H. Kami Kia, Laurent Alexandre, and François Giuliano

Pelviphar Laboratories, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France (P.C., J.B., H.K.K., L.A., F.G.); and Neuro-Urology Unit, Department of Neurological Rehabilitation, Raymond Poincare Hospital, Garches, France (F.G.)

Received July 12, 2005; accepted October 11, 2005

The mechanism of action by which 8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT) facilitates ejaculation in conscious rats is not clearly established. The serotonin (5-HT) 1A agonist 8-OH-DPAT may actually act on cerebral dopaminergic receptors to exert its proejaculatory effect. The present work was undertaken to clarify this issue by testing various compounds i.c.v. delivered in an experimental model of the expulsion phase of ejaculation in anesthetized Wistar rats. Intracerebroventricular delivery of 8-OH-DPAT dose-dependently (ED50 = 17 μg) induced rhythmic contractions of bulbospongious (BS) muscles, which are of paramount importance for the expulsion of semen, occurring in the form of cluster of bursts evidenced by the recording of BS muscle electrical activity. The 5-HT1A antagonist WAY100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide) (20 μg) i.c.v. coadministered with 8-OH-DPAT (20 μg) was unable to inhibit the effect of 8-OH-DPAT on BS muscle contractile activity. Conversely, raclopride (40 μg) and spiperone (10 μg), both dopamine D2-like receptor antagonists, i.c.v. coinjected with 8-OH-DPAT (20 μg), abolished BS muscle contractions. The involvement of D2-like receptors was further supported by the fact that the D2-like agonist quinelorane (20 μg i.c.v.) also induced BS muscle rhythmic contractions. Our data demonstrate that D2-like receptors mediate the induction by 8-OH-DPAT of rhythmic BS muscle contractions and suggest that i.c.v. delivery of D2-like receptor agonists to anesthetized rats represents a relevant experimental model to study the expulsion phase of ejaculation.

Ejaculation is the physiological process that leads to the expulsion of sperm from the urethra. This process consists of two different stages, an emission and an expulsion phase (Newman et al., 1982). Emission phase comprises secretion of the various components of sperm by seminal vesicles, prostate, and ampullary vas deferens contents into the prostatic urethra and closure of the bladder neck associated with relaxation of the external urethral sphincter (Gil-Vernet et al., 1994; Bohlen et al., 2000). Expulsion of sperm is due to the rhythmic contractions of perineal striated muscles, with a primary role for the bulbospongious (BS) muscles, which act to forcefully expel the urethral content (Gerstenberg et al., 1990; Master and Turek, 2001).

Among the different central neurotransmitters that are involved in mediating the neural control of ejaculation, serotonin (5-HT) has attracted most of the attention (Giuliano and Clément, 2005). Several lines of evidence suggest that an enhanced synaptic availability of 5-HT in the central nervous system results in an inhibition of ejaculation (Ahlenius et al., 1980; Fernandez-Guasti et al., 1992). In behavioral tests conducted in rats, 8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT), a 5-HT1A agonist, peripherally or centrally administered produced a facilitation of ejaculation (Ahlenius et al., 1991; Hillegaart et al., 1991; Fernandez-Guasti et al., 1992). This facilitator effect of 8-OH-DPAT was at first thought to be due to a decreased central serotonergic activity resulting of stimulation of inhibitory 5-HT1A autoreceptors (Hillegaart et al., 1991; Fernandez-Guasti et al., 1992). However, neurotoxic lesion of 5-HT cell bodies by i.c.v. or intraperitoneal microinjection of 5,7-Dihydroxytryptamine failed to block the facilitator effects on ejaculation of 8-OH-DPAT systemically delivered (Fernandez-Guasti and Escalante, 1991). This probably rules out the participation of cerebral 5-HT1A autoreceptors to the facilitator effect of 8-OH-DPAT on ejaculation. On the other hand, it has been reported in behavioral experiments that the proejaculatory activity ex...
erted by 8-OH-DPAT microinjected into the median preoptic area (MPOA) was partially reversed by coinjected dopamine D2-like antagonist raclopride but not by the 5-HT1A antagonist MPPI (Matuszewich et al., 1999). In addition, stimulation of D2-like receptors by a selective agonist (quinelorane) delivered into MPOA facilitated ejaculation in conscious rats (Hull et al., 1989). The fact that 8-OH-DPAT displays a moderate affinity for D2-like receptors (Smith and Cutts, 1990; Van Wijngaarden et al., 1990) further supports the possible mediation of 8-OH-DPAT effect on ejaculation by activation of these receptors.

