Oxysterol 22(R)-Hydroxycholesterol Induces the Expression of the Bile Salt Export Pump through Nuclear Receptor Farsenoid X Receptor but Not Liver X Receptor

Ruitang Deng, Dongfang Yang, Jian Yang, and Bingfang Yan

Department of Biological and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island

Received October 26, 2005; accepted December 20, 2005

ABSTRACT

Oxysterols are intermediates in the synthesis of bile acids and steroid hormones from cholesterol and function as ligands for liver X receptor (LXR). Bile salt export pump (BSEP) is responsible for canalicular secretion of bile acids and is tightly regulated by its substrates bile acids through nuclear receptor farsenoid X receptor (FXR). In a microarray study using human hepatocytes, BSEP was markedly induced not only by chenodeoxycholic acid (CDCA) but also by oxysterol 22(R)-hydroxycholesterol [22(R)-OHC]. We hypothesized that the expression of BSEP was induced by oxysterols through activation of LXR. To test the hypothesis, human primary hepatocytes or hepatoma cells were treated with 22(R)-OHC, and expression of BSEP was determined. The level of BSEP mRNA was increased as much as 5-fold upon oxysterol induction. In contrast to our hypothesis, the oxysterol-induced up-regulation of BSEP is mediated through FXR but not LXR. BSEP promoter activity was markedly induced by 22(R)-OHC in the presence of FXR but not LXRs. Mutation of the FXR element IR1 in the BSEP promoter significantly reduced its ability to respond to oxysterol induction. To determine whether 22(R)-OHC and CDCA bind to similar structural features of FXR, site-directed mutagenesis was performed in the FXR ligand binding domain. Mutation of residues R331 and I352 abolished activation mediated by CDCA and 22(R)-OHC. In contrast, substitution of residues L340 and R351 differentiated CDCA- and 22(R)-OHC-mediated activation. In conclusion, oxysterol 22(R)-OHC functions as an FXR ligand to induce BSEP expression and differs in the binding with FXR from CDCA.

Oxysterols are intermediates in the synthesis of bile acids and steroid hormones from cholesterol (Schroepfer, 2000; Russell, 2003; Auchus, 2004). Oxysterols rather than cholesterol itself serve as biological sensors for cholesterol levels in the body and function as potent endogenous ligands for nuclear receptor liver X receptor (LXR) (Janowski et al., 1996; Peet et al., 1998a). Activation of LXR by oxysterols plays a central role in the regulation of cholesterol metabolism and transport (Peet et al., 1998b; Chiang et al., 2001; Davis et al., 2002; Edwards et al., 2002; Keppa et al., 2002).

Molecular and genetic studies have established that bile salt export pump (BSEP) is responsible for the secretion of bile acids from the liver (Strautnieks et al., 1998; Jansen et al., 1999; Noe et al., 2002). Lack of functional BSEP is linked directly to the progressive familial intrahepatic cholestasis type II, a rapidly progressing and lethal hereditary disease (Strautnieks et al., 1998; Jansen et al., 1999). Impairment of BSEP function or expression mediated by endobiotics (Yu et al., 2002; Crocenzi et al., 2003) or xenobiotics leads to cholestatic liver injury (Horikawa et al., 2003; Roman et al., 2003).

Bile salts are physiological detergents and function as solubilizers of cholesterol in bile and emulsifiers of lipids in intestine, playing important physiological roles in transport, adsorption, and elimination of cholesterol and lipids (Fuchs, 2003). On the other hand, excessive accumulation of bile acids is toxic to hepatocytes. Bile acid homeostasis is maintained through the bile enterohepatic circulation (Fuchs, 2003; Kullak-Ublick et al., 2004). The rate-limiting step in...
bile enterohepatic circulation is the canicular secretion by BSEP (Meier and Stieger, 2002; Fuchs, 2003; Kullak-Ublick et al., 2004).

