Differential and Synergistic Effects of Selective Norepinephrine and Serotonin Reuptake Inhibitors in Rodent Models of Pain

Liza Leventhal, Valerie Smith, Geoffrey Hornby, Terrance H. Andree, Michael R. Brandt, and Kathryn E. Rogers

Wyeth Research, Neuroscience Discovery Research, Princeton, New Jersey

Received June 21, 2006; accepted November 30, 2006

ABSTRACT

There is increasing recognition that norepinephrine (NE) and serotonin (5-HT) reuptake inhibitors (NRIs and SRIs) are efficacious in treating some types of pain. To date, studies have not systematically evaluated the relative activity at the NE and/or 5-HT transporter required for maximal efficacy in rodent pain models. Known selective NE and 5-HT reuptake inhibitors reboxetine, desipramine, fluoxetine, and paroxetine were evaluated in both in vitro and in vivo assays. Using the spinal nerve ligation model of neuropathic pain, the compounds differentially reversed tactile allodynia. Evaluation of a broader spectrum of reuptake inhibitors in the para-phenylquinone (PPQ)-induced abdominal constriction model, a model of acute visceral pain, demonstrated that both the SRIs and the NRIs significantly blocked abdominal constrictions. However, the magnitude of this effect was greater following treatment with compounds having greater affinity for NRI compared with SRI affinity. In addition, isobolographic analyses indicated significant synergistic effects for all combinations of desipramine and fluoxetine in the PPQ model of visceral pain. Collectively, the present results support the hypothesis that compounds with greater NRI activity should be more effective for the treatment of pain than compounds having only SRI activity, and this hypothesis is also supported by clinical data. These studies also suggest that the potency and effectiveness of NRIs might be enhanced by the presence of 5-HT activity.

Both acute and chronic pain are disabling conditions that can result from injury to the nervous system. Pain is often characterized by increased sensitivity to normally non-noxious stimuli (allodynia) and/or painful stimuli (hyperalgesia), as well as ongoing spontaneous pain. Historically, antidepressants, including the norepinephrine (NE) and serotonin (5-HT) reuptake inhibitors (NRIs and SRIs) have been used as a first-line therapy for treating pain associated with diabetic neuropathy, postherpetic neuralgia, fibromyalgia, irritable bowel syndrome, and interstitial cystitis (Sindrup and Jensen, 1999; Collins et al., 2000; Crowell et al., 2004). Recently, duloxetine, a mixed SRI and NRI with potency at both NE and 5-HT transporters, was the first reuptake inhibitor approved for the treatment of diabetic neuropathic pain (Bymaster et al., 2005; Goldstein et al., 2005).

Whereas the exact pathophysiological mechanism(s) involved in the development and maintenance of chronic pain is not fully understood, a number of neurotransmitters, peptides, and channels have been implicated in the modulation of nociceptive processing. The role of the NE and 5-HT systems in nociception has been described and characterized previously (Gebhart, 1986; Fields et al., 1991; Fields and Basbaum, 1999; Millan, 2002). Norepinephrine and to a lesser extent, 5-HT are major components of the endogenous descending pain inhibitory system from the rostral ventral medulla to the spinal cord (Zhuo and Gebhart, 1991; Holden et al., 1999). In fact, it has been suggested that chronic pain may in part result from altered or reduced levels of endogenous NE and 5-HT activity at both the spinal and supraspinal levels (Ren and Ruda, 1996; Ren and Dubner, 2002). Consequently, it is presumed that the NE and 5-HT reuptake inhibitors attenuate pain by preventing presynaptic reuptake of NE/5-HT, leading to increased postsynaptic NE/5-HT levels and sustained activation of the descending pain inhibitory pathway (Blakely and Bauman, 2000; Burgess et al., 2002). This ultimately results in attenuation of neuronal hyperexcitability and alleviation of pain.

