Sirolimus Causes Relaxation of Human Vascular Smooth Muscle: A Novel Action of Sirolimus Mediated via ATP-Sensitive Potassium Channels

Srinivas Ghatta,1 Radhika R. Tunstall, Sohail Kareem, Mohamed Rahman, and Stephen T. O’Rourke

Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota (S.G., R.R.T., S.T.O.) and Department of Internal Medicine, University of North Dakota, Grand Forks, North Dakota (S.K., M.R.)

Received October 9, 2006; accepted December 11, 2006

ABSTRACT

Little is known about the vasomotor effects of sirolimus, and preliminary studies using animal models have provided conflicting results. The present study was designed to determine the effects of sirolimus on vasomotor tone in human blood vessels. Human radial artery segments were cut into rings, denuded of endothelium, and placed into organ chambers for isometric tension recording. Sirolimus (10⁻¹⁰ to 10⁻⁶ M) caused concentration-dependent relaxation of human arteries contracted with U46619 (9,11-dideoxy-11α,9α-epoxymethano-prostaglandin F₂α, 10⁻⁸ M) [−log (M) EC₅₀ (pD₂) = 7.28 ± 0.1; Eₘₐₓ = 57 ± 6%] or phenylephrine (10⁻⁶ M) (pD₂ = 7.16 ± 0.4; Eₘₐₓ = 45 ± 9%). Sirolimus-induced relaxation was unaffected by treatment with indomethacin (10⁻⁵ M) but was nearly abolished in tissues contracted by depolarization with elevated K⁺ (60 mM). In U46619-contracted rings, the response to sirolimus was markedly inhibited in the presence of the specific ATP-sensitive potassium (Kₐₜₚ) channel blocker, glyburide (10⁻⁶ M), but was unaffected by treatment with blockers of large conductance, calcium-activated potassium channel (iberiotoxin, 10⁻⁷ M), small conductance, calcium-activated potassium channel (apamin, 10⁻⁶ M), or voltage-gated potassium channel (4-aminopyridine, 10⁻³ M). The Kₐₜₚ channel opener, aprikalim (10⁻⁷ to 10⁻⁵ M), caused concentration-dependent relaxations that were inhibited by glyburide (10⁻⁶ M) and abolished in tissues contracted with elevated K⁺ (60 mM), thus confirming that Kₐₜₚ channel opening causes relaxation of these arteries. These data suggest that sirolimus, at concentrations attained in vivo, causes relaxation of human arteries, and this effect is mediated by opening of Kₐₜₚ channels in vascular smooth muscle. Reduced vasomotor tone is a heretofore unrecognized action of sirolimus that could potentially contribute to its efficacy in drug-eluting stents.

Drug-eluting stents are being heralded as a major therapeutic advance in the treatment of obstructed blood vessels (Fattori and Piva, 2003). In particular, stents coated with polymers that gradually release sirolimus have generated considerable interest. Sirolimus is a potent immunosuppressant and antiproliferative agent, and restenosis rates are almost negligible with sirolimus-eluting stents (Morice et al., 2002; Sousa et al., 2003).

The cellular effects of sirolimus are mediated by binding of the drug to its cytosolic receptor, the FK506-binding protein, which results in blockade of cell cycle progression at the G₁/S transition (Sehgal, 2003). The inhibitory effects of sirolimus on cell growth and migration in blood vessels are widely recognized and are believed to play a pivotal role in the remarkable efficacy of sirolimus in maintaining the potency of implanted stents (Marks, 2003; Asnaghi et al., 2004). Surprisingly, little is known about the effects of sirolimus on blood vessel function (i.e., vasodilation and vasoconstriction). This is particularly notable since sirolimus is released directly into the circulation (Hiatt et al., 2001; Suzuki et al., 2001), where it could potentially alter blood flow and tissue perfusion in regions distal to the site of stent placement. A limited number of preliminary studies have attempted to address this issue by using animal models, but the results are conflicting (Corbin et al., 1994; Milliard et al., 1998; Jeanmart et al., 2002; Gardiner et al., 2004). Hence, the

ABBREVIATIONS: FK506, tacrolimus; U46619, 9,11-dideoxy-11α,9α-epoxymethano-prostaglandin F₂α; Kₐₜₚ, ATP-sensitive potassium; BK₉₉ large conductance, calcium-activated potassium channel; SK₉₉, small conductance, calcium-activated potassium channel; Kᵥ, voltage-gated potassium channel; pD₂, −log (M) EC₅₀.
present study was designed to determine the vasomotor effects of sirolimus in human blood vessels.

