheral macrophages. Tectorigenin and tectoridin inhibited the production of prostaglandin E2 and the expression of COX-2 in rat peritoneal macrophages (Kim et al., 1999). It was reported that irisolidone, tectorigenin, genistein, and glycitein suppress 12-O-tetradecanoylphorbol-13-acetate-induced prostanoid E2 production (Yamaki et al., 2002). Meanwhile, glycitein was shown to inhibit LPS-induced NO production in Raw264.7 macrophage cells (Sheu et al., 2001). These results have highlighted the therapeutic potential of these isoflavones in various inflammatory diseases.

Despite the anti-inflammatory effects in peripheral macrophage cells, the effects of the six isoflavones in microglial activation have not been reported. Moreover, the detailed molecular/signaling mechanisms underlying the anti-inflammatory effects of these isoflavones are not completely understood. Therefore, this study examined whether or not the three isoflavones isolated from the flowers of *P. thunbergiana* and their bacterial metabolites suppress microglial activation. It was found that the isoflavone metabolites (irisolidone, tectorigenin, glycitein) strongly suppressed the proinflammatory cytokines and NO production in LPS-stimulated microglial cells, whereas the glycoside isoflavones (kakkalide, tectoridin, glycitein) showed no significant inhibition. In addition, it was found that the NF-κB and ERK signaling pathways are involved in the anti-inflammatory effects of irisolidone, which had the most potent anti-inflammatory effect of the six isoflavones tested. Considering that isoflavones and their metabolites have minimal side effects in the body, the inhibition of microglial activation by isoflavone metabolites may be a good potential therapeutic modality for various neurodegenerative diseases.

Materials and Methods

Preparation of Three Isoflavones and Its Bacterial Metabolites. Glycitein, tectoridin, and kakkalide were isolated according to the previous methods (Bae et al., 1999; Lee et al., 2000; Yamaki et al., 2002; Han et al., 2003). The flowers of *P. thunbergiana* (500 g), which were produced in Korea, were extracted with 2.5 liters of boiling water, concentrated in a rotary evaporator, extracted three times with ethyl acetate, and evaporated. The resulting extract (28 g) was loaded on a silica-gel flash column chromatograph and eluted with CHCl₃:MeOH (20:1 → 4:1). We isolated glycitein (0.25 g), tectoridin (0.3 g), and kakkalide (2.3 g). Each isolated compound (0.2 g) was incubated with *Bacteroides sporicers Elij 15*, a human intestinal bacterium, in a final volume of 500 ml of anaerobic dilution medium in an anaerobic glove box (Coy Laboratory Products Inc., Grass Lake, MI), extracted three times with ethyl acetate, and evaporated. The resulting extract (28 g) was loaded on a silica-gel flash column chromatograph and eluted with CHCl₃:MeOH (20:1 → 10:1). We isolated their metabolites, glycitein (32 mg), tectorigenin (25 mg), and irisolidone (36 mg); irisolidone [pale yellow amorphous powder, m.p. 189 to 190°C; IR (KBr), 3447, 2991, 1658, and 1033 cm⁻¹; FAB-MS, 315 [M+H⁺]; tectorigenin [pale yellow amorphous powder, m.p. 230 to 233°C; IR (KBr), 3447, 2991, 1648, and 1023 cm⁻¹; FAB-MS, 303 [M+H⁺]]; and glycitein [pale yellow amorphous powder, m.p. 178 to 180°C; IR (KBr), 3472, 1635, and 1178 cm⁻¹; FAB-MS, 315 [M+H⁺]; FAB-MS, 290 [M+H⁺]]. The chemical structures of isoflavones and their metabolites are shown in Fig. 1.

Fig. 1.

Reagents. LPS (*Escherichia coli* serotype 055:B5) was obtained from Sigma-Aldrich (St. Louis, MO). Two kinds of ERK inhibitors, PD98059 and U0126, and two kinds of NF-κB inhibitors, pyrrolidone dithiocarbamate (PDTC) and MG132, were purchased from Calbiochem (La Jolla, CA). All other chemicals were obtained from Sigma-Aldrich, unless stated otherwise.