To date, studies have not systematically evaluated the relative activity at the NE and/or 5-HT transporter required...
for maximal efficacy in rodent pain models. The present series of studies evaluates the potency of NRI/SRI compounds by evaluating in vitro functional data of NE and 5-HT uptake and comparing that with efficacy in preclinical pain models. Two approaches were taken. First, a series of known selective NE and 5-HT reuptake inhibitors, desipramine, reboxetine, fluoxetine, and paroxetine, were evaluated in both in vitro and in vivo assays. As a measure of in vitro activity at the transporters, functional uptake assays were used to evaluate compounds. Subsequently, the relative potency and efficacy of compounds were evaluated in models of neuropathic and visceral (acute inflammatory) pain. An additional series of compounds with a broader range of in vitro potency at the human NE and 5-HT transporters (hNET and hSERT) were also evaluated in the visceral pain model. In the second approach examining the relative contribution of NE and 5-HT to nociception, isobolographic analyses were generated to evaluate potential synergistic effects between NRIs and SRI compounds in the visceral pain model (Tallarida, 2001, 2002).

Materials and Methods

Test Compounds

Desipramine, paroxetine, and ketorolac were purchased from Sigma-Aldrich (St. Louis, MO). Fluoxetine was purchased from Tocris Cookson Inc. (Ellisville, MO). Reboxetine, S,S-reboxetine, duloxetine, and gabapentin were purchased from Organix (Woburn, MA). Three 2-phenyl-2-(1-hydroxyacycloalkyl)ethylamine derivatives, (−)-1-(1-(3-bromo-4-methoxyphenyl)-2-(dimethylamino)ethyl) cyclohexanol, hydrochloride (WY-X1), 1-(1-(3-bromo-4-methoxyphenyl)-2-(dimethylamino)ethyl)cyclohexanol, hydrochloride (WY-X2), and 1-(2-(dimethylamino)-1-(3-(trifluoromethyl)phenyl)ethyl)cyclohexanol, hydrochloride (WY-X3), were obtained from the compound repository (Wyeth, Princeton, NJ) (Yardley et al., 1990). Doses were adjusted to achieve equipotent effects in the visceral pain model. In the second approach examining the relative contribution of NE and 5-HT to nociception, isobolographic analyses were generated to evaluate potential synergistic effects between NRIs and SRI compounds in the visceral pain model (Tallarida, 2001, 2002).

In Vitro Experiments

Cell Line and Culture Reagents. [3H]5-HT uptake studies were performed using JAR cells (the human choriocarcinoma cell line) natively expressing the human SERT. JAR cells were incubated for 24 h before the addition of 40 nM fluoroisopropoxamine to enhance the expression of the hSERT. After an additional 24 h, the cells were assayed for the [3H]5-HT uptake (Ramamoorthy et al., 1995). [3H]NE uptake studies were performed using Madin-Darby canine kidney cells stably expressing NET (Pacholczyk et al., 1991). Madin-Darby canine kidney-NET6 cell line, stably transfected with hNET, were cultured in growth medium containing high-glucose Dulbecco’s modified Eagle’s medium (catalog number 11995; Invitrogen, Carlsbad, CA), 10% fetal bovine serum (dialyzed, heat-inactivated, Lot FBD1129H; U.S. Biotechnologies, Pottstown, PA), and 500 μg/ml G418 (catalog number 10131; Invitrogen). Cells were plated at 300,000 per T75 flask and split twice weekly. The JAR cell line (human placental choriocarcinoma) was purchased from ATCC (Manassas, VA; catalog number HTB-144). The cells were cultured in growth medium containing RPMI 1640 (catalog number 72400; Invitrogen), 10% fetal bovine serum (catalog number 3000; Irvine Scientific, Santa Ana, CA), 1% sodium pyruvate (catalog number 1136; Invitrogen), and 0.25% glucose. Cells were plated at 250,000 cells per T75 flask and split twice weekly.

Serotonin and Norepinephrine Uptake Assays. All uptake experiments were performed in 96-well plates (catalog number 353947, Optilux; BD Biosciences Discovery Labware, Bedford, MA) in a total volume of 250 μl. Individual wells were supplemented with 200 μl of assay buffer (25 M HEPES, 120 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 7H2O, 2 mg/ml glucose, 0.2 mg/ml ascorbic acid, and 1 μM pargyline, pH 7.4). All test compounds were dissolved in dimethyl sulfoxide, and 25 μl of each test compound was subsequently added to plates in triplicate and incubated at 37°C for 5 min. All compounds were assayed using a nine-point dose-response curve (1 nM-10 μM). Positive controls were run on each plate for both assays. Finally, 25 μl of [3H]5-HT (30 Ci/mmol; PerkinElmer Life and Analytical Sciences, Boston, MA) or [3H]NE (56.6 Ci/mmol; PerkinElmer) was added to all wells for the SERT and NET assays, respectively, and incubated at 37°C for an additional 5 min. The final concentration of [3H]5-HT and [3H]NE were 12 and 16 nM, respectively. The reaction was terminated by centrifugation (3000 rpm for 5 min), and the supernatant was subsequently aspirated. Cells were washed with 50 mM Tris, pH 7.4, centrifuged, and aspirated again. Cells were lysed by the addition of 25 μl of 0.25 M NaOH. Wells were supplemented with 100 μl of Microscint-20 (Packard; PerkinElmer Life and Analytical Sciences), and plates were counted using a TopCount liquid scintillation counter (PerkinElmer Life and Analytical Sciences, Downer’s Grove, IL).