Materials and Methods

Tissue Preparation. This study was approved by the Institutional Review Board at North Dakota State University. Informed consent was obtained from all patients from whom tissue samples were collected. Studies were conducted on unused segments of isolated human radial arteries obtained during coronary artery bypass graft surgeries performed at Meritcare Medical Center (Fargo, ND). Arterial segments were placed into cold physiological salt solution (composition: 118.3 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 1.2 mM KH2PO4, 25.0 mM NaHCO3, 0.026 mM edetate calcium disodium, and 11.1 mM glucose 11.1) and transported to the laboratory. The blood vessels were cleaned of adherent fat and connective tissue and cut into rings (3 to 4 mm in length). To study the effect of sirolimus directly on vascular smooth muscle, experiments were performed on endothelium-denuded preparations so as to avoid any potential confounding influence by the presence of endothelial cells. In all experiments, the endothelium was removed by inserting the tips of a pair of forceps into the lumen and gently rolling the tissues back and forth over filter paper soaked in physiological salt solution. The absence of intact endothelium was confirmed functionally by testing the ability of acetylcholine (10⁻⁶ M) to produce endothelium-dependent relaxation during contraction evoked by phenylephrine (10⁻⁷ M).

Organ Chamber Studies. Arterial rings were suspended in water-jacketed organ chambers filled with 25 ml of physiological salt solution, which were aerated with a mixture of 95% O₂ and 5% CO₂ and maintained at 37°C (O'Rourke, 1996a,b). The rings were suspended by means of two fine stainless steel wire clips passed through their lumen; one clip was anchored to the bottom of the organ chamber, whereas the other was connected to a strain-gauge force transducer for the purpose of measuring isometric force. The rings were placed individually at the optimal point of their length-tension relationship by progressively stretching them until the contractile response to KCl (20 mM) was maximal. The blood vessels were then allowed to equilibrate at their optimal length for 1 h before exposure to vasoactive substances.

Vasodilator responses were determined in rings contracted with phenylephrine (10⁻⁶ M), U46619 (10⁻⁸ M), or KCl (60 mM). After the contractions reached a stable plateau, increasing concentrations of sirolimus (10⁻¹⁰ to 10⁻⁶ M), diltiazem (10⁻⁶ to 10⁻⁴ M), or aprikalim (10⁻⁵ to 10⁻⁴ M) were added to the organ chambers, and relaxations were recorded. In some experiments, indomethacin (10⁻⁵ M) was added to the organ chamber 30 min before addition of the contractile agent to inhibit the production of vasoactive prostanooids. In other experiments, glyburide (10⁻⁶ M), apamin (10⁻⁶ M), or 4-aminoopyridine (10⁻⁵ M) were added to the organ chamber 30 min before addition of the contractile agent to inhibit ATP-sensitive potassium (IKATP) channels, large conductance, calcium-activated potassium channels (BKCa), or K₄C₅ channels, respectively. Control and treated rings prepared from the same artery were studied in parallel.

Data Analysis. Relaxations are expressed as a percentage of the initial vasoconstrictor-induced tone. The maximal decrease in tension (E₅₀) and the concentration necessary to produce 50% of its own maximal response (EC₅₀) were determined. The EC₅₀ values were converted to the negative logarithms and expressed as −log (M) EC₅₀ (pD₂). Results are expressed as mean ± S.E.M., and n refers to the number of patients from whom blood vessels were taken. Mean values were compared by Student's t test or analysis of variance. Values were considered to be significantly different when P < 0.05.

Drugs and Solutions. The following drugs were used: acetylcholine, 4-aminoopyridine, diltiazem, glyburide, indomethacin, and phenylephrine (Sigma-Aldrich, St. Louis, MO); apamin and iberiotoxin (Tocris, Ellisville, MO); aprikalim (Rhone Poulenc Rorer, Alfortville, France); sirolimus (LC Laboratories, Woburn, MA); and U46619 (Pharmacia and Upjohn, Kalamazoo, MI). Drug solutions were prepared daily, kept on ice, and protected from light until used. All drugs were dissolved initially in distilled water with the exception of aprikalim, which was dissolved in ethanol; glyburide, which was dissolved in 0.1 N NaOH; indomethacin, which was dissolved in an aqueous solution of sodium bicarbonate; and sirolimus, which was dissolved in dimethylsulfoxide, before further dilution in distilled water. Drugs were added to the organ chambers in volumes not greater than 0.2 ml. Drug concentrations are reported as final molar concentration in the organ chamber.