Microglial Cell Cultures and Cell Viability. The immortalized murine BV2 microglial cell line was grown and maintained in Dulbecco’s modified Eagle's medium supplemented with 10% heat-inactivated fetal bovine serum, streptomycin (10 μg/ml), and penicillin (10 U/ml) at 37°C. Cultures of primary microglial cells were established based on the differential adherence of cells harvested from fetus rat cortex. The methods were modified from Frei et al. (1987). Mixed cell cultures were prepared from postnatal 1-day rat cerebral cortices. Cortices were dissociated by passing through a 130-μm nylon mesh and plated at 2 × 10⁵ cells/cm² in T75 Falcon flasks. Cultures were fed every 3 to 4 days with modified Eagle's medium (MEM) supplemented with 10% fetal calf serum (FCS). On days 12 to 13, the culture plate was shaken on a rotatory shaker at 200 rpm for 30 min. The suspended cells were plated on 24- or 48-well culture plates. After 1-h incubation at 37°C, the medium containing suspended cells was discarded, and adherent cells were further incubated with 1% FCS-supplemented MEM for future experiments. The homogeneity of the culture was determined by immunostaining for Mac-1 cell surface antigen expression and was routinely found to be higher than 90%.

Cell viabilities were determined in microglial cells by MTT reduction assay. In brief, cells were added to MTT (5 mg/ml in phosphate-buffered saline) and incubated at 37°C for 2 to 3 h. The resulting dark blue crystals were dissolved with an equal volume of isopropyl...
Measurement of Cytokine and Nitrite Levels. Microglial cells (1 × 10^5 cells per well in a 24-well plate) were pretreated with isoflavones for 30 min and stimulated with LPS (0.1 μg/ml) in the presence of serum. The supernatants of the cultured microglia were collected 6 or 24 h after LPS stimulation, and the concentrations of TNF-α and IL-1β were measured by enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies and the procedure recommended by the supplier (PharMingen, San Diego, CA). The serum containing 40 mM HCl. Absorbance was determined at a test wavelength of 570 nm and a reference wavelength of 630 nm using a Microplate reader (SpectraMax 340pc; Molecular Devices, Sunnyvale, CA).

RNase Protection Assay. BV2 cells (4 × 10^5 cells on a 35-mm dish) were treated with LPS in the presence or absence of isoflavone metabolites, and total RNA was extracted with TRIzol reagent (Sigma-Aldrich) according to the manufacturer’s protocol. RNase protection assay was performed using a Riboquant multiprobe RNase protection assay kit (PharMingen). Protected fragments were resolved on 6% polyacrylamide gel, and autoradiography was performed after exposing the dried gel to X-ray film.

Western Blot. Cell extracts were prepared as described previously (Woo et al., 2003), and 50 μg of proteins was separated by SDS-polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride membranes. The membranes were blocked with 5% bovine serum albumin in 10 mM Tris-HCl containing 150 mM NaCl and 0.5% Tween 20 (TBST) and then incubated with primary antibodies (1:1000) that recognize the phospho- or total forms of ERK1/2, p38 MAPK, and JNK (Cell Signaling Technology Inc., Beverly, MA). For Western blot of TNF-α, antibody that recognizes both the pro- and mature form of TNF-α (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) was used. After thoroughly washing with TBST, horseradish peroxidase-conjugated secondary antibodies (New England Biolabs, Beverly, MA; 1:3000 dilution in TBST) were applied, and the blots were developed using an enhanced chemiluminescence detection kit (GE Healthcare, Little Chalfont, Buckinghamshire, UK).

Nuclear Extract Preparation and Electrophoretic Mobility Shift Assay. Nuclear extracts from treated microglia were prepared as described previously (Woo et al., 2003). The double-stranded DNA oligonucleotides containing the NF-κB or AP-1 consensus sequences (Promega) were end-labeled using T4 polynucleotide kinase (New England Biolabs) in the presence of [γ-32P]ATP. Five micromolar of the nuclear proteins was incubated with 32P-labeled NF-κB or AP-1 probe on ice for 30 min and resolved on a 5% acrylamide gel as described previously (Woo et al., 2003). For the supershift assay, antibodies to the p65 or p50 subunits of NF-κB (Santa Cruz Biotechnology, Inc.) were coincubated with the protein in the reaction mixture for 30 min at 4°C before adding the radiolabeled probe. For competition binding assays, binding reaction reagents and nuclear extracts were mixed with nonradioactive oligonucleotides in molar excess and incubated before adding 32P-labeled probe.

