Reduced Inotropic Effect of Nifekalant in Failing Hearts in Rats

Hideaki Endo, Masahito Miura, Masanori Hirose, Jun Takahashi, Makoto Nakano, Yuji Wakayama, Yoshinao Sugai, Yutaka Kagaya, Jun Watanabe, Kunio Shirato, and Hiroaki Shimokawa

Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan

Received February 10, 2006; accepted May 30, 2006

ABSTRACT

Class III antiarrhythmic agents have been widely used to suppress ventricular tachyarrhythmias in patients with heart failure because they have been shown to have positive inotropic effects as well. However, it remains to be examined whether those agents also exert positive inotropic effects in failing hearts. We addressed this important issue in a rat model of heart failure. We used Nifekalant as a representative class III antiarrhythmic agent. Four weeks after s.c. injection of 60 mg/kg monocrotaline (MCT) or vehicle (Ctr) into rats, we obtained trabeculae from right ventricles and measured the developed force and intracellular Ca²⁺ ([Ca²⁺]i) by the fura-2 microinjection method. The sarcoplasmic reticulum (SR) Ca²⁺ content was assessed by the rapid-cooling contracture (RCC) technique. MCT rats exhibited right ventricular hypertrophy induced by pressure overload. The protein expression of SR Ca²⁺ ATPase type 2 (SERCA2) and the SERCA2/phospholamban ratio in MCT rats was lower with a slower decline of Ca²⁺ transients and a reduced amplitude of RCCs. Nifekalant concentration-dependently increased the force, peak [Ca²⁺]i, and the amplitude of RCCs in Ctr rats but not in MCT rats with identical prolongation of the action potential. Under the SR inhibited with cyclopiazonic acid and ryanodine, Nifekalant increased the force in Ctr rats but not in MCT rats. These results indicate that the positive inotropic effects of Nifekalant is reduced in failing hearts, probably due to the depressed SR Ca²⁺ uptake and reduced reserve of the trans-sarcolemmal Ca²⁺ transport, warranting a caution in the antiarrhythmic therapy with a class III antiarrhythmic agent in heart failure.
multicellular cardiac muscle (e.g., trabeculae) from the right ventricle (ter Keurs et al., 1980). Thus, in the present study, we aimed to examine whether the inotropic effects of Nifekalant are altered in MCT-induced heart failure in rats and, if so, to examine the mechanisms involved.

Materials and Methods

Animal Model. All animal procedures were performed according to the guidelines for the care and use of laboratory animals of Tohoku University. A total of 92 Sprague-Dawley rats weighing 200 g were used. They received a single s.c. injection of 0.5 ml of 60 mg/kg MCT (Uzzaman et al., 2000) or an equal volume of vehicle (Ctr). Four weeks after the injection, 25.4% of the MCT rats died due to right-sided heart failure, whereas no Ctr rats died. The survivors were anesthetized, and the right atrial and ventricular pressures were measured with a 2-F catheter inserted from the right jugular vein. Pressure signals were digitized at a rate of 0.5 kHz for 3 min. After the pressure measurement, the heart was excised for preparation of samples and measurement of heart weight.

Preparation of Samples. Sixty-five trabeculae were obtained from 65 rats as described previously (Miura et al., 1999; Wakayama et al., 2005). Trabeculae were dissected from the right ventricle and equilibrated at 0.5-Hz stimuli through parallel platinum electrodes in the bath with 5-ms pulses 50% above the threshold ([Ca$^{2+}$]$_i$ = 0.7 mM) at room temperature. Force was measured using a silicon semiconductor strain gauge and expressed as stress after normalization for the cross-sectional area of the muscle measured in the slack conditions. The sarcomere length was measured using laser diffraction techniques (ter Keurs et al., 1980; Wakayama et al., 2005). Membrane potential was measured using ultracomplicant glass microelectrodes, as described previously (Hirose et al., 2005). To estimate the duration of action potential, the time to 90% repolarization of the action potential (APD$_{90}$) was measured.