Analysis of Results. For each experiment, a data stream of counts per minute collected from the Packard TopCount was downloaded to a Microsoft Excel statistical application program. Calculations of IC50 were performed using a sigmoidal nonlinear regression program (Prism, version 3; GraphPad Software, Inc., San Diego, CA). This program, maximal uptake is represented by those wells supplemented with assay buffer, and nonspecific uptake is determined by wells treated with positive controls (i.e., excess fluoxetine or desipramine).

In Vivo Experiments

Animal maintenance and research were conducted in accordance with the policies and guidelines for the handling and use of laboratory animals outlined in the Guide for the Care and Use of Laboratory Animals (National Research Council, 1996). Research protocols were approved by the Wyeth Institutional Animal Care and Use Committee according to the guideline of the Office of Laboratory Animal Welfare. All assays were performed in a randomized manner by individuals blinded to the experimental condition.

Subjects. For the neuropathic studies, male Sprague-Dawley rats (125–150 g; Harlan, Indianapolis, IN) were housed individually. For the visceral pain studies, male CD-1 mice (20–25 g; Charles River; Kingston/Stoneridge, NY) were housed in groups of five. For all studies, animals were housed on bedding in rooms in a climate-controlled room on a 12-h light/dark cycle, and food and water were available ad libitum.

L5/L6 Spinal Nerve Ligation Model of Neuropathic Pain

Surgery. Rats were anesthetized with 3.5% halothane in O2 at 1 l/min and maintained with 1.5% halothane in O2 during surgery. Surgery was performed as described previously (Kim and Chung, 1992). In brief, nerve injury was produced by the up-down method, as described previously (Chaplan et al., 1994). Tactile thresholds were determined on the left L5 and L6 spinal nerves.

Assessment of Tactile Allostrecty. Tactile thresholds were assessed using a series of calibrated von Frey monofilaments (Stoelting, Wood Dale, IL). Animals were placed in elevated wire cages and allowed 45 to 60 min to acclimate to the testing room. The threshold that produced a 50% likelihood of a withdrawal was determined using the up-down method, as described previously (Chaplan et al., 1994). Tactile thresholds were determined on the day before surgery, and rats with baseline thresholds of <10g force were excluded from studies. Three to 4 weeks after spinal nerve ligation (SNL) surgery, tactile thresholds were reassessed and animals that failed to exhibit subsequent mechanical allodynia (threshold ≥5g) were excluded from further testing. Subjects were pseudo-randomly divided into test groups (n = 8) so that average baseline and postsurgery sensitivities were similar among groups. For all compound testing, rats
were administered vehicle or test compound, and tactile thresholds were assessed up to 180 min after dosing. For each study, gabapentin (100 mg/kg s.c.) was run as a positive control.

Analysis of Results. Statistical analysis was done using a repeated measures analysis of variance using a customized SAS-excel application (SAS Institute, Cary, NC). Significant main effects were analyzed further by subsequent least significant difference analysis. The criterion for significant differences was \(p < 0.05 \). Data are presented as percentage reversal according to the following equation: percentage reversal = \([(50\% \text{ threshold}_{\text{vehicle}} - 50\% \text{ threshold}_{\text{drug}} - 50\% \text{ threshold}_{\text{postsurgery}}) / (50\% \text{ threshold}_{\text{postsurgery}})] \times 100 \). Maximal effect of 100% reversal represents a return to the mean preoperative threshold value for subjects in that experimental condition.