Transient Transfection and Luciferase Assay. Transfection of the NF-κB or AP-1 reporter gene into BV2 cells was performed using Geneporter 2 transfection reagent (Gene Therapy Systems Inc., San Diego, CA). BV2 cells (1 × 10^5 per well in a 12-well plate) were transfected with 1 μg of the reporter construct mixed with Geneporter. After 48 h, cells were harvested, and a luciferase assay was performed as described previously (Woo et al., 2003). To determine the effect of isoflavones on LPS-induced NF-κB or AP-1 activity, cells were pretreated with the agents for 30 min before treating with LPS and incubated for 6 h before harvesting cells for luciferase assay. Transfection assays were performed three times in duplicate.

Statistical Analysis. The SAS program (SAS Institute, Cary, NC) was used for statistical analysis. The data are expressed as the mean ± S.E.M. and analyzed for statistical significance using analysis of variance, followed by Scheffe’s test for multiple comparison. A p value < 0.05 was considered significant.

Fig. 1. The chemical structures of isoflavones used in this study. Glycosylated isoflavones and their aglycones (bacterial metabolites) are shown.

Glycosides:

- Kakkalide
 - (5-hydroxy-4',6-dimethoxyisoflavone-7-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside)
- Tectoridin
 - (4',5-dihydroxy-6-methoxyisoflavone-7-β-D-glucopyranoside)
- Glycitin
 - (4'-hydroxy-6-methoxyisoflavone-7-β-D-glucopyranoside)

Aglcones:

- Irisolidone
 - (5,7-dihydroxy-4',6-dimethoxyisoflavone)
- Tectorigenin
 - (4',5,7-trihydroxy-6-methoxyisoflavone)
- Glycitein
 - (4',7-dihydroxy-6-methoxyisoflavone)
Results

Effect of the Isoflavones on NO and Cytokine Production in LPS-Stimulated Microglial Cells. The BV2 microglial cells were stimulated with LPS (100 ng/ml) in the presence or absence of the isoflavones isolated from the flowers of *P. thunbergiana* to determine whether they reduce the level of NO, TNF-α, and IL-1β production, which play important roles in various inflammatory diseases. The stimulation of BV2 cells with LPS led to a significant increase in the NO, TNF-α, and IL-1β levels in the cell-conditioned media after 24 h. Pretreatment of BV2 cells with the isoflavone metabolites (irisolidone, tectorigenin, glycitein) significantly inhibited the LPS-induced NO, TNF-α, and IL-1β production in a dose-dependent manner (Fig. 2A). The potency of the inhibition of NO and TNF-α was in order of irisolidone > glycitein > tectorigenin, and the inhibition of IL-1β was in the order of glycitein > irisolidone > tectorigenin. In contrast, their proforms (glycoside isoflavones) showed no significant inhibition. The isoflavone metabolite-induced decrease in NO, TNF-α, and IL-1β was also observed in the rat primary microglia cultures (Fig. 2B). This suggests that the anti-inflammatory effect of isoflavone metabolites is not limited to a particular microglial cell line. To exclude the possibility that the decrease in the NO and cytokine levels was simply due to cell death, the cell viability was tested at various concentrations of isoflavones. The MTT assay showed that the isoflavones did not have any cytotoxicity at the concentrations (5–50 μM) used in this study in both the BV2 and primary microglial cells for at least 48 h (data not shown).

Isoflavone Metabolites Suppress mRNA Expressions of iNOS, TNF-α, and IL-1β. RNA protection assay was performed to determine whether the isoflavone metabolites regulate iNOS and cytokine expression at the transcriptional level. As shown in Fig. 3A, the three types of isoflavone metabolites at 50 μM significantly inhibited iNOS, TNF-α, and IL-1β mRNA expression. Despite the robust inhibition of TNF-α protein production by 50 μM of the isoflavone metabolites, the same concentration of metabolites decreased the TNF-α mRNA levels by only 20 to 30%. Therefore, these results suggest that three isoflavone metabolites regulate the expression of iNOS and IL-1β at the transcriptional level, whereas they regulate the expression of TNF-α at the transcriptional and/or post-transcriptional level. In support of this hypothesis, Western blot analysis revealed that the isoflavone metabolites significantly repressed both the pro- and mature form TNF-α at the protein level in the order of irisolidone > glycitein > tectorigenin, as shown in ELISA data (Fig. 3C). Based on these results, the molecular mechanism of irisolidone, which showed the most potent anti-inflammatory activity among three isoflavone metabolites tested, was further examined.