Fura-2 Loading and Measurement of Fluorescence. [Ca$^{2+}$], was measured as described previously (Miura et al., 1999; Wakayama et al., 2005). In brief, fura-2 pentapotassium salt was microinjected electrophoretically into one cell and allowed to spread uniformly throughout the trabeculae via the gap junctions. The epifluorescence of fura-2 from the trabecula at excitation wavelengths of 340 and 380 nm was measured at 510 nm by a photomultiplier tube (E1341 with a C1556 socket; Hamamatsu Photonics K.K., Hamamatsu, Japan). The signal from the photomultiplier tube was stored (RD-130TE DAT Data Recorder; TEAC Corporation, Tokyo, Japan) and used for the calculation of [Ca$^{2+}$]$_i$, after the subtraction of the autofluorescence. The decline of Ca$^{2+}$ transients was expressed as the time constant of the decay calculated from the fit of a monoexponential function to the decline of Ca$^{2+}$ transients.

Rapid Cooling Contracture. SR Ca$^{2+}$ content was estimated using a rapid cooling contracture (RCC) technique as described previously (Hirose et al., 2005). The perfusion line filled with a warm solution (−24°C) was instantly replaced by another perfusion line that was jacketed with ethylene glycol-water (1:3 at −5°C) in response to a voltage command from a personal computer. This switching from the warm solution to the cold solution cooled the muscle surface to below 1°C in less than 1 s and maintained the bath temperature at −1°C during the perfusion of cold solution. The time courses of cooling were sufficiently rapid to produce reproducible RCCs.

Quantitative Immunoblotting Analysis of SR Ca$^{2+}$ Cycling Proteins. The expression levels of sarcoplasmic reticulum ATPase type 2 (SERCA2), phospholamban (PLB), ryanodine receptor type 2 (RyR2), sodium-calcium exchanger (NCX), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal standard were measured as described previously (Takahashi et al., 2003). The tissue of the right ventricular free wall (30 μg for SERCA2, 10 μg for PLB, 150 μg for RyR2, 150 μg for NCX, 10 μg for GAPDH) was homogenized in 20 mM Tris aminomethane maleate containing 0.3 M sucrose, 0.1 M KCl, 5 mg/liter leupeptin, and 0.1 mM phenylmethylsulfonyl fluoride, pH 7.0. Cardiac homogenates were separated on SDS-polyacrylamide gel electrophoresis, in which a proper percent- age of acrylamide was selected according to the targeted protein (7.5% for SERCA2, 12% for PLB, 3–12% gradient gel for RyR and NCX, 10% for GAPDH), and electrohoresis was run at 150 V for 1 h. Proteins were then transferred to nitrocellulose membranes, and the membranes were reacted with mouse monoclonal antibodies against SERCA2, PLB, RyR2, NCX, and GAPDH (Affinity Bioreagents, Golden, CO) at a dilution of 1:1000. After washing, the blots were incubated with a peroxidase-conjugated secondary antibody (Sigma, St. Louis, MO) at a dilution of 1:1000. The protein bands were visualized using an enhanced chemiluminescence detection system (Amersham, Arlington, IL), and the optical density was quantified using Image Gauge after scanning with Image Reader LAS-1000 (Fuji Film, Tokyo, Japan). The expression level of each protein was normalized to that of GAPDH. We have verified the linearity of the enhanced chemiluminescence detection system by measuring the expression levels of GAPDH in different amounts of tissue (5, 10, 15, and 20 μg) from the right ventricular free wall.