Results

Sirolimus (10⁻¹⁰ to 10⁻⁶ M) caused concentration-dependent relaxations in isolated human radial artery rings contracted with the thromboxane A₂ mimetic, U46619 (10⁻⁸ M) (Fig. 1, top). The pD₂ was 7.28 ± 0.1, and the maximal relaxation was 57 ± 6%. The inhibitory effect of sirolimus was not limited to U46619-induced contractions because sirolimus also caused concentration-dependent relaxations (pD₂ = 7.16 ± 0.4, E₅₀ = 45 ± 9%) in rings contracted with the α₁-adrenoceptor agonist, phenylephrine (10⁻⁶ M) (Fig. 1, bottom). These concentrations of sirolimus had no direct contractile or relaxant effects on unstimulated radial artery rings. Treatment of the rings with indomethacin (10⁻⁵ M) had no effect on the concentration-response curve to sirolimus (Fig. 2), suggesting that cyclooxygenase metabolites of arachidonic acid play no role in the relaxations elicited by sirolimus.

In radial artery rings contracted by depolarization with KCl (60 mM), sirolimus-induced relaxation was nearly abolished (Fig. 3, top). In contrast, diltiazem (10⁻⁸ to 10⁻⁴ M), a voltage-dependent calcium channel blocker (O'Rourke et al., 1996a,b), had no inhibitory effect on the concentration-response curve to sirolimus.
In the present study, we demonstrate that sirolimus causes relaxation of isolated human arteries and that this response is likely mediated via the opening of K_{ATP} channels in vascular smooth muscle. The pharmacologic actions of vasodilators may be due either to a direct effect on vascular smooth muscle or to an indirect effect mediated via the release of a relaxing factor(s) from endothelial cells (O'Rourke et al., 2005). The vasodilator effect of sirolimus in human radial arteries is not likely due to the release of an endothelium-derived relaxing factor, such as nitric oxide or endothelium-derived hyperpolarizing factor, because the experiments were performed on arterial rings in which the endothelium had been removed. Moreover, the cyclooxygenase inhibitor, indomethacin, had no effect on the response to sirolimus, thus ruling out a role for prostacyclin or other vasodilator prostaglandins in the observed response. These findings are consistent with a direct action of sirolimus on vascular smooth muscle cells to cause relaxation of human arteries.

The smooth muscle relaxant effect of sirolimus was not limited to contractile responses evoked by a single vasoconstrictor. Sirolimus was effective in relaxing arteries contracted with the thromboxane A$_2$-analog, U46619, and the
α₁-adrenoceptor agonist, phenylephrine, suggesting that sirolimus may interfere with multiple receptor-mediated vasoconstrictor mechanisms. In contrast, sirolimus had little effect on contractions induced by elevated extracellular potassium. Potassium-induced contractions are the result of membrane depolarization, which causes increased calcium entry via voltage-operated calcium channels in vascular smooth muscle cells (O’Rourke et al., 2005). This mechanism was verified in human radial arteries by the experiments with diltiazem, a selective inhibitor of voltage-operated calcium channels that caused complete relaxation of potassium-induced contractions in a concentration-dependent manner. The lack of effect of sirolimus under these same conditions suggests that the mechanism of action of sirolimus is dependent on membrane potential but, unlike diltiazem, does not involve direct blockade of extracellular calcium entry via voltage-operated calcium channels.