Irisolidone Inhibits the DNA Binding and Transcriptional Activities of NF-κB and AP-1 in LPS-Stimulated Microglial Cells. NF-κB is an important upstream modulator of cytokine and iNOS expression in microglia (Pahl, 1999), and the anti-inflammatory actions of a number of cytokines and chemicals have been explained in terms of the inhibition of NF-κB activity. Therefore, the involvement of NF-κB activity in irisolidone-induced suppression of NO and cytokines was examined. As shown in Fig. 4A, the stimulation of BV2 cells with LPS resulted in strong NF-κB binding, which was inhibited significantly by irisolidone. The compound also affected NF-κB-mediated transcription (Fig. 4B). The NF-κB transcriptional activity was assayed by transfecting the BV2 cells with a plasmid containing three NF-κB binding sites and a luciferase reporter gene. The luciferase assay showed that irisolidone repressed the LPS-stimulated NF-κB transcriptional activation in a dose-dependent man-
Irisolidone inhibited the DNA binding and transcriptional activity of AP-1, which is also an important modulator of inflammation. Therefore, NF-κB and AP-1 may be important molecules that determine the anti-inflammatory activity of irisolidone in LPS-stimulated microglia.

Irisolidone Suppresses LPS-Induced ERK Phosphorylation in LPS-Stimulated Microglial Cells but Not JNK or p38 MAPK Phosphorylation. Western blot analysis revealed that irisolidone (50 μM) remarkably decreased the LPS-stimulated phosphorylation of ERK by 70 and 50% at 1 and 3 h, respectively, whereas it had no effect on either JNK or p38 MAPK activities. This suggests that the ERK pathway may be involved in the anti-inflammatory activity of irisolidone.

Effect of ERK-Specific Inhibitor (PD98059) and NF-κB Inhibitor (PDTC) on Cytokine and iNOS Expression in LPS-Stimulated Microglial Cells. Western blot data (Fig. 6C) indicate that PD98059 downregulates TNF-α expression at the post-transcriptional level. Overall, these results suggest that the anti-inflammatory effect of irisolidone in LPS-stimulated microglial cells may be mediated through the inhibition of the NF-κB and ERK signaling pathways.

The Relationship between the ERK Pathway and NF-κB Activation in LPS-Stimulated Microglial Cells. The effect of an ERK-specific inhibitor on NF-κB or vice versa was examined to determine the relationship between ERK and NF-κB. As shown in Fig. 7, neither PD98059 nor U0126 had any significant effect on the LPS-induced DNA binding and transcriptional activities of NF-κB in BV2 cells. In contrast, two NF-κB inhibitors, PDTC and MG132, decreased the level of ERK-phosphorylation significantly. This suggests that ERK is not upstream of NF-κB activation. Instead, it is believed that ERK and NF-κB modulate the cytokines independently. However, the inhibition of TNF-α by the NF-κB inhibitors appears to result in reduced level of ERK phosphorylation due to the autocrine/paracrine regulatory effect of TNF-α on ERK.
Discussion

This article reports the inhibitory effects of the isoflavone metabolites against microglial activation. Three types of isoflavone metabolites (irisolidone, tectorigenin, glycitein) significantly suppressed the LPS-induced production of NO, TNF-α, and IL-1β in the BV2 microglial cells and rat primary cultured microglia. The RNase protection assay showed that the isoflavone metabolites repressed iNOS, TNF-α, and IL-1β expression at the transcriptional or post-transcriptional level. The potency of inhibition was in order of irisolidone > glycitein > tectorigenin in the case of NO and TNF-α generation and glycitein > irisolidone > tectorigenin in the case of IL-1β generation. In contrast, the glycosylated isoflavones did not significantly repress the inflammatory molecules, suggesting that glycosylation might decrease the biological activity. A comparison of the three isoflavone structures showed that they commonly posses a 6-methoxy residue, suggesting that the 6-methoxylation of isoflavones contributed to the anti-inflammatory activity of isoflavones in the microglia. Moreover, 4′-methoxylation appears to enhance the activity because irisolidone, which has the most potent anti-inflammatory effect, has this residue differently from other isoflavones (Fig. 1).