Experimental Protocol. We examined the effects of Nifekalant on action potentials, Ca$^{2+}$ transients, and developed forces in seven trabeculae and on RCCs in five trabeculae. Trabeculae were stimulated electrically at 0.5 or 2.0 Hz and superfused with HEPES solution containing Nifekalant ([Ca$^{2+}$] = 0.7 mM, temperature = 26.0 ± 0.2°C, sarcomere length = 2.1 μm). At first, we used 1 and 10 μM Nifekalant because the therapeutic concentration of the agent ranges from 1 to 10 μM (Shiga et al., 2001), and then we used 250 μM Nifekalant to examine its effect on cardiac muscle at an extremely high concentration (Mori et al., 1995). All measurements were completed within 20 min. To inhibit the SR function, we exposed the trabeculae to 30 μM cyclopiazonic acid (CPA) and 1 μM ryanodine (Kentish and Wrzosek, 1998). Six hours after the exposure to CPA and ryanodine, the remaining developed force was measured at 0.5-Hz stimulation in five trabeculae from each group ([Ca$^{2+}$]$_i$ = 2.0 mM, temperature = 26.0 ± 0.2°C, sarcomere length = 2.1 μm).

Statistics. All measurements were expressed as mean ± S.E.M. Statistical analysis was performed using analysis of variance and paired Student’s t tests as appropriate. Values of P < 0.05 were considered to be statistically significant.

Results

Properties of MCT Rats. The physiological profiles of Ctr rats and MCT rats are summarized in Table 1. Right ventricular pressure was higher, and wet tissue weight of the right ventricular hypertrophy was induced by the pulmonary hypertension. The contractile properties of Ctr rats and MCT rats are shown in Fig. 1 and Table 2. The time to 90% repolarization of the action potential was longer in MCT rats. In MCT rats, the amplitude of the developed force was lower, and the developed forces in seven trabeculae were measured at 0.5 Hz and 2.0 Hz.

<table>
<thead>
<tr>
<th>Control</th>
<th>MCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW (g)</td>
<td>346 ± 13</td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>356 ± 10</td>
</tr>
<tr>
<td>RVP (nm Hg)</td>
<td>20.6 ± 0.9</td>
</tr>
<tr>
<td>RV/body wt (mg/g)</td>
<td>0.59 ± 0.05</td>
</tr>
<tr>
<td>(LV + Septum)/ body wt (mg/g)</td>
<td>2.11 ± 0.08</td>
</tr>
<tr>
<td>RV/(LV + Septum)</td>
<td>0.28 ± 0.02</td>
</tr>
<tr>
<td>n = 15</td>
<td></td>
</tr>
<tr>
<td>n = 18</td>
<td></td>
</tr>
<tr>
<td>*P < 0.05 vs. control rats</td>
<td></td>
</tr>
</tbody>
</table>

Control, control rats (n = 18); MCT, monocrotaline-treated rats (n = 20); BW, body weight; HR, heart rate; RVP, right ventricular pressure; RV, right ventricle; wt, weight; LV, left ventricle; RV/LV + Septum, a ratio of RV weight to LV weight.
was reduced with a longer time-to-peak force, the Ca2+ transients declined more slowly after reaching the reduced peak values, and the amplitude of the RCCs, which may reflect the SR Ca2+ content, was lower.

To investigate the alteration in the adenyl cyclase signaling pathway in MCT rats, we examined the effect of forskolin on the developed force (Fig. 2A). Forskolin (1 μM) increased the developed force more than 2 times in Ctr rats but not in MCT rats. The force-frequency relationship was also markedly different between the two groups; it was positive in Ctr rats, but negative in MCT rats (Fig. 2B). To determine the relative contribution of the Ca2+ entering through the sarcolemma to muscle contraction, SR function was inhibited with 30 μM CPA and 1 μM ryanodine. This SR inhibition reduced the developed force more in Ctr rats than in MCT rats (Fig. 2C), showing that the Ca2+ transport through the sarcolemma plays a more important role in the muscle contraction in MCT rats compared with Ctr rats.

Concerning the expression of Ca2+ handling proteins (Fig. 3), SERCA2 and the SERCA2/PLB ratio were significantly lower in MCT rats, consistent with the slower decline of the Ca2+ transients and the reduced amplitude of RCCs. The other Ca2+ handling proteins were almost identical for Ctr and MCT rats (Fig. 3).