The expression of BSEP is profoundly altered by both endobiotics (Ananthanarayanan et al., 2001; Plass et al., 2002; Yu et al., 2002) and xenobiotics (Cui et al., 2003; Owsley and Chiang, 2003). Bile acids, such as chenodeoxycholic acid (CDCA), markedly increase the expression of BSEP (Ananthanarayanan et al., 2001; Plass et al., 2002), whereas xenobiotic guggulsterone antagonizes CDCA-mediated up-regulation of BSEP (Cui et al., 2003; Owsley and Chiang, 2003). Bile acid-mediated up-regulation of BSEP expression is achieved through activation of nuclear receptor farsenoid X receptor (FXR) (Ananthanarayanan et al., 2001; Plass et al., 2002), which plays a vital role in maintaining cholesterol and bile acid homeostasis (Chiang, 2002; Redinger, 2003; Rizzo et al., 2005). A cis-acting element, IR1, in the BSEP promoter has been identified as a FXR-specific binding site (Ananthanarayanan et al., 2001; Plass et al., 2002).

The FXR signaling is functionally related to LXR signaling. Both signaling pathways are involved in regulating a number of target genes important in the synthesis, metabolism, and transport of cholesterol and bile acids. For example, cholesterol-7α-hydroxylase (CYP7A1), a rate-limiting enzyme in the conversion of cholesterol to bile acids in the classic pathway of bile acid synthesis, is directly up-regulated through LXR pathway in rodents (Chiang et al., 2001; Menke et al., 2002) but indirectly down-regulated through FXR pathway in both rodents and human (Chiang et al., 2000; Lu et al., 2000; Davis et al., 2002). The species difference in the regulation of human CYP7A1 by LXR is noted because of the lack of an LXR-responsive element in human CYP7A1 (Chiang et al., 2001). Conversion of cholesterol to bile acids represents a major pathway for cholesterol elimination from the body. On the other hand, secretion or adsorption of cholesterol requires bile acids for cholesterol solubilization.

In a microarray study using human primary hepatocytes to identify transcriptionally regulated target genes by bile acid CDCA and oxysterol 22(R)-OHC, it was unexpectedly observed that BSEP was markedly induced by 22(R)-OHC. The observation is consistent with a recent study that found a high-cholesterol diet results in an increase in bile acid pool size and fecal secretion (Tiemann et al., 2004), indicating an observation is consistent with a recent study that found a high-cholesterol diet results in an increase in bile acid pool size and fecal secretion (Tiemann et al., 2004), indicating an observation is consistent with a recent study that found a high-cholesterol diet results in an increase in bile acid pool size and fecal secretion (Tiemann et al., 2004), indicating an.

### Materials and Methods

#### Chemicals and Supplies

CDCA, 22(R)-OHC, rifampicin, actinomycin D, dimethyl sulfoxide (DMSO), and Williams’ Medium E were purchased from Sigma (St. Louis, MO). DMEM, LipoceptAMINE, and Plus Reagent were from Invitrogen (Carlsbad, CA). Kits for luciferase detection and the null-Renilla luciferase plasmid were from Promega (Madison, WI). Delipidated and normal fetal bovine sera and 100 X nonessential amino acids were from HyClone (Logan, UT). Unless otherwise specified, all other reagents were purchased from Fisher Scientific (Pittsburgh, PA). Oligonucleotides for PCR amplification and site-directed mutagenesis were chemically synthesized by Invitrogen. Restriction enzymes were purchased from New England Biolabs (Ipswich, MA).

#### Plasmid Constructs

BSEP promoter reporter was constructed by cloning a genomic DNA fragment upstream of the transcription start site (+85 to −2525) into the luciferase vector pGL4.10 (Promega). The DNA fragment was PCR-amplified using human genomic DNA as template and a pair of primers with the following sequences: 5′-AATTTGATAGCAAGGTGTCCTCAGCTCAGCT-3′ (forward) and 5′-AATGCTGGAGGAAGGACGGAAATATATGGACCTC-3′ (reverse). NheI and XhoI restriction sites (underlined) were incorporated into the forward and reverse primers, respectively, to facilitate the cloning of the resulting PCR fragment. The PCR amplification was performed in a total volume of 25 μl containing 10 ng of human genomic DNA templates, 200 nM forward and reverse primer, and 2.5 units of high-fidelity Taq polymerase (Invitrogen). The thermal cycling parameters include an initial denaturing at 94°C for 3 min, followed by 30 cycles at 94°C for 45 s, 65°C for 45 s, and 68°C for 3 min, and a final extension at 68°C for 10 min. The PCR products were subjected to restriction digestion, gel purification, and ligation. The resulting pBSEP-Luc reporter construct was sequence-verified. Expression construct of nuclear receptor pregnane X receptor (PXR) and its target reporter construct pCYP3A4DP-Luc were described previously (Song et al., 2004). Expression plasmids for human nuclear receptors LXRα, LXRβ, and FXR were kindly provided by Dr. D. Mangelsdorf (University of Texas Southwestern Medical Center, Dallas, TX). LXR target gene reporters pTK-Luc-2LXRE-3 and pGL-TK-2610 (LXR) were kindly provided by Dr. P. Edwards (University of California Los Angeles School of Medicine, Los Angeles, CA) and Dr. B. Goodwin (GlaxoSmithKline Inc., Research Triangle Park, NC), respectively.

#### Site-Directed Mutagenesis

Mutations were introduced by a QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA). The mutagenesis oligonucleotides were listed in Table 1 with the substituted nucleotides in bold and the IR1 element underlined. Multiple nucleotide substitutions in the IR1 element were introduced to completely disrupt the site. Four and three nucleotides were substituted in the first half and second half, respectively. Four amino acid residues in the FXR LBD, including R331, L340, R351, and I352, were selected for mutagenesis. Those amino acid residues are in the binding pocket with ligand 6α-ethyl-chenodeoxycholic acid (6ECDCA) for rat FXR (Mi et al., 2003) or fexaramine for human FXR (Downes et al., 2003) in the crystal structures. The mutagenesis reactions were performed essentially according to the manufacturer’s manual. Briefly, the sense and antisense oligonucleotides were annealed to the pBSEP-Luc construct for IR1 mutation or FXR expression construct for FXR LBD mutation, followed by a total of 18 cycles at 94°C for 45 s, 55°C for 1 min, and 68°C for 8 min. The resultant PCR-amplified constructs were then digested with DpnI to remove the nonmutated parent constructs. The mutated PCR-amplified constructs were used to transform XL1-Blue bacteria. The resulting mutants were subjected to sequence analysis to confirm the desired substitutions being made without introducing errors.

#### Human Primary Hepatocyte and Hepatoma Cell Culture

Plated human primary hepatocytes (in six-well plates) were obtained from Liver Tissues Procurement and Distribution System (University of Minnesota, Minneapolis, MN). Upon arrival, cell supernatants were replaced with rich Williams’ Medium E containing 1% penicillin/streptomycin. After incubation at 37°C with 5% CO2 for 6 h, cells were treated with 10 μM oxysterol 22(R)-OHC, 10 μM CDCA, 10 μM rifampicin, 5 μM actinomycin D, 0.1% solvent ethanol or DMSO, and a mixture of 10 μM 22(R)-OHC and 5 μM...
actinomycin D. The treatment was continued for 30 h with a change of fresh treatment medium at 24 h.

Hepatoma Huh 7 cells purchased from American Type Culture Collection were maintained in DMEM containing 10% fetal bovine serum, 1% penicillin/streptomycin, and 1× nonessential amino acids. Cells were seeded at a density of 2 × 10⁶ cells/well (12-well plates) in a medium containing 10% delipidated fetal bovine serum. Sixteen hours postseeding, cells were treated with appropriate chemicals at the concentrations specified above. Unless specified, all the treatments were continued for 30 h.

