Oxymetazoline Inhibits Proinflammatory Reactions: Effect on Arachidonic Acid-Derived Metabolites

Ingrid Beck-Speier, Niru Dayal, Erwin Karg, Konrad L. Maier, Gabriele Schumann, Manuela Semmler, and Stephan M. Koelsch

GSF-National Research Center for Environment and Health, Institute for Inhalation Biology, Neuherberg/Munich, Germany (I.B.-S., N.D., E.K., K.L.M., G.S., M.S.); and Merck Selbstmedikation GmbH, Darmstadt, Germany (S.M.K.)

Received July 27, 2005; accepted October 11, 2005

ABSTRACT

The nasal decongestant oxymetazoline effectively reduces rhinitis symptoms. We hypothesized that oxymetazoline affects arachidonic acid-derived metabolites concerning inflammatory and oxidative stress-dependent reactions. The ability of oxymetazoline to model pro- and anti-inflammatory and oxidative stress responses was evaluated in cell-free systems, including 5-lipoxygenase (5-LO) as proinflammatory, 15-lipoxygenase (15-LO) as anti-inflammatory enzymes, and oxidation of methionine by agglomerates of ultrafine carbon particles (UCPs), indicating oxidative stress. In a cellular approach using canine alveolar macrophages (AMs), the impact of oxymetazoline on phospholipase A2 (PLA2) activity, respiratory burst and synthesis of prostaglandin E2 (PGE2), 15(S)-hydroxy-eicosatetraenoic acid (15-HETE), leukotriene B4 (LTB4), and 8-isoprostane was measured in the absence and presence of UCP or opsonized zymosan as particulate stimulants. In cell-free systems, oxymetazoline (0.4–1 mM) inhibited 5-LO but not 15-LO activity and did not alter UCP-induced oxidation of methionine. In AMs, oxymetazoline induced PLA2 activity and 15-HETE formation at 1 mM, enhanced PGE2 and respiratory burst at 0.4/0.1 mM (p < 0.05), but did not affect 8-isoprostane formation. In contrast, oxymetazoline did not alter UCP-induced PLA2 activity and PGE2 and 15-HETE formation in AMs but inhibited UCP-induced LTB4 formation and respiratory burst at 0.1 mM and 8-isoprostane formation at 0.001 mM (p < 0.05). In opsonized zymosan-stimulated AMs, oxymetazoline inhibited LTB4 formation and respiratory burst at 0.1 mM (p < 0.05). In conclusion, in canine AMs, oxymetazoline suppressed proinflammatory reactions including 5-LO activity, LTB4 formation, and respiratory burst and prevented particle-induced oxidative stress, whereas PLA2 activity and synthesis of immune-modulating PGE2 and 15-HETE were not affected.

An upper respiratory tract infection (URTI), also known as the common cold, is the most frequent, acute infectious illness of humans. An URTI is characterized by rhinorrhea, nasal congestion, and sneezing, often accompanied by fever, a sore throat, and malaise. Approximately 80% of the nasal infections are caused by viruses, the majority being rhinoviruses. Despite its frequent occurrence, there is still little known about the pathogenesis of URTI. Available data support the concept that the symptoms of an URTI are the result of the host’s inflammatory immune response to the virus rather than a direct viral cytopathic effect and that inflammatory mediators play an important role in the pathogenesis of URTI (Winther et al., 1998; Van Cauwenberge et al., 2000; Gentile and Skoner, 2001). This is usually accompanied by an infiltration of neutrophils in the nasal mucosa (Winther et al., 1998; Van Cauwenberge et al., 2000). Among the lipid mediators, leukotriene B4 (LTB4) is the most potent chemoattractant for neutrophils and might be responsible for the neutrophilic infiltrate in rhinitis patients (Denzlinger, 1996; Gentile and Skoner, 2001). LTB4, together with cysteinyl leukotrienes, enhance mucus secretion (Gentile and Skoner, 2001). Levels of nasal cysteinyl leukotrienes such as leukotriene C4 increase during an experimentally induced URTI and are temporally associated with the development of symptoms (Gentile et al., 2003). 5-Lipoxygenase (5-LO), the...
initial enzyme for leukotriene synthesis, is induced in epithelial cells by respiratory syncytial virus infection and catalyzes formation of LTB$_4$ and cysteinyl leukotrienes (Behera et al., 1998).