One mechanism by which sirolimus could elicit vascular smooth muscle relaxation is via activation of potassium channels, which results in smooth muscle relaxation that is dependent on membrane potential and is abolished in the presence of high concentrations of extracellular potassium (Hamilton et al., 1986; Cook et al., 1988). Several potassium channel subtypes are expressed in vascular smooth muscle cells (Brayden, 1996), including K_{ATP}, BK_{Ca}, SK_{Ca}, and K_V. Because glyburide, a potent and selective K_{ATP} channel blocker (Ashcroft and Ashcroft, 1990), markedly inhibited sirolimus-induced relaxations, it is likely that the mechanism of this response to sirolimus involves opening of K_{ATP} channels. Moreover, the effect of sirolimus seems to be selective for K_{ATP} channels because blockers of BK_{Ca} (i.e., iberiotoxin) (Galvez et al., 1990), SK_{Ca} (i.e., apamin) (Banks et al., 1979), and K_V (i.e., 4-aminopyridine) (Hille, 2001) had no effect on the concentration-response curve to sirolimus. That opening of K_{ATP} channels causes relaxation of human radial arteries is confirmed by the results with aprikalin (Atwal, 1992), a selective K_{ATP} channel opener that caused concentration-dependent relaxations that were, like those to sirolimus, inhibited by glyburide and abolished in the presence of high concentrations of extracellular potassium. These results are in agreement with previous studies indicating a role for K_{ATP} channels in regulating vasoconstrictor tone in human arteries (Miura et al., 2003; Wareing et al., 2006).

The molecular events underlying sirolimus-induced relaxation of human vascular smooth muscle cells remain to be elucidated. The pharmacologic data presented in the current study provide strong evidence for a role for K_{ATP} channels in the smooth muscle-relaxing effect of sirolimus; however, this interpretation requires confirmation by electrophysiological studies of the effects of sirolimus on potassium currents in human vascular smooth muscle. Nevertheless, the feasibility of this mechanism is supported by recent studies in neurons and cardiac myocytes, where sirolimus modulates potassium channel activity through binding to FK506-binding protein, which may interact directly with potassium channels or associated proteins (Terashima et al., 1998; DuBell et al., 2000).

There are few reports at present of studies designed to investigate the effects of sirolimus on vasoconstrictor tone. A direct effect of sirolimus on vasoconstriction was initially demonstrated in rat isolated aortic rings (Corbin et al., 1994), where acute in vitro administration of sirolimus reduced certain vasoconstrictor responses in an endothelium-dependent manner. Under in vivo conditions, however, i.v. injection of sirolimus into conscious rats caused a modest pressor response and decrease in regional blood flow (Gardiner et al., 2004), consistent with a vasoconstrictor effect. In light of the present results demonstrating that sirolimus causes endothelium-independent relaxation of human arteries, the importance of species differences and the need to assess the pharmacologic activity of vasoactive drugs in human tissues are readily apparent.

Chronic exposure to sirolimus may indirectly alter arterial diameter by causing endothelial dysfunction. In an in vitro porcine model, incubation of isolated coronary arteries with sirolimus for 48 h caused impairment of endothelium-dependent relaxations evoked by serotonin and bradykinin (Jeanmart et al., 2002). In humans, implantation of sirolimus-eluting stents, but not bare metal stents, was associated with impaired endothelium-dependent vasodilatation in response to exercise or acetylcholine in coronary arteries distal to the stent (Toghi et al., 2005; Hofma et al., 2006). Coronary artery dilation by the endothelium-independent vasodilator, nitroglycerin, was not altered. These data, although not directly comparable with the present results due to differences in experimental conditions, emphasize that the vasomotor effects of sirolimus are complex and may differ with regard to acute effects (i.e., vasodilation) versus long-term effects (i.e., endothelial dysfunction).

In summary, sirolimus causes relaxation of human arterial smooth muscle in a manner consistent with the opening of K_{ATP} channels. The smooth muscle-relaxing effect of sirolimus is observed at physiologically relevant concentrations, inasmuch as systemic whole-blood levels of sirolimus on the order of ~10 nM may be achieved following stent implantation in coronary arteries (Suzuki et al., 2001; Yu et al., 2004) and oral administration of sirolimus to prevent restenosis (Guarda et al., 2004; Rodriguez et al., 2005). Although sirolimus concentrations of this magnitude are on the low end of the concentration-response relationship reported in the present study, it is likely that significantly higher local drug concentrations are attained in arteries located in close proximity to a drug-eluting stent because the lipophilicity of sirolimus considerably enhances its uptake, distribution, and retention in the arterial wall (Schreiber, 1991; Suzuki et al., 2001). Thus, relaxation of vascular smooth muscle is a heretofore unrecognized action of sirolimus that could potentially contribute to its efficacy in drug-eluting stents.

References

Address correspondence to: Dr. Stephen T. O’Rourke, Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105-5055. E-mail: stephen.orourke@ndsu.edu