The present study was undertaken for clarifying the mechanism of action by which 8-OH-DPAT facilitates ejaculation and whether 5-HT1A or D2-like receptors are involved in mediating 8-OH-DPAT activity. For this purpose, we investigated the effect on BS muscle contractile activity, which represents a physiological marker of the expulsion phase of ejaculation in anesthetized rats (Holmes et al., 1991; McKenna et al., 1991), of i.c.v. delivery of 8-OH-DPAT alone, in combination with 5-HT1A antagonist (WAY100635) or D2-like antagonists (raclopride or spiperone), and a D2-like agonist (quinelorane) alone.

Materials and Methods

Animals

Adult male Wistar rats (Charles River, l’Arbresle, France) weighing 200 to 250 g were used in the study. Animals were housed in groups of five at 20 ± 2°C under a 12-h light/dark cycle, with access to food and water ad libitum. Animals were maintained in these conditions for at least 8 days before testing. All efforts were undertaken to minimize the number of animals used and their suffering. All animal experiments were carried out in accordance with the European Community Council Directive (86/609/EEC) on the use of laboratory animals.

Surgical Preparation

Rats were anesthetized with urethane (1.2 g/kg; Sigma, St. Quentin-Fallavier, France), and the body temperature was maintained at 37°C using a homeothermic blanket. The trachea was cannulated to prevent aspiration of saliva. The carotid artery was catheterized with polyethylene tube (0.50 mm) filled with heparinized saline (50 IU/ml) to record blood pressure via a pressure transducer (EM750; Elomatic, Glasgow, UK).

Intracerebroventricular Cannula Implantation

A cannula was stereotaxically implanted into the left cerebral ventricle [coordinates according to Paxinos and Watson’s (1998) rat brain atlas: 0.5 mm anterior to bregma, 1.3 mm lateral to midline, and 4.5 mm below the skull]. The cannula, continued by a catheter filled in with the compound to be injected, was fixed to the skull using acrylic cement. The free end of the catheter was connected to a Hamilton syringe placed in a microinfusion pump allowing delivery of microvolumes. At the end of the experimental session, methylene blue was injected through the cannula, and brains, removed and grossly dissected, were inspected for presence of blue dye in the ventricles. Rats with no blue coloration within cerebral ventricles were discarded from analysis.

Bulbospongiosus Muscles Activity Recording

The BS muscles were exposed via a perineal incision. Electrical activity of BS muscles was recorded by placing a pair of stainless steel electrodes (32 gauge) spaced 1 to 2 mm in the BS muscles. Electrical signal from the BS muscles was amplified (DP-301; Warner Instruments, Hamden, CT; gain, 10000; low pass, 10 KHz; high pass, 300 Hz) before being digitized. Electrical activity within the BS muscles was recorded before and over 30 min after i.c.v. delivery of drugs.

Drugs

All chemicals were purchased from Sigma. 8-OH-DPAT, WAY100635, raclopride, and quinelorane were dissolved in 0.9% NaCl. Spiperone was dissolved in 0.5% β-cyclodextrin. The dose of WAY100635 (20 μg) was selected according to its affinity for the 5-HT1A receptor, which is 3 times higher than that of 8-OH-DPAT (Kᵢ, 0.24 versus 0.8 nM in rat brain; Peroutka, 1986; Johansson et al., 1997). Selection of the