**RNA Isolation.** Cell monolayers were lysed by adding 400 μl/well (12-well plate) or 800 μl/well (six-well plate) of RNA-Be solution (Tel-Test, Inc., Friendswood, TX). The cell lysates were transferred to fresh tubes, and 800 or 160 μl of chloroform were added into each tube for the six-well plate or 12-well plate samples, respectively. After vigorously shaking for 15 s, the tubes were centrifuged at 12,000 rpm for 15 min at 4°C. The supernatants were transferred to fresh tubes, and equal volume of isopropanol was added into each tube to precipitate total RNA. After incubating at −70°C for 20 min, RNA precipitants were pelleted by centrifugation at 13,000 rpm for 15 min at 4°C. The RNA pellets were washed once with 75% ethanol, air-dried at room temperature, and dissolved in 25 μl of diethyl pyrocarbonate water. The RNA concentrations were determined by NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE).

**Reverse Transcription Coupled-Polymerase Chain Reaction (RT-PCR).** The mRNA levels of BSEP were determined by RT-PCR with a ThermoScript I kit (Invitrogen). Total RNA (1 μg) was subjected to the synthesis of the first strand cDNA in a total reaction volume of 25 μl with random primers and ThermoScript I reverse transcriptase. The reactions were incubated initially at 25°C for 10 min, and then at 50°C for 50 min, followed by inactivation of the reaction at 70°C for 10 min. The cDNAs were then diluted five times with water and subjected to PCR amplification (5 μl of the diluted cDNA). The cycling parameters were 95°C for 30 s, 52°C for 30 s, and 72°C for 30 s for a total of 30 to 38 cycles, depending on the relative abundance of BSEP mRNA in different samples. The primers for BSEP amplification were 5'-AGGAGAAATAATGGAATGGAAATAGGG-3' (forward) and 5'-GTTGCGAAAGGCTTCCAAAACAGGAGGGCA-3' (reverse), and the primers for glyceraldehyde-3-phosphate dehydrogenase amplification were 5'-CAGTCCATGCCATCTGCGCA-3' (forward) and 5'-AGTGTACCCGAGATGCTTC-3' (reverse). The PCR-amplified products were resolved by agarose gel electrophoresis, detected by a Typhoon 9410 Image Scanner (GE Healthcare, Piscataway, NJ), and quantitated by KODAK 1D Image Analysis software (Eastman Kodak, Rochester, NY).

**Transient Transfection and Cell Treatments.** Huh 7 cells were plated in 24-well plates in DMEM supplemented with 10% delipidated fetal bovine serum at a density of 5 × 10⁵ cells per well and cultured overnight. Transient transfection was conducted by lipofection with LipofectAMINE and Plus Reagent (Invitrogen) as described previously (Song et al., 2004). For all the transfections, standard amounts of plasmid DNA used per well were 100 ng for BSEP promoter construct, 100 ng for nuclear receptor expression plasmids, and 10 ng for the null-Renilla luciferase plasmid as an internal control. After cells were transfected for 3 h, 0.75 ml of fresh medium was added into each well, and cells were incubated overnight. Then, cell supernatants were replaced with treatment medium containing appropriate chemicals at a concentration specified in the figure legends. The treatment was continued for 30 h unless specified.

**Reporter Luciferase Assay.** The reporter enzyme activities were assayed with the Dual-Luciferase Reporter assay system as described previously (Song et al., 2004). Treated Huh 7 cells were washed once with phosphate-buffered saline and lysed by adding 100 μl of passive lysis buffer (Promega) with gentle rocking for 30 min. Ten microliters of cell lysates were transferred to a 96-well reader plate, and luciferase activities were measured by an EG&G Berthold microplate luminometer (Perkin Elmer, Boston, MA). The Dual-Luciferase Reporter assay system contained two substrates that were used to determine the activity of two luciferases sequentially. The firefly luciferase activity, which represented the reporter activity, was initiated by mixing aliquot of lysates (10 μl) with Luciferase Assay Reagent II (Promega). Then, the firefly luminescence was quenched, and the Renilla luminescence was simultaneously activated by adding Stop and Glo reagent (Promega) to the sample tube. The firefly luminescence was normalized based on the Renilla luminescence signal, and the ratio of treatment over control served as 2-fold activation. Data are presented as mean ± standard deviation (S.D.) of at least three separate experiments.