The molecular mechanisms underlying anti-inflammatory effect of irisolidone, which showed the most potent anti-inflammatory activity, were further studied. The results suggest that the NF-κB and ERK signaling pathways are largely involved in the modulation of iNOS, TNF-α, and IL-1β by irisolidone in LPS-stimulated microglial cells. The stimulation of microglial cells with LPS induced the activation of NF-κB and ERK, which subsequently led to the up-regulation of iNOS, TNF-α, and IL-1β expression. NF-κB appears to modulate iNOS, TNF-α, and IL-1β expression, whereas ERK regulates TNF-α and IL-1β without affecting iNOS. Overall, the possible target of irisolidone is believed to be NF-κB and ERK.

The fact that the ERK-specific inhibitors did not suppress the activity of NF-κB suggests that ERK is not upstream of NF-κB activation, at least in LPS-stimulated microglial cells. Instead, ERK and NF-κB appear to modulate cytokine expression independently. However, due to the autocrine/paracrine regulatory effect of TNF-α on ERK (Tortorella et al., 2004), the inhibition of TNF-α by the NF-κB inhibitors appears to decrease the level of ERK phosphorylation (Fig. 7C). Some investigations in peripheral cells have presented evidence showing that NF-κB is downstream of ERK (Kan et al., 1999; Jiang et al., 2001). However, other studies suggest that there are two independent signaling pathways (Doi et al., 2000; Chan and Riches, 2001). Moreover, our group previously reported that ERK plays a role as an upstream modulator of NF-κB in iNOS expression in interferon-γ-stimulated BV2 microglial cells (Park et al., 2005). Therefore, the interaction between the signaling molecules in the expression of certain genes differs according to the stimuli and cell types examined. More study will be needed to clarify the relationship between ERK and NF-κB in activated microglia.

Besides the anti-inflammatory effects of the isoflavones used in this study, a variety of biological effects of isoflavones
have been demonstrated until now. Genistein, daidzein, and glycitein have been found to have antioxidative ability, which can prevent atherosclerosis and stroke, and to reduce the risk of cancer (Hodgson et al., 1996; Cline and Hughes, 1998; Kopelovich et al., 2000). Tectorigenin and genistein also exhibited cytotoxicity against various human cancer cells (Hodgson et al., 1996; Lee et al., 2001). In addition, a recent study reported the cytoprotective effect of tectorigenin on oxidative stress induced by hydrogen peroxide (Kang et al., 2005). Genistein suppresses the expression of iNOS, TNF, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 through the inhibition of the tyrosine kinase activities (Weber et al., 1995). It also had a neuroprotective effect against β amyloid-induced neurotoxicity (Bang et al., 2004). The neuroprotective effects of isoflavones have been shown in animal models of Alzheimer’s disease, Parkinson’s...
disease, and amyloid lateral sclerosis (Trieu and Uckun, 1999; Rezai-Zadeh et al., 2005; Wang et al., 2005). In the future, it will be necessary to search for more biologically active constituents in medicinal herbs, which can be applied to the development of pharmaceutical treatments for neurodegenerative diseases.

In conclusion, this article reports for the first time the anti-inflammatory activity of isoflavone metabolites (irisolidone, tectorigenin, glycitein) in microglial cells along with their underlying molecular mechanisms, with particular focus on irisolidone. Further research on the molecular mechanisms of the other two isoflavone metabolites (tectorigenin and glycitein) will be helpful to precisely correlate the structure-activity relationship of isoflavones. Considering that isoflavone metabolites are easily absorbed into the body and have a chemical structure that can readily penetrate the blood-brain barrier, the strong inhibition of microglial activation by these metabolites might have therapeutic potential for various neurodegenerative diseases.

References

Kim YP, Yamada M, Lim SS, Lee SH, Ryu N, Shin KH, and Ohuchi K (1999) Inhibition by tectorigenin and tectoridin of prostaglandin E2 production and...

Address correspondence to: Dr. Hee-Sun Kim, Department of Neuroscience, College of Medicine, Ewha Womans University, Mok-6-dong 911-1, Yangchun-Ku, Seoul 158-710, South Korea. E-mail: hskimp@ewha.ac.kr