Para-Phenylquinone Model of Visceral Pain

Assessment of PPQ-Induced Constrictions (Writhing). The ability of compounds to attenuate acute visceral (abdominal) pain was assessed following an i.p. injection of 2 mg of para-phenylquinone (PPQ) (dissolved in 4% ethanol in distilled water; Sigma-Aldrich) (Siegmund et al., 1957). All compounds were evaluated for dose- and time-dependent effects \((n = 10/\text{group}) \). Initial experiments determined the peak activity of each compound by evaluating pretreatment times of 30 to 120 min (data not shown). Once peak activity for each respective compound was determined, dose-response curves were generated. During testing, after PPQ administration, mice were individually placed in a Plexiglas cage, and the total number of abdominal constrictions was recorded for 1-min periods starting at 5 and 10 min after PPQ injection. The nonsteroidal anti-inflammatory agent ketorolac (1 mg/kg) was run as a positive control.

Isobolographic Analysis. Statistical evaluation of interactions between SRI and NRI compounds was accomplished using the graded dose-response method (Tallarida, 2001, 2002). In brief, ED\(_{\text{50}}\) values of each compound alone were calculated by linear regression when at least three data points were available on the linear portion of the dose-effect curve. A combination of the two drugs was administered in a constant dose ratio based on ED\(_{\text{50}}\) values for each compound. Different contributions of fluoxetine:desipramine activity were evaluated: 1:1, 3:1, and 1:3. For drug combinations (i.e., dose fluoxetine + dose desipramine), experimental values from fixed ratio designed studies were also analyzed using linear regression, and the ED\(_{\text{50}}\) values for each combination that produced a 30% decrease (blockade) in PPQ-induced abdominal constrictions were also analyzed using linear regression. ED\(_{\text{50}}\) values were chosen, because that effect level was common to all compounds and an estimated ED\(_{\text{50}}\) value would introduce additional variability to the already complex study of synergistic and additive effects.

Analysis of Results. To determine statistical significance of a compound compared with vehicle treatment, a one-way analysis of variance was performed on raw data (total number of abdominal constrictions) using a customized SAS-excel application (SAS Institute). The criterion for significant differences was \(p < 0.05 \). Data are presented as percentage blockade compared with vehicle according to the following equation: percentage blockade = \([(\text{mean vehicle} - \text{drug}) / \text{mean vehicle}] \times 100 \). The ED\(_{\text{50}}\) (effective dose estimated to a 30% reduction in the number of PPQ-induced abdominal stretching) was generated for each drug or combination of drugs using a customized SAS-excel application (SAS Institute). All statistical correlations were performed using Sigma plot analysis (Systat Software Inc., San Jose, CA).

For the isobolographic analyses, the least significant difference test was used to determine significance of the difference between the theoretical additive ED\(_{\text{50}}\) value and the experimentally derived ED\(_{\text{50}}\) value of the dosing combinations. The criterion for establishing a statistical significance was \(p < 0.05 \). An experimental ED\(_{\text{50}}\) value significantly lower than the theoretical additive ED\(_{\text{50}}\) value was considered to indicate a supra-additive or synergistic interaction between fluoxetine and desipramine. In addition to statistical analysis, interactions between the two drugs were assessed using a graphical approach (Tallarida, 2001, 2002). Graphically, mean ED\(_{\text{50}}\) values (95% confidence limits) for each drug administered either alone or as part of a combination were plotted as a function of the ED\(_{\text{50}}\) value of the other drug in the combination. This data presentation format is known as an isobologram, and the line is an isobologram that connects the data points for each drug alone shows predicted data points for drug mixtures assuming additivity. Points that fall above the line of additivity (away from the origin) are suggestive of subadditivity, whereas points that fall below the line (toward the origin) are suggestive of supra-additivity (i.e., synergistic).

Results

Activity of Fluoxetine, Paroxetine, Desipramine, and Reboxetine in Human 5-HT and NE Transporter Uptake Assays. The compounds tested inhibited uptake of \(^{3} \text{H} \)5-HT by the hSERT by differing degrees as expected (Table 1). Compounds also differentially inhibited the uptake of \(^{3} \text{H} \)NE by the hNET (Table 1). Based on IC\(_{50}\) values, the relative rank order of potency for these compounds in the hSERT uptake assay were paroxetine > fluoxetine > desipramine > reboxetine, and in the hNET uptake assay, the rank order was desipramine = reboxetine > paroxetine > fluoxetine.

Effects of Fluoxetine, Paroxetine, Desipramine, and Reboxetine in a Neuropathic Pain Model. Compounds were evaluated for their ability to reverse tactile allodynia in SNL rats. Before surgery, the tactile sensitivities were 15g (Fig. 1, points above “Pre”). After surgery, the rats were significantly more sensitive to tactile stimuli (Fig. 1, points above “BL”). Acutely administered fluoxetine (10, 30, and 56 mg/kg s.c.) significantly reversed tactile allodynia in SNL rats (Fig. 1A). Only the highest dose (56 mg/kg) significantly reversed tactile allodynia, with peak effects occurring between 100 and 180 min after administration and producing a modest 14.6 ± 7.9% reversal. Higher doses of fluoxetine could not be tested due to confounding effects of sedation.

Acutely administered paroxetine (3, 10, and 30 mg/kg s.c.) significantly and time-dependently reversed tactile allodynia in SNL rats (Fig. 1B). All doses of paroxetine significantly reversed mechanical allodynia, with peak effects occurring 100 min after administration. Only modest effects were observed after the 3- or 10-mg/kg doses. In contrast, the highest dose (30 mg/kg) of paroxetine produced a maximal 59.5 ± 17.9% reversal.

Acutely administered desipramine (30, 56, and 100 mg/kg s.c.) significantly and time-dependently reversed tactile allodynia in SNL rats (Fig. 1C). Desipramine had a steep dose-response curve with only the highest dose (100 mg/kg) significantly reversing tactile allodynia, with peak effects occurring between 100 and 180 min after administration.

TABLE 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC(_{50})</th>
<th>NET</th>
<th>SERT</th>
<th>-Fold Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paroxetine</td>
<td>3 ± 1</td>
<td>173 ± 25</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>32 ± 3</td>
<td>1002 ± 170</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Desipramine</td>
<td>313 ± 47</td>
<td>9 ± 1</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Reboxetine</td>
<td>344 ± 44</td>
<td>10 ± 1</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
Acutely administered reboxetine (10, 30, and 100 mg/kg s.c.) significantly dose- and time-dependently reversed tactile allodynia in SNL rats (Fig. 1D). Only the 10 and 30 mg/kg doses of reboxetine significantly reversed tactile allodynia, with peak effects occurring 30 min after administration. The highest dose (100 mg/kg) of reboxetine produced a maximal 51.0 ± 16.4% reversal.

The anticonvulsant gabapentin (100 mg/kg s.c.) was run as a positive control. In all studies, gabapentin significantly reversed tactile allodynia over 180 min, with peak effects occurring 100 min after administration and with an overall reversal of tactile allodynia averaging 55.0 ± 19.2%. Furthermore, no confounding sedative/neuromuscular effects were observed for any of the compounds evaluated during the reported peak activity of each compound as measured by an accelerating rotarod (data not shown).

Effects of Fluoxetine, Paroxetine, Desipramine, and Reboxetine in a Visceral Pain Model. Compounds were evaluated for their ability to reduce the number of PPQ-induced abdominal constrictions. Fluoxetine (3, 10, and 30 mg/kg s.c.) significantly inhibited PPQ-induced abdominal constrictions, with peak effects observed after a 60-min pretreatment. At peak activity, the 3- and 10-mg/kg doses of fluoxetine failed to block PPQ-induced abdominal constrictions; only the highest dose (30 mg/kg) of fluoxetine significantly reversed PPQ-induced abdominal constrictions, producing a 37.5 ± 16.5% blockade and an overall ED30 of 23.3 ± 6.1 mg/kg.

Desipramine (1, 3, 10, 17.8, and 30 mg/kg s.c.) significantly inhibited PPQ-induced abdominal constrictions, with peak effects observed following a 60-min pretreatment (Fig. 2C). At peak activity, the 3-, 10-, 17.8-, and 30-mg/kg doses of desipramine significantly reversed PPQ-induced abdominal constrictions, producing 28.0 ± 5.2, 34.7 ± 7.2, 54.7 ± 1.6, and 63.3 ± 3.5% blockades, respectively, and an overall ED30 of 4.4 ± 0.7 mg/kg.

Reboxetine (0.3, 1, 3, 10, and 30 mg/kg s.c.) significantly inhibited PPQ-induced abdominal constrictions with peak effects observed following a 60-min pretreatment (Fig. 2D). At peak activity, the 0.3-mg/kg dose of reboxetine failed to block PPQ-induced abdominal constrictions, whereas the 1-, 3-, 10-, and 30-mg/kg doses of reboxetine significantly reversed PPQ-induced abdominal constrictions, producing 28.0 ± 7.7, 65.9 ± 9.4, 72.9 ± 9.6, and 90.6 ± 2.9% blockades, respectively, and an overall ED30 of 1.1 ± 0.3 mg/kg.