**Results**

**Expression of BSEP was Induced by Oxysterol 22(R)-OH.** Oxysterols are intermediates, whereas bile acids are the ultimate metabolites of cholesterol. BSEP is responsible for bile secretion of bile acids, a rate-limiting step in the bile enterohepatic circulation. Oxysterol 22(R)-OH is a potent agonist of nuclear receptor LXR. In a preliminary microarray experiment using human primary hepatocytes to identify transcriptionally regulated target genes by bile acid CDCA and oxysterol 22(R)-OH, BSEP expression was induced not only by CDCA, as expected, but also unexpectedly by oxysterol 22(R)-OH (data not shown). This unexpected finding prompted us to further investigate the underlying mechanism.

To confirm oxysterol 22(R)-OH-induced BSEP expression, human primary hepatocytes were treated with 10 μM 22(R)-OH for 30 h, and the level of BSEP mRNA was determined by RT-PCR. As controls, hepatocytes treated with 10 μM CDCA and 10 μM rifampicin were included in the experiments. As shown in Fig. 1, a marked increase in BSEP expression was observed in the presence of oxysterol 22(R)-OH. The results shown here support the idea that oxysterol 22(R)-OH may be an endogenous ligand for FXR.
mRNA was detected in hepatocytes treated with 22(R)-OHC, a level comparable with that detected in the cells treated with CDCA. However, treatment of hepatocytes with antibiotic rifampicin did not significantly alter the level of BSEP mRNA, indicating that BSEP is not a target of nuclear receptor PXR as rifampicin is a potent agonist for PXR. The marked induction was consistently detected in all three donors, although a slight variation was observed with a range from 2- to 5-fold increase in mRNA level.

To test whether hepatoma Huh 7 cells respond to 22(R)-OHC similarly as human primary hepatocytes, cells were treated with oxysterol 22(R)-OHC, CDCA, and rifampicin. As shown in Fig. 2A, an approximately 2-fold induction was detected in Huh 7 cells treated with either oxysterol 22(R)-OHC or CDCA. Similar to the data obtained from hepatocytes, no obvious alteration of BSEP expression was detected in cells treated with rifampicin. In summary, the data demonstrated that BSEP mRNA was induced by oxysterol 22(R)-OHC in human primary hepatocytes as well as hepatoma Huh 7 cells.

Oxysterol 22(R)-OHC Regulates BSEP Expression at Transcriptional Level. To determine whether the increase in BSEP mRNA upon 22(R)-OHC treatment is due to transcriptional or decreased degradation of BSEP mRNA, human primary hepatocytes and hepatoma Huh 7 cells were treated with a combination of 10 μM 22(R)-OHC and 5 μM actinomycin D, a potent transcription inhibitor, for 24 h, and the levels of BSEP mRNA were determined by RT-PCR. As shown in Fig. 2B, treatment with actinomycin D completely abolished the induction of BSEP mRNA expression by oxysterol 22(R)-OHC in both hepatocytes and Huh 7 cells, indicating that oxysterol 22(R)-OHC transcriptionally up-regulates BSEP expression.

The Up-Regulation of BSEP Expression by Oxysterol 22(R)-OHC Is Achieved through Nuclear Receptor FXR but Not LXR. Studies have demonstrated that oxysterol 22(R)-OHC is a potent endogenous agonist for nuclear receptor LXR. Activation of LXR by 22(R)-OHC transactivates a group of LXR targets (Janowski et al., 1996; Peet et al., 1998a). On the other hand, CDCA-mediated transactivation of BSEP expression is through activation of nuclear receptor FXR (Ananthanarayanan et al., 2001; Plass et al., 2002). We hypothesized that transcriptional up-regulation of BSEP expression by 22(R)-OHC is through activation of LXR. To test the hypothesis, a BSEP promoter reporter was constructed by cloning a 2.6-kb genomic fragment upstream of the BSEP transcription start site into the luciferase vector pGL4.10. The resulting pBSEP-Luc construct was cotransfected with nuclear receptor LXRα or LXRβ, followed by treatment of the cotransfected cells with 22(R)-OHC, CDCA, or rifampicin. In contrast to our hypothesis, BSEP promoter was not activated at all by either LXRα or LXRβ in the presence of oxysterol 22(R)-OHC (Fig. 3, A and B). On the other hand, as positive controls, the two LXR element (LXRE)-containing reporters pTK-Luc-2LXRE-3 and pGL-TK-2610 (LXR) were strongly activated by both LXRα and LXRβ, and an additional induction was observed by the treatment with 22(R)-OHC (Fig. 3, A and B). The results demonstrated that 22(R)-OHC-induced activation of BSEP was not through nuclear receptor LXRα or LXRβ.

To test whether nuclear receptor pregnane X receptor (PXR) or FXR was involved in the activation of BSEP by 22(R)-OHC, Huh 7 cells were cotransfected with pBSEP-Luc and PXR or FXR expression plasmid, followed by treatment with 22(R)-OHC, CDCA, and rifampicin. As a positive control for PXR and negative control for FXR, a PXR target gene reporter, pCYP3A4DP-Luc, was included in the experiment. As shown in Fig. 3C, no induction of BSEP promoter activity was detected in cells cotransfected with PXR and pBSEP-Luc.
in the presence of 22(R)-OHC or PXR agonist rifampicin, whereas strong induction was observed in cells cotransfected with PXR and pCYP3A4DP-Luc, and an additional induction was detected upon treatment with rifampicin. However, as shown in Fig. 3D, marked activation of BSEP promoter was achieved by cotransfection with nuclear receptor FXR (Fig. 3B). More importantly, an additional more than 3-fold induction was detected upon treatment with 22(R)-OHC. The level of induction of BSEP promoter activity by 22(R)-OHC was comparable with that mediated by CDCA (Fig. 3D), consistent with the previous observation for BSEP mRNA induction in hepatocytes by 22(R)-OHC and CDCA (Fig. 1). The data demonstrated that 22(R)-OHC-induced expression of BSEP was achieved through FXR. It should be mentioned that activation of BSEP promoter activity upon FXR transfection without 22(R)-OHC or CDCA treatment may result from the presence of endogenous FXR agonists, such as bile acids and oxysterols. Taken together, those data demonstrated that oxysterol 22(R)-OHC mediated transcriptional up-regulation of BSEP was achieved through nuclear receptor FXR but not LXR or PXR.

Oxysterol/FXR-Mediated Up-Regulation of BSEP Promoter Activity Is Time- and Dose-Dependent. To gain insight into the molecular mechanism on oxysterol/FXR-mediated regulation of BSEP expression, time and dose-response studies were performed. For the time course study, Huh 7 cells were cotransfected with pBSEP-Luc plasmid DNA and FXR expression construct, followed by treatment with 22(R)-OHC for 0, 2, 4, 8, 24, and 48 h. As shown in Fig. 4A, an increase in luciferase activity was first detected at 4 h post-treatment, elevated to approximately 1-fold at 8 h, and reached the plateau at 24 and 48 h.

For the FXR dose-response study, Huh 7 cells were cotransfected with pBSEP-Luc plasmid and increasing amounts of FXR constructs (5, 10, 25, 50, 100, and 200 ng), followed by treatment with 22(R)-OHC. As shown in Fig. 4B, induction of luciferase activities correlated very well with increasing amounts of FXR, indicating that the level of FXR expression is one of the limiting factors in the induction of the BSEP expression by 22(R)-OHC.

For the 22(R)-OHC dose-response study, Huh 7 cells were cotransfected with pBSEP-Luc and FXR plasmid DNA, followed by treatment of transfected cells with increasing concentrations of 22(R)-OHC (0, 0.5, 1.0, 2.5, 5, and 10 μM). As shown in Fig. 4C, an increase in luciferase activity was first detected in cells treated with 2.5 μM 22(R)-OHC, followed by strong induction (3-fold) in cells treated with 5 μM 22(R)-OHC, and highest increase (~4-fold) in cells treated with 10 μM 22(R)-OHC. The data indicate that the up-regulation of BSEP promoter activity by 22(R)-OHC is dose-dependent. Higher concentration of 22(R)-OHC was not used in the study because of the fact that concentration higher than 10 μM resulted in death of Huh 7 cells, consistent with the report that oxysterols induced cell death at higher concentrations.
In summary, oxysterol-mediated up-regulation of BSEP expression is time- and dose-dependent on both nuclear receptor FXR and oxysterol 22(R)-OHC.

IR1 Element in the BSEP Promoter Is Required for Maximal Induction of BSEP Promoter Activity by 22(R)-OHC. Transactivation of the BSEP promoter by CDCA is through the IR1 element in the BSEP promoter (Ananthanarayanan et al., 2001; Plass et al., 2002). To determine whether the oxysterol/FXR-mediated transcriptional regulation of BSEP expression is through the same IR1 element, site-directed mutagenesis was performed to disrupt the IR1 element, and the resulting mutant was tested for its ability to respond to 22(R)-OHC. As shown in Fig. 5A, the wt IR1 sequence was mutated in multiple positions to ensure complete destruction of the site. Four and three nucleotides were substituted in the first half and the second half, respectively. The resulting mutant, pBSEP-IR1-Mut, was cotransfected into Huh 7 cells with FXR, followed by treatment with 22(R)-OHC for 30 h. As shown in Fig. 5B, destruction of the IR1 element significantly decreased the ability of BSEP promoter to respond to 22(R)-OHC as well as CDCA, although a considerable level of induction was still observed in cells transfected with pBSEP-IR1-Mut compared with vehicle-treated cells. The data demonstrated that the IR1 element was required for maximal induction of BSEP expression by 22(R)-OHC.

Mutation of Residues L340 and R351 of FXR Differentiates CDCA- and 22(R)-OHC-Mediated Activation. To determine whether 22(R)-OHC and CDCA bind to similar structural features of FXR, a series of FXR mutants were made in the FXR LBD, guided by the crystal structures of rat and human FXR LBD in complex with 6ECDCA or fexaramine (Downes et al., 2003; Mi et al., 2003). The amino acid residues selected for mutation are in the binding pocket with ligand 6ECDCA or fexaramine. Unfavorable substitutions were introduced for all the residues to disrupt its binding capability with respective ligands. The resulting FXR mutants were tested for their ability to activate BSEP promoter in the presence of 22(R)-OHC or CDCA.

As shown in Fig. 6, mutation of residue 331 from arginine to ASPET Journals on April 11, 2017 jpet.aspetjournals.org Downloaded from
to leucine (R331L) or residue 352 from isoleucine to tyrosine (I352Y) abolished the activation mediated by both 22(R)-OHC and CDCA, indicating that the two residues are important in binding with 22(R)-OHC and CDCA. More importantly, substitution of residue 351 from arginine to leucine (R351L) or residue 340 from leucine to tyrosine (L340Y) exhibited differential activation mediated by 22(R)-OHC and CDCA. As shown in Fig. 6B, mutation R351L almost completely abolished CDCA-induced activation; however, the mutant maintained its ability to activate BSEP promoter with 22(R)-OHC at the level similar to that achieved with FXR wt (Fig. 6A). The results suggest that residue R351 is critical for CDCA but not 22(R)-OHC-mediated activation. In contrast to R351L mutant, FXR L340Y mutant exhibited the opposite effect on CDCA- and 22(R)-OHC-induced activation. Substitution of residue 340 from leucine to tyrosine resulted in complete loss of its ability to activate BSEP promoter with 22(R)-OHC (Fig. 6A). However, CDCA-induced activation remained largely intact (Fig. 6B). The data indicate that residue L340 is critical for oxysterol-mediated activation.

Discussion

Oxysterols are cholesterol derivatives acting as sensors for cholesterol levels in the body. It is well established that oxysterols are natural endogenous ligands for nuclear receptor LXR, which regulates a class of target genes important in cholesterol metabolism and transport (Peet et al., 1998b; Chiang et al., 2001; Davis et al., 2002; Edwards et al., 2002; Repa et al., 2002). On the other hand, bile acids are a group of cholesterol metabolites and function as potent endogenous ligands for nuclear receptor FXR, which regulates a set of target genes in bile acid synthesis, transport, and elimination (Rizzo et al., 2005). Therefore, oxysterol/LXR and bile acid/FXR pathways coordinately regulate their target genes to maintain the cholesterol and bile acid homeostasis.