Because nasal decongestants, e.g., oxymetazoline, effectively reduce rhinitis symptoms (e.g., obstruction, rhinorrhea), a few studies also dealt with their possible anti-inflammatory activities. Bjerknes and Steinsvag (1993) reported that compounds such as oxymetazoline chloride and xylo-metazoline chloride inhibit human neutrophil functions including actin polymerization, phagocytosis, and oxidative burst. Furthermore, Westerveld et al. (2000) showed that oxymetazoline strongly inhibits the expression of the inducible form of nitric oxide synthase and speculated that nasal decongestants might offer a new tool to reduce inflammatory mechanisms. Westerveld et al. (1995) also referred to antioxidant actions of oxymetazoline by showing that this compound is a potent inhibitor of microsomal lipid peroxidation and an excellent hydroxyl radical scavenger.

Based on these findings, we hypothesized that oxymetazoline inhibits proinflammatory reactions and prevents oxidative stress focusing on arachidonic acid-derived metabolites. We tested this hypothesis with both cell-free and cellular systems. Cytosolic phospholipase A$_2$ (cPLA$_2$) plays a central role in lipid mediator synthesis during inflammation by releasing arachidonic acid from membrane phospholipids. Arachidonic acid is further metabolized by cyclooxygenases (COXs) to immune-modulating prostaglandins E$_2$ (PGE$_2$) among other prostanooids, by 5-LO to proinflammatory LTB$_4$, and by 15-LO to formation of 15(S)-hydroxy-eicosatetraenoic acid (15-HETE). Arachidonic acid can also be oxidized by free radical-induced peroxidation to 8-iso prostane, a marker for oxidative stress in vivo (Roberts and Morrow 2000). Because 5-LO is involved in the pathogenesis of URTI (Behera et al., 1998), oxymetazoline’s putative inhibitory effect on the activity of 5-LO was directly assessed in a cell-free system. In addition, 15-LO contributing to resolution of inflammation (Serhan et al., 2003) was also tested for its response to oxymetazoline. Another cell-free system covered oxymetazoline’s antioxidative potency to prevent the oxidation of methionine by agglomerates of ultrafine carbon particles (UCPs). For the cellular system to study oxymetazoline’s effect, alveolar macrophages (AMs) were selected, which are competent immune cells with regard to eicosanoid metabolism (Denzlinger 1996). Particulate stimulants such as UCP and zymosan were recently shown to activate lipid mediator synthesis and to induce oxidative stress in macrophages (Girotti et al., 2004; Beck-Speier et al., 2005). It is noteworthy that the tissue eicosanoid metabolism seems to be enhanced in upper airway diseases (Perez-Novoa et al., 2005), and increased numbers of macrophages in the nasal mucosa during URTI (van Benten et al., 2001, 2005) might trigger this change. Therefore, canine AMs stimulated by UCP or opsonized zymosan were used as a model for activated lipid mediator synthesis and oxidative stress. They were analyzed for cPLA$_2$ activity and formation of PGE$_2$, 15-HETE, LTB$_4$, and 8-isoprostane. In addition, cPLA$_2$-dependent stimulation of respiratory burst activity was assessed to evaluate the microbicidal defense capacity of AMs.

Materials and Methods

Materials

Phosphate-buffered saline (PBS) with and without Ca$^{2+}$/Mg$^{2+}$ was purchased from Biochrome (Berlin, Germany), lucigenin and zymosan A were purchased from Sigma Chemie (Deisenhofen, Germany), and 5-LO and 15-LO were purchased from Cayman Chemical (Ann Arbor, MI).

Solutions of Oxymetazoline and Suspensions of Ultrafine Carbon Particles and Opsonized Zymosan

Oxymetazoline (Merck Biosciences, Darmstadt, Germany) was dissolved and diluted in PBS with Ca$^{2+}$/Mg$^{2+}$, pH 7, containing 0.1% glucose. Ultrafine carbon particles were generated by spark discharging according to Roth et al. (2004). The particles consisted of individual primary particles with a diameter of 5 to 10 nm and a specific surface area of 750 ± 150 m2/g (n = 50). During aerosol generation, the primary particles aggregated to agglomerates of a size of about 70 nm. These agglomerates of UCPs were suspended in distilled water by repeated vortexing and sonification as described previously (Beck-Speier et al., 2005). In suspension, UCP formed even larger agglomerates with a size distribution of 70% being <100 nm and 30% being >100 nm (S. Takenaka, unpublished data). The specific surface area of these agglomerates is very similar to the sum of the surface areas of the primary particles. In the incubations, the cells were exposed to UCP at a mass concentration of 32 μg/ml, which corresponded to a surface area of 240 cm2/ml. This concentration of UCP was chosen to achieve optimal cellular responses of the arachidonic acid-derived metabolites and respiratory burst activity (Beck-Speier et al., 2005).

Opsonized zymosan was prepared from zymosan A with a diameter of 2 to 3 μm (Sherwood and Richardson, 1988; Dewitt et al., 2003). The zymosan A was purified by boiling for 30 min at 90°C in PBS and incubated with fresh-frozen canine serum in equal volume portions for 30 min at room temperature according to Allen (1986). The opsonized zymosan was washed twice, suspended in PBS, pH 7, containing 0.1% glucose, and aliquots were frozen until use. The cells were exposed to opsonized zymosan at 100 μg/ml, which represents a mass concentration to achieve optimal functional responses (Maier et al., 1992; Beck-Speier et al., 2005). In comparison with UCP, the zymosan particles with their larger diameter (2–3 μm) possess a smaller surface area per mass (estimated below 10 m2/g) than UCP. The specific surface area is a decisive parameter for particles to elicit biologic responses (Beck-Speier et al., 2005).

Cell-Free Systems with Oxymetazoline

Lipoxygenase Inhibitor Activity. The lipoxygenase inhibitor activity of oxymetazoline was determined by a lipoxygenase inhibitor screening assay (Cayman Chemical) in a cell-free system consisting of 5-LO with linoleic acid as substrate or 15-LO with arachidonic acid as substrate, respectively. Oxymetazoline in concentrations ranging from 0.001 to 1 mM was added to 5-LO or 15-LO in the screening assay buffer, respectively, and the lipoygenase inhibitor screening assay was immediately started by addition of the corresponding substrates and running for 5 min according to the instructions of the manufacturer.

Influence on the Oxidative Capacity of UCP. The influence of oxymetazoline on the oxidative capacity of UCP was studied by preincubating UCP (2 mg/ml H$_2$O) with various concentrations of oxymetazoline (0.1, 1, and 10 mM) for 60 min at room temperature in parallel with the controls. To assay the oxidative capacity of UCP, aliquots of 50 μl (100 μg UCP) of particle suspension taken from the preincubations were suspended in 1 ml H$_2$O and incubated in the presence of 100 μM methionine for 2 h at 25°C. Formation of methionine sulfoxide was measured fluorometrically after precolumn derivatization with o-phthaldialdehyde and high-performance liquid
quantification of PGE2, LTB4, 15-HETE, and 8-isoprostane by their
dried in a vacuum centrifuge, dissolved in assay buffer, and used for
removal of the proteins. Aliquots of the obtained supernatants were
instructions of the manufacturer.

Cytosolic Phospholipase A2 Activity of Alveolar Macrophages

The supernatants of the cell homogenates were analyzed for
cPLA2 activity by performing a cPLA2 activity assay (Cayman Chemi-
cal) according to the instructions of the manufacturer. Protein was
measured at 595 nm in a microtiter plate format by using 5 μl of
homogenate and 200 μl of 1.5 diluted Biorad solution (Bio-Rad,
Munich, Germany) with bovine serum albumin as standard.

Lipid Mediators of Alveolar Macrophages

For analysis of lipid mediators, the supernatants of the cell
homogenates were deproteinized by adding 8-fold volume of 90% meth-
containing 0.5 mM EDTA and 1 mM 4-hydroxy-2,2,6,6-tetram-
ethylpiperidine-1-oxyl, pH 7.4 (Beck-Speier et al., 2005). These
methanol suspensions were stored at −40°C for 24 h followed by two
centrifugation steps at 10,000g for 20 min at 4°C with a 24-h interval
to remove the proteins. Aliquots of the obtained supernatants were
dried in a vacuum centrifuge, dissolved in assay buffer, and used for
quantification of PGE2, LTβ, 15-HETE, and 8-isoprostane by their
specific enzyme immunoassays (Cayman Chemical) according to the
instructions of the manufacturer.

Respiratory Burst Activity of Alveolar Macrophages

The respiratory burst activity of AMs was determined by lucige-
nin-dependent chemiluminescence (CL) (Allen, 1986; Li et al., 1998).
Canine AMs (1 × 10^6 cells/250 μl) were preincubated in PBS with
Ca^{2+}/Mg^{2+}, pH 7, containing 0.1% glucose and 0.8 mM lucigenin, for
10 min at 37°C in a chemiluminescence analyzer (Autolumat LB 953;
Berthold Technologies, Bad Wildbad, Germany). CL signals of AMs
in the absence and presence of various oxymetazoline concentrations
were recorded for 20 min at 37°C. Thereafter, UCP or opsonized
zymosan, respectively, was added, and the CL signals of the cells were
monitored for further 20 min at 37°C.

Evaluation of the Antioxidative Properties of Oxymetazoline

The effect of oxymetazoline on the oxidative
capacity of UCP was studied by incubating the particles
with various concentrations of oxymetazoline (0.1–10 mM) in
a cell-free system. The oxidative potential of the particles
was subsequently determined by their capacity to oxidize
methionine to methionine sulfoxide. Oxymetazoline in concen-
trations between 0.1 to 10 mM did not reduce the oxida-
tive capacity of UCP. In the absence of oxymetazoline, UCP
(control) oxidized methionine resulting in formation of
methionine sulfoxide of 11558 ± 1059 pmol/ml. In the presence
of oxymetazoline, UCP did not lose this oxidative capacity:
UCP treated with 0.1 mM oxymetazoline formed
11721 ± 995 pmol methionine sulfoxide/ml, UCP treated with 1 mM
oxymetazoline formed 12981 ± 1320 pmol methionine sulfox-
ide/ml, and UCP treated with 10 mM oxymetazoline formed
12110 ± 940 pmol methionine sulfoxide/ml (mean ± S.D.
resulting from three to four experiments with different particle
preparations).

**Cellular System with Alveolar Macrophages: Effect of
Oxymetazoline on Generation of Arachidonic Acid-
Derived Metabolites and Respiratory Burst Activity**

The effect of oxymetazoline on AMs in the absence and
presence of stimulators was studied in view of the following
endpoints: activation of cPLA2, including formation of PGE2
and 15-LO or 15-LO together with appropriate substrates,
respectively. Figure 1 shows that oxymetazoline at concentra-
tions from 0.4 to 1 mM strongly inhibited the activity of
5-LO, whereas that of 15-LO was only marginally affected. A
50% inhibition of 5-LO was achieved by 0.4 mM oxymetazo-
line.
remained stable in the presence of oxymetazoline (mean ± S.D. resulting from four different experiments): 93 ± 1% viability for control cells, 90 ± 2% for 0.001 mM oxymetazoline-treated cells, 91 ± 3% for 0.01 mM oxymetazoline-treated cells, 89 ± 4% for 0.4 mM oxymetazoline-treated cells, and 85 ± 6% for 1.0 mM oxymetazoline-treated cells. Similar findings were obtained when the cells were stimulated in the presence of oxymetazoline by UCP or opsonized zymosan (data not shown), indicating that oxymetazoline in concentrations up to 1.0 mM did not remarkably impair cell viability.

Oxymetazoline in the Presence of Ultrafine Carbon Particles. To study the effect of oxymetazoline on UCP-stimulated AMs, a particle concentration of 32 μg/ml was selected to induce significant effects on arachidonic acid-derived metabolites and respiratory burst activity (Beck-Speier et al., 2005). As shown in Fig. 3, A and B, UCP in the absence of oxymetazoline stimulated AMs for a strong increase in the levels of cPLA₂ activity, PGE₂, 15-HETE, LTB₄, and 8-isoprostane (p < 0.01). However, the presence of oxymetazoline exerted various effects on these UCP-induced responses. Oxymetazoline did not essentially change the UCP-induced levels of cPLA₂ activity and 15-HETE (Fig. 3A). The UCP-induced increase of PGE₂ formation was reduced by low oxymetazoline concentrations (0.001 and 0.01 mM) but not by higher oxymetazoline concentrations (0.1 and 1 mM). The UCP-induced levels of LTB₄ synthesis and CL were not affected by the low oxymetazoline concentrations (0.001 and 0.01 mM) but inhibited by higher oxymetazoline concentrations (Fig. 3B). The particle-induced formation of 8-isoprostane was strongly reduced by all concentrations of oxymetazoline (Fig. 3B).

Oxymetazoline in the Presence of Opsonized Zymosan. To confirm the inhibitory effect of oxymetazoline on LTB₄ synthesis and CL, the cells were stimulated by opsonized zymosan in the absence and presence of oxymetazoline. Figure 4 shows that AMs stimulated by opsonized zymosan in the absence of oxymetazoline exhibited elevated levels of LTB₄ formation and CL (p < 0.001). The amount of opsonized zymosan used in these assays corresponded to the standard concentrations necessary to achieve optimal activation of AMs via the Fc- and complement receptor-mediated systems (Maier et al., 1992; Beck-Speier et al., 2005). In the presence of oxymetazoline, the levels of both parameters decreased drastically at higher oxymetazoline concentrations (0.1–1.0 mM).

Discussion

This study identifies oxymetazoline as a potent modulator of inflammatory reactions and inhibitor of oxidative stress concerning arachidonic acid-derived metabolites. Potential effects of oxymetazoline were tested in cell-free systems using the interference with 5-LO and 15-LO activities as pathways for pro- and anti-inflammatory responses, respectively, and using the oxidation of methionine by UCP to indicate oxidative stress. A cellular system with canine AMs stimulated by UCP or opsonized zymosan served as a model of inflammation and oxidative stress. Both particulate stimuli are phagocytosed by AMs, as we have shown recently for UCP (Beck-Speier et al., 2005) and as it is known for zymosan (Girotti et al., 2004). Phagocytosis is accompanied by respiratory burst (Root and Metcalf, 1977). According to our observation, opsonized zymosan elicits a much higher respiratory burst activity in AMs than nonopsonized UCP due to receptor-mediated versus nonreceptor-mediated phagocytosis (Beck-Speier et al., 2005).

In the cell-free system, oxymetazoline strongly inhibited 5-LO activity with an effective concentration of 0.4 mM for 50% inhibition but did not affect 15-LO activity (Fig. 1). This difference of oxymetazoline’s influence on 5-LO and 15-LO was also found in the cellular system. Likewise, oxymetazoline strongly inhibited the synthesis of proinflammatory lipoygenase activity. In a cell-free system, concentrations of oxymetazoline ranging from 0.001 to 1 mM were added to 5-LO or 15-LO, respectively, and analyzed for their capacity to inhibit the activities of both enzymes. Data are given as mean ± S.D. Number of experiments performed with different solutions of oxymetazoline was n = 4 for 5-LO and n = 3 for 15-LO. Initial activity of 5-LO was 0.01113 ± 0.00523 μmol/min/ml (n = 4) and for 15-LO was 0.0035 ± 0.0025 μmol/min/ml (n = 3).
LTB₄ and respiratory burst activity in AMs, whereas cPLA₂ activity with production of PGE₂ and 15-HETE was enhanced (Fig. 2). In AMs stimulated by UCP, oxymetazoline (0.1 mM) did not alter UCP-induced cPLA₂ activity and formation of PGE₂ plus 15-HETE but again inhibited UCP-induced LTB₄ formation and respiratory burst activity (Fig. 3). However, at lower oxymetazoline concentrations (0.001 and 0.01 mM), PGE₂ production of UCP-treated AMs was
reduced. The underlying mechanism needs to be clarified. After stimulating AMs with opsonized zymosan, oxymetazoline also inhibited the enhanced LTB4 formation and respiratory burst activity (Fig. 4). Concerning the effective oxymetazoline concentration for 50% inhibition of the 5-LO pathway with LTB4 formation, the cellular system with 0.1 mM oxymetazoline responded even more sensitive as the cell-free system.
As reported recently, UCP showed a pronounced electron paramagnetic resonance signal indicating unpaired electrons within the carbon matrix of the particles contributing to a highly reactive surface area (Beck-Speier et al., 2005). This electron paramagnetic resonance signal corresponded with a high oxidative capacity of UCP to oxidize methionine in a cell-free system and to induce oxidative stress in a cellular system with canine AMs, indicated by 8-isoprostane formation (Beck-Speier et al., 2005). Because oxymetazoline failed to reduce the oxidative potential of UCP in the cell-free system, we exclude a pronounced interaction of oxymetazoline with particle-associated radicals. However, in our cellular system, oxymetazoline did not induce 8-isoprostane formation by itself (Fig. 2B) but stopped very efficiently the particle-induced oxidative stress at the lowest concentration (0.001 mM) (Fig. 3B). This antioxidative and radical scavenger effect of oxymetazoline might result from its interference with the UCP-induced peroxidation of arachidonic acid.

Oxymetazoline was shown to reduce functions of human neutrophils including actin polymerization, phagocytosis, and oxidative burst at concentrations of about 1 mM as described by Bjerknes and Steinsvag (1993). Furthermore, Westerveld et al. (2000) referred that 0.3 mM oxymetazoline inhibited inducible nitric oxide synthase in a cellular system with rat alveolar macrophage cell line NR 8383, whereas the constitutive nitric oxide synthase was not affected. Oxymetazoline was also a potent inhibitor of lipid peroxidation and excellent hydroxyl radical scavenger (Westerveld et al., 1995). In a cell-free model of microsomal lipid peroxidation, consisting of Fe²⁺/ascorbic acid and liver microsomes, oxymetazoline inhibited lipid peroxidation completely at concentrations between 0.015 and 0.02 mM (Westerveld et al., 1995). With regard to these earlier studies, it must be noted that relatively high concentrations of oxymetazoline (≥0.3 mM to reduce proinflammatory responses of neutrophils and macrophages and 0.02 mM to inhibit lipid peroxidation) were necessary to induce the observed effects. In comparison with these findings, our cellular model with AMs was significantly more sensitive because oxymetazoline concentrations as low as 0.1 mM suppressed proinflammatory reactions and as low as 0.001 mM inhibited UCP-induced lipid peroxidation. Nasal application of decongestants results in the development of a concentration gradient. Assuming a total nasal epithelial lining fluid volume of 800 μl/nostril (Kaulbach et al., 1993), oxymetazoline used in its current product concentration of 1.6 mM (nose sprays for adults and school children) at a dosage volume of 45 μl/puff will be diluted to form a concentration gradient that refers to levels of the active substance used in our experiments (estimated mean value ∼0.1 mM). Therefore, the obtained results are of relevance in situ.

Various studies demonstrated strong correlations between rises of inflammatory mediators, mainly cytokines and leukotrienes, and the expression of rhinitis symptoms (Gwaltney, 1991, 2002). Particularly leukotrienes such as LTB₄ and leukotriene C₄, which rise in the nasal fluid of rhinitis patients, are generated and released by virus-infected cells of the respiratory tract (Ananaba and Anderson, 1991; van Schaik et al., 1999; Gentile and Skoner, 2001; Gentile et al., 2003). Leukotrienes such as LTD₄ applied directly to the nasal mucosa of noninfected individuals reproduced symptoms of nasal congestion and rhinorrhea (Bisgaard et al., 1986). Treatments with 5-LO enzyme inhibitors or cysteinyI leukotriene receptor antagonists have been shown to induce a significant clinical benefit because these compounds reduces nasal congestion in allergic rhinitis (Naciero et al., 1991; Liu et al., 1998; Meltzer et al., 2000). Furthermore,
oxidative stress also seems to play a pivotal role in the pathogenesis of viral respiratory infections because reactive oxygen species like nitric oxide have been reported to increase in the exhaled air of patients with allergic rhinitis or URTI (Kharitonov et al., 1995; Martin et al., 1996). The data of our present study reveal oxymetazoline as potent inhibitor of inflammatory and oxidative stress-dependent reactions. This activity resembles the mechanisms described for non-steroidal anti-inflammatory drugs that act by blocking COX-1 and COX-2, thus inhibiting the conversion of arachidonic acid to prostanoids. Research done over the last few years suggests that drugs inhibiting both the COX enzymes and 5-LO might exert a potent anti-inflammatory effect (Navarra, 2005; Pereg and Lishner, 2005).

The reaction mechanism of oxymetazoline regarding arachidonic acid-derived metabolites is summarized in Fig. 5. Oxymetazoline interferes with AM membranes by activating cPLA2 activity moderately to release slightly elevated levels of arachidonic acid from membrane phospholipids for downstream metabolism to immune-modulating PGE2 by COX and anti-inflammatory-acting 15-HETE by 15-LO. Because these pathways are not inhibited by oxymetazoline, we conclude that this compound does not affect specific pathways in modulation and resolution of inflammation. In contrast, oxymetazoline inhibits 5-LO, resulting in reduced formation of proinflammatory LTB4. Because 5-LO is the initial enzyme for leukotriene synthesis, oxymetazoline is probably able to inhibit also the production of the cysteinyl leukotrienes, which are responsible together with LTB4 for the inflammatory reactions and symptoms occurring during URTI. In addition, oxymetazoline inhibits respiratory burst activity, leading to diminished microbial killing capacity of the cells, thus intensifying its inhibitory effect on inflammatory reactions. These proinflammatory processes are also inhibited in the presence of environmental or physiologic stimuli such as UCP or opsonized zymosan. Furthermore, oxymetazoline suppresses UCP-induced formation of 8-isoprostane very effectively. Our previous findings that UCP induced very similar responses of lipid mediators in canine AMs and human AMs (Beck-Spieier et al., 2005) justifies the extrapolation of our data obtained with canine AMs to the human system. As a consequence, oxymetazoline’s anti-inflammatory and anti-oxidative action is offering additional benefits for the treatment of virus-induced upper respiratory tract inflammation and oxidative stress. The data shown here add significant new information for understanding oxymetazoline’s way to modulate and reduce rhinitis symptoms.

References

Address correspondence to: Dr. Ingrid Beck-Speier, GSF-National Research Center for Environment and Health, Institute for Inhalation Biology, Ingolstädter Landstrasse 1, D-85764 Neuhem/Berlin, Germany. E-mail: beck-speier@gsf.de