The nonsteroidal anti-inflammatory ketorolac (0.3 mg/kg i.p.) was run as a positive control. After a 30-min pretreatment, ketorolac significantly inhibited PPQ-induced abdominal constrictions with a blockade of 85.8 ± 4.5%.

Correlation of in Vitro and in Vivo Activity in the PPQ Model of Visceral Pain Model. In addition to fluoxetine, paroxetine, desipramine, and reboxetine, additional compounds with a broader range of activity in the functional hSERT and hNET assays were evaluated in the PPQ model:
S,S-reboxetine, duloxetine, and three 2-phenyl-2-(1-hydroxy-cycloalkyl)ethylamine derivatives (Tables 1 and 2; Fig. 3). All compounds significantly blocked PPQ-induced abdominal constrictions (data not shown). Correlative analyses among these six compounds, as well as fluoxetine, paroxetine, desipramine, and reboxetine and their in vitro potency at the transporters were generated for two measures of in vivo activity: maximal percentage effect of PPQ-induced abdominal constrictions and ED₃₀ values. These correlations demonstrated that maximal percentage effect of the PPQ-induced abdominal constric-

TABLE 2
In vitro and in vivo activity of NRI and SRI compounds
IC₅₀ values were determined using nine concentrations in triplicate. Values shown are mean ± S.E.M. (n = 3).

<table>
<thead>
<tr>
<th>Compound</th>
<th>SERT IC₅₀</th>
<th>NET IC₅₀</th>
<th>Maximal % Effect</th>
<th>ED₃₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>S,S-Reboxetine</td>
<td>2000 ± 178</td>
<td>1 ± 0.03</td>
<td>93</td>
<td>0.68</td>
</tr>
<tr>
<td>Duloxetine</td>
<td>15 ± 1.6</td>
<td>20 ± 2.8</td>
<td>63</td>
<td>2.54</td>
</tr>
<tr>
<td>WY-X1</td>
<td>30 ± 3.2</td>
<td>13 ± 3.4</td>
<td>65</td>
<td>1.6</td>
</tr>
<tr>
<td>WY-X2</td>
<td>21 ± 2.1</td>
<td>31 ± 3.3</td>
<td>68</td>
<td>2.77</td>
</tr>
<tr>
<td>WY-X3</td>
<td>534 ± 28</td>
<td>32 ± 3.3</td>
<td>89</td>
<td>2.81</td>
</tr>
</tbody>
</table>

stric-tions and efficacy of each compound (ED₃₀) was highly dependent on the potency of the compound at hNET as reflected by r² values of 0.72 (Fig. 3A) and 0.89, respectively. In contrast, potency at hSERT showed much weaker correlations with maximal percentage effect and ED₃₀ values reflected in r² values of 0.55 (Fig. 3B) and 0.36, respectively.

Isobolographic Analysis of Evaluating Combined Activity of Fluoxetine and Desipramine in the PPQ Model of Visceral Pain Model. Interaction studies were performed by generating isobolographic analyses using fixed dose combinations of desipramine and fluoxetine (Fig. 4). The antinociceptive ED₃₀ values at peak activity for desipramine and fluoxetine were 4.4 and 23.3 mg/kg, respectively (Table 3). After the 1:1 combination dosing, the antinociceptive ED₃₀ values were increased to 0.53 and 2.64 mg/kg for desipramine and fluoxetine, respectively (Table 3). After the 1:1 combination dosing, the antinociceptive ED₃₀ values were increased to 0.53 and 2.64 mg/kg for desipramine and fluoxetine, respectively, relative to each compound administered alone (Fig. 3A; Table 3). Likewise, both the 3:1 (1.96 and 3.5 mg/kg) and 1:3 (0.6 and 9.26 mg/kg) combinations of desipramine and fluoxetine increased the relative potency of each compound but to a lesser degree than the 1:1 combination (Fig. 4, B and C; Table 3). In summary, all combinations of desipra-

Fig. 2. Differential effects of fluoxetine (A), paroxetine (B), desipramine (C), and reboxetine (D) (s.c.) in the mouse PPQ model of acute visceral pain. Data are expressed as percentage blockade relative to vehicle-treated mice. Each point represents the mean data (± S.E.M.). * indicates significant (p < 0.05) differences from the vehicle-treated mice (data not shown).
mine and fluoxetine produced statistically significant synergistic effects in the PPQ model of visceral pain.

Discussion

Previous studies have shown that both 5-HT and NE may contribute to antinociception, 5-HT in spinal pathways, and NE in supraspinal descending pathways (Millan, 2002; Ren and Dubner, 2002; Suzuki et al., 2004). Furthermore, multiple studies have also suggested that the actions of 5-HT and NE in these pathways may produce synergistic effects (Zhou and Gebhart, 1991). To examine the contribution of 5-HT and NE to antinociception, the present series of experiments initially evaluated representative SRI and NRI compounds for in vitro potency at both transporters using functional uptake assays. Having defined in vitro activity of each compound, additional noncommercial compounds were evaluated, and isobolographic analyses were used to examine the relative contributions of 5-HT and NE to antinociception in a model of acute inflammatory (visceral) pain model (Tallarida, 2001, 2002). In the functional uptake studies, the rank order potency at SERT was paroxetine > fluoxetine > desipramine > reboxetine, and at NET, it was desipramine = reboxetine > paroxetine > fluoxetine. The present findings demonstrate that these compounds have differential activity in preclinical...
models of pain relative to their activity at the SERT and NET transporters and that the contribution of NE in mediating antinociception may be greater than that of 5-HT.

In the SNL model of neuropathic pain, both NRIs desipramine and reboxetine reversed tactile allodynia, and the overall magnitude of the effect was equivalent to that of the anti-inflammatory drug ketorolac. In contrast to the effects observed in the SNL model, both compounds with more potent SRI affinities had similar levels of activity and were less efficacious than the NRI compounds. Specifically, in the PPQ model, the magnitude of effect for fluoxetine was greater than that observed in the neuropathic model (33 versus 15%, respectively), suggesting that SRI activity may be more beneficial for treating inflammatory and or visceral pain conditions. The present data are similar to previous literature reports evaluating these compounds in rodent visceral pain models (i.e., acetic acid). One study reported that the NRI maprotiline was more active than the SRI citalopram following both acute (1 day) and chronic (21 days) administration in a rat acetic acid model (Korzeniewska-Rybicka and Plaznik, 1998). It has also been reported that fluoxetine (Singh et al., 2001) and desipramine (Spiegel et al., 1983) dose-dependently blocked acetic acid-induced abdominal constrictions in rats and mice, respectively. Overall, these findings suggest that compounds with selective activity at NET or SERT are active in models of visceral pain. However, in the present studies using reuptake inhibitors with a broad range of functional activity, the potency at hNET is more strongly correlated with measures of in vivo activity (i.e., percentage maximal effect and ED₃₀ values) compared with activity at hSERT. Interestingly, the combination dosing of fluoxetine and desipramine in the PPQ model produced significant synergistic effects, such that the potency of each compound seemed to be increased (i.e., lower ED₃₀ values). Three different ratio combinations of fluoxetine and desipramine (SRI: NRI combinations) were evaluated, and although the 1:1 combination clearly achieved synergy, the 3:1 and 1:3 combination both produced significant effects but approached the confidence limits of the line of additivity. In an isobologram analysis, activity conclusions are based on the results from administration of two individual compounds, and exactly how this will translate into efficacy from two activities in a single molecule remains unknown. It is surprising in the present study that paroxetine, which has activity at both transporters, only had a moderate effect in the PPQ model. However, it is possible that when one compound with mixed activity has greater affinity for one transporter over the other, that activity takes precedence or drives the response. In the present study, the higher affinity is for the 5-HT rather than the NE transporter. If this is indeed the case and paroxetine is maximally functional at the 5-HT transporter and the NE transporter is the major contributor to pain inhibition as the correlative studies suggest, then it follows that there may be less pain reversal using a single molecule with two activities than would be expected using two compounds with high affinity at each transporter.

In the PPQ model that is more inflammatory in nature, both the compounds with 5-HT were active. In contrast to pathways involved in neuropathic pain, the role of 5-HT in gastrointestinal (GI) tract functioning, which is critical to visceral pain, is well characterized. A large portion of the 5-HT in the body resides in the gut, and 5-HT plays a role in normal gut functioning, as well as in brain-gut communication (see review in Baker, 2005). Furthermore, SERTs are located within the GI tract, and SERT knockout mice exhibit GI symptoms (e.g., diarrhea) (Baker, 2005). Thus, the active role 5-HT that plays in the gut may account for the synergistic activity observed in the isobolographic analyses. Taken together, the present findings in the PPQ model suggest a greater role for NE activity in the treatment of pain; how-

TABLE 3

Summary of ED₃₀ values (milligram/kilogram subcutaneously) from isobolographic studies

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Desipramine ED₃₀</th>
<th>Fluoxetine ED₃₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alone</td>
<td>4.4 ± 0.7</td>
<td>23.3 ± 6</td>
</tr>
<tr>
<td>1:1</td>
<td>0.5 ± 0.1</td>
<td>2.6 ± 0.4</td>
</tr>
<tr>
<td>1:3</td>
<td>0.6 ± 0.1</td>
<td>9.3 ± 1.6</td>
</tr>
<tr>
<td>3:1</td>
<td>2.0 ± 0.2</td>
<td>3.5 ± 0.6</td>
</tr>
</tbody>
</table>

Values shown are ED₃₀ values ± S.E.M.
ever, the potency and effectiveness of NRIs in visceral pain and possibly neuropathic pain can be enhanced by the presence of 5-HT activity.

In summary, because it is hypothesized that nociceptive information is processed and integrated, at the peripheral, spinal, and supraspinal levels, two models of pain were chosen to evaluate the SRI and NRI compounds, which represent a broad level of pain processing and modulation. The SNL model mimics pain that is chronic and neuropathic in nature, the result of central sensitization (Kim and Chung, 1992). In contrast, the PPQ model is more representative of acute inflammatory (visceral) pain. The overall greater activity of the NRI versus SRI compounds in both pain models suggests that this class of compounds will provide a broader range clinically in treating distinct types of pain. It is also important to note that, for all studies, the compounds were administered subcutaneously to minimize any potential differences in pharmacokinetics and/or brain penetration that may also account for differences in exposure and/or efficacy.

Recently, duloxetine, a mixed SRI and NRI with potency at both transporters, was the first reuptake inhibitor approved for the treatment of diabetic neuropathy (Bymaster et al., 2005; Goldstein et al., 2004). Published preclinical data evaluating this compound in both neuropathic and inflammatory models of pain have demonstrated activity (Iyengar et al., 2004; Jones et al., 2005). However, because the compound has potent activity at both transporters and increases levels of both NE and 5-HT, it is difficult to distinguish which activity is contributing to the reported efficacy in vivo (Iyengar et al., 2004; Jones et al., 2005). However, these studies do support the present findings that potency at the NET results in efficacy in preclinical models of pain.

Collectively, the present results suggest that compounds with affinity for both NRI and SRI may be beneficial for the treatment of neuropathic pain, whereas compounds with greater affinity for NRI may be more beneficial for the treatment of visceral pain and that the potency and effectiveness of NRIs can be supra-additive in the presence of 5-HT activity. These data also support clinical data suggesting that compounds with greater NRI versus SRI activity would be more effective for the treatment of pain than compounds with only SRI activity (Sindrup and Jensen, 1999; Collins et al., 2000).

Acknowledgments

We thank Garth Whiteside for comments and review of this manuscript.

References

Koestner R, Ebmeier KP, and Chung JM (1998) Preclinical model for experimental model for experimental manipulation of both NE and 5-HT, it is difficult to distinguish which activity is contributing to the reported efficacy in vivo (Iyengar et al., 2004; Jones et al., 2005). However, these studies do support the present findings that potency at the NET results in efficacy in preclinical models of pain.

Collectively, the present results suggest that compounds with affinity for both NRI and SRI may be beneficial for the treatment of neuropathic pain, whereas compounds with greater affinity for NRI may be more beneficial for the treatment of visceral pain and that the potency and effectiveness of NRIs can be supra-additive in the presence of 5-HT activity. These data also support clinical data suggesting that compounds with greater NRI versus SRI activity would be more effective for the treatment of pain than compounds with only SRI activity (Sindrup and Jensen, 1999; Collins et al., 2000).

Acknowledgments

We thank Garth Whiteside for comments and review of this manuscript.

References