BSEP is responsible for the canalicular secretion of bile acids, a rate-limiting step in the bile enterohepatic circula-
have demonstrated that oxysterol 22R-OHC functions not only as key inducers of endogenous FXR agonists, such as bile acids and oxysterols. It cannot be excluded, however, that FXR may directly mediate hydrogen bonding with CDCA and 22R-OHC-mediated activation, indicating that the residue R351 is important for CDCA-mediated activation, but not that mediated by 22R-OHC.

Indeed, an abundant RXR-specific band was detected by RT-PCR in Huh 7 cells (data not shown). The fact that exogenously added FXR was required for maximal induction of BSEP promoter activity indicates that FXR rather than RXR is the limiting factor in the formation of FXR/RXR heterodimer in Huh 7 cells. It should be mentioned that BSEP promoter activity was strongly increased in cells cotransfected with FXR with vehicle treatment (Fig. 3). The increase in BSEP promoter activity upon FXR transfection without 22R-OHC or CDCA treatment may result from the presence of endogenous FXR agonists, such as bile acids and oxysterols. A similar phenomenon was observed in a study using rat FXR and human BSEP promoter (Plass et al., 2002). The data suggest an additional IR1-independent mechanism to support the transactivation of BSEP promoter by FXR.

Residue R351 of rat FXR is involved in hydrogen bonding with its ligand 6ECDDA (Mi et al., 2003). In this study, substitution of the corresponding residues in human FXR from arginine to leucine completely abolished CDCA- and 22R-OHC-mediated induction of BSEP, indicating that the residue may mediate hydrogen bonding with CDCA and 22R-OHC. Residue I352 of human FXR is in contact with the methyl ester chain of fexaramine through van der Waals interaction (Downes et al., 2003). Mutation of the residue resulted in loss of its activation by CDCA and 22R-OHC, indicating that the residue may be in direct contact with CDCA and 22R-OHC as well. Residue R351 is next to residue E350, which mediates hydrogen bonding with 6ECDDA (Mi et al., 2003). Mutation of the residue abolished CDCA-mediated activation but not that mediated by 22R-OHC. The data suggest that residue R351 is important for CDCA-mediated activation through either direct interaction with CDCA or maintaining the structure required for CDCA binding. However, the residue does not play critical role in 22R-OHC-mediated activation. In contrast to R351L mutant, L340Y mutant exhibi-
Induction of BSEP by Oxysterol through FXR

BSEP is induced by oxysterol 22(R)-OHC, and the induction was mediated through activation of nuclear receptor FXR but not LXR. The IR1 element in the BSEP promoter was required for maximal induction of BSEP expression by 22(R)-OHC, and mutation of residues L340 and R351 in the FXR LBD differentiated CDCA- and 22(R)-OHC-mediated activation, as shown in the crystal structure of human FXR in complex with CDCA.

In summary, this study demonstrated that expression of BSEP was induced by oxysterol 22(R)-OHC, and the induction was mediated through activation of nuclear receptor FXR but not LXR. The IR1 element in the BSEP promoter was required for maximal induction of BSEP expression by 22(R)-OHC, and mutation of residues L340 and R351 in the FXR LBD differentiated CDCA- and 22(R)-OHC-mediated activation.

Acknowledgments

We thank Dr. David Mangelsdorf for providing human FXR, LXRα, and LXRβ expression plasmids; Dr. Bryan Goodwin for providing pGL-TK-2610 (LXR) construct; and Dr. Peter Edwards for providing pTK-Luc-LXRE-3 reporter plasmid. The contributions to the project by Dr. Ma Yuzhong and Song Xiulong are gratefully acknowledged.

References


Address correspondence to: Ruitang Deng, Department of Biological and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Fogarty Hall, 41 Lower College Road, Kingston, RI 02881. e-mail: dengr@mail.uri.edu