Effect of Nifekalant. Nifekalant prolonged the duration of action potential equally in Ctr and MCT rats in a concentration-dependent manner (Fig. 4A). Nifekalant increased the developed force and the peak value of Ca2+ transient in Ctr rats, but, surprisingly, Nifekalant could not increase, but rather decreased, them in MCT rats at both 0.5- and 2.0-Hz stimulation (Figs. 4, B and C). In MCT rats, Nifekalant had no effect on the decline of Ca2+ transients, which may largely reflect the function of SR Ca2+ uptake, whereas in Ctr rats, the Ca2+ transients declined faster with Nifekalant (Fig. 4D). Because Ca2+ for contraction originates from both the SR and the extracellular medium in mammalian cardiac muscle, we first examined the contribution of the SR Ca2+ using the RCCs technique. As shown in Fig. 5, A and B, Nifekalant increased the amplitude of RCCs in Ctr rats, but not in MCT rats, showing that Nifekalant cannot increase the SR Ca2+ content in MCT rats. We then examined the contribution of Ca2+ entering through the sarcolemma with CPA and ryanodine. With the SR inhibited, Nifekalant in-

Table 2

<table>
<thead>
<tr>
<th>Pacing frequency</th>
<th>0.5 Hz</th>
<th>2.0 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>MCT</td>
</tr>
<tr>
<td>APD<sub>90</sub> (ms)</td>
<td>184 ± 19</td>
<td>314 ± 36<sup>a</sup></td>
</tr>
<tr>
<td>Force (mN/mm²)</td>
<td>25 ± 5</td>
<td>19 ± 2<sup>a</sup></td>
</tr>
<tr>
<td>TTP force (ms)</td>
<td>169 ± 21</td>
<td>237 ± 9<sup>a</sup></td>
</tr>
<tr>
<td>Peak [Ca²⁺] (nM)</td>
<td>955 ± 70</td>
<td>900 ± 22</td>
</tr>
<tr>
<td>[Ca²⁺] decline (ms)</td>
<td>161 ± 26</td>
<td>271 ± 33<sup>a</sup></td>
</tr>
<tr>
<td>Diastolic [Ca²⁺] (nM)</td>
<td>87 ± 11</td>
<td>100 ± 23</td>
</tr>
<tr>
<td>RCC amplitude (mN/mm²)</td>
<td>45 ± 6</td>
<td>31 ± 2²*</td>
</tr>
</tbody>
</table>

Control, control rats (n = 5); MCT, monocrotaline-treated rats (n = 5–7); TTP, time to peak activation of force; RCC, rapid cooling contracture. * P < 0.05 vs. control rats.

Fig. 1. Representative recordings of action potential (A), developed force (B), and Ca2+ transient (C) in Ctr (thick line) and MCT (thin line) rats at 0.5-Hz stimulation.

Fig. 2. Effects of forskolin, the stimulation frequency, and the SR inhibition on the developed force. Results are expressed as mean ± S.E.M. * P < 0.05 versus Ctr rats (control). A, top, shows representative recordings in the absence (thin line) and the presence (thick line) of 1 μM forskolin at 0.5-Hz stimulation; bottom, the summed data obtained from five trabeculae. In the upper panel, 1 μM forskolin increased the developed force almost two times in Ctr rats (left, Control) but not in MCT rats (right, MCT). Bottom, the increase in the developed force by 1 μM forskolin was significantly higher in Ctr rats than that in MCT rats. B, force-frequency relationship in Ctr (n = 4) and MCT (n = 4) rats. Ctr rats (open circle) showed the positive force-frequency relationship, whereas MCT rats (closed circle) showed the negative one. C, effect of SR inhibition on the developed force in Ctr (n = 5, open circle) and MCT (n = 5, closed circle) rats. SR inhibition with 30 μM cyclopiazonic acid and 1 μM ryanodine reduced the developed force to 9.8 ± 2.5% in Ctr rats and to 28.5 ± 2.5% in MCT rats. The remaining ratio of the developed force after the SR inhibition was significantly larger in MCT rats.
increased the force in Ctr rats, but not in MCT rats (Fig. 5C), showing that Nifekalant cannot increase the \(\text{Ca}^{2+} \) entry through the sarcolemma in MCT rats.

Discussion

The novel finding of the present study was that the positive inotropic effects of Nifekalant were reduced in failing heart in rats, partly due to the reduced reserve of the trans-sarcolemmal \(\text{Ca}^{2+} \) transport and the depressed SR \(\text{Ca}^{2+} \) uptake. To the best of our knowledge, this is the first study that demonstrates the reduced positive inotropic effects of a class III antiarrhythmic agent that is widely used in the treatment of arrhythmia in patients with heart failure for its positive inotropic effects noted in normal hearts.

Properties of MCT Rats. It has been reported that isolated myocytes obtained from dysfunctional myocardium contract normally under basal (Anand et al., 1997; Prahash et al., 2000) and stimulated (Prahash et al., 2000) conditions, whereas left ventricular contractile dysfunction due to tachycardia-induced cardiomyopathy can be improved without normalization of the myocyte function (Spinale et al., 1995). These discrepancies may be due to differences in the hemodynamic load, chamber geometry, and cell-cell or cell-matrix connectivity between these preparations. Therefore, to fill the gap between isolated myocytes and whole hearts (Houser and Margulies, 2003), we used in this study multicellular ventricular muscle with the original cell-cell and cell-matrix connectivity (Sys et al., 1998) and measured the contractile properties with the proper load at the sarcomere length of 2.1 \(\mu \)m (Miura et al., 1999; Hirose et al., 2005).

It has been reported that pulmonary hypertension causes right ventricular hypertrophy with several alterations in a MCT-treated model of rats (Kögler et al., 2003; Leineweber et al., 2002; Uzzaman et al., 2000). In agreement with the previous findings, the right ventricle of MCT rats in this study showed ventricular hypertrophy due to pulmonary hypertension (Table 1), a longer action potential duration (Table 2; Fig. 1A), blunted response to forskolin (Fig. 2A), decreased protein expression of SERCA2 (Fig. 3), and a negative force-frequency relationship (Fig. 2B). In addition,
we were able to demonstrate for the first time in this model the decreased ratio in the protein expression of SERCA2 to PLB (Fig. 3) with a slower decline of Ca\(^{2+}\) transients and diminished SR Ca\(^{2+}\) content (Table 2), causing diminished contraction, especially at a higher stimulation frequency (Fig. 2B) (Ji et al., 2000; Periasamy and Huke, 2001). Moreover, SR inhibition reduced the developed force more in Ctr rats than in MCT rats (Fig. 2C), showing that the Ca\(^{2+}\) transporting function through the sarcolemma was relatively activated in MCT rats. This greater fractional contribution of Ca\(^{2+}\) transport through the sarcolemma results in a reduction of the SR Ca\(^{2+}\) content (Piacentino et al., 2003). These findings described above have also been reported in mammalian left ventricular failing hearts (Nabauer and Käab, 1998; Hasenfuss and Pieske, 2002) including that of humans (Meyer et al., 1995; Rossman et al., 2004), suggesting that this MCT-treated model of rats can serve as a model of failing hearts to examine the electrophysiological alterations of the ventricle.

Effects of Nifekalant. Rat ventricular muscle possesses the I_{Kr} (Pond et al., 2000). Nifekalant inhibits the I_{Kr} at therapeutic concentrations between 1 and 10 μM (Shiga et al., 2001) and inhibits several other channels at concentrations above 10 μM (Mori et al., 1995). Thus, it is likely that the prolongation of action potential at 1 and 10 μM Nifekalant resulted from the blocking action of I_{Kr} and that the further prolongation of action potential at 250 μM Nifekalant resulted from the decrease in the outward currents due to the blocking of other K channels (Fig. 4A). In agreement with our previous report (Hirose et al., 2005), the prolongation of action potential in Ctr rats increased Ca\(^{2+}\) entry through the sarcolemma (Fig. 5C) (Stemmer and Akera, 1986), hastened SR Ca\(^{2+}\) uptake probably due to the higher peak of Ca\(^{2+}\) transients (Fig. 4D) (Bers and Berlin, 1995), increased SR Ca\(^{2+}\) content (Fig. 5B), and ultimately induced more Ca\(^{2+}\) release from the SR to activate more fully the myofilaments (Fig. 4, B and C) (Shannon et al., 2000). In contrast, in MCT rats, the further prolongation of action potential by Nifekalant could not increase Ca\(^{2+}\) entry through the sarcolemma (Fig. 5C) or SR Ca\(^{2+}\) loading in Ctr rats (Fig. 5B), resulting in no increase in the developed force (Fig. 4B). NCX function, SERCA function, and diastolic SR Ca\(^{2+}\) leak may all be involved in the differences between Ctr and MCT rats because these three factors can contribute to SR Ca\(^{2+}\) loading (Shannon et al., 2003).

First of all, the impairment of SR Ca\(^{2+}\) uptake may be largely responsible for the differences between Ctr and MCT rats because in MCT rats, Nifekalant had no effect on SR Ca\(^{2+}\) uptake (Fig. 4D) and consequently had no effect on SR Ca\(^{2+}\) content (Fig. 5B). In addition, the MCT rats showed a negative force-frequency relationship (Fig. 2B), suggesting that the reserve of SR Ca\(^{2+}\) uptake was diminished in those rats (Pieske et al., 1999). This impairment of SR Ca\(^{2+}\) uptake may reduce the inotropic effect of Nifekalant in MCT rats (Fig. 4B). Second, the alteration in the Ca\(^{2+}\) transport through the sarcolemma may also concern the differences. This is probably because the Ca\(^{2+}\) transporting function through the sarcolemma was fully activated in MCT rats with the prolongation of action potential (Chen et al., 2002; Wei et al., 2003). Under this condition, further prolongation of the action potential induced by Nifekalant could have only a limited effect on the integrated Ca\(^{2+}\) influx (Fig. 5C) because too many Ca\(^{2+}\) channels had already been unresponsive (Yuan et al., 1996). This alteration in the Ca\(^{2+}\) transport through the sarcolemma can directly alter the Ca\(^{2+}\) supply to myofilaments or indirectly alter it by changing the SR Ca\(^{2+}\) loading (Ranu et al., 2002). Finally, leak of the SR Ca\(^{2+}\) may contribute minimally to the alteration in SR Ca\(^{2+}\) content in MCT rats (Shannon et al., 2003) because SR inhibition could not restore the developed force in those rats.

Clinical Implications. Because ventricular arrhythmias often occur in patients with reduced left ventricular ejection fractions, it is important for physicians to understand the inotropic effects of antiarrhythmic agents, especially in failing hearts. n-Sotalol, which has class III antiarrhythmic activity, exerts a positive inotropic effect in the intact canine heart (Peralta et al., 2000), whereas it has no positive inotropic effect in failing and nonfailing human left ventricular myocardium, probably due to the contamination of L-sotalol with β-adrenoceptor-blocking properties (Holubarsch et al., 1995). In this study, Nifekalant exerted positive inotropic effects in Ctr rats, whereas no such effect was noted in MCT.
rats, indicating that the inotropic effects of Nifekalant are markedly reduced in failing hearts, although Nifekalant still has an antiarrhythmic effect in failing hearts (Katoh et al., 2005). Thus, it should be noted that the inotropic effects of class III antiarrhythmic agents could be reduced or even absent in patients with heart failure.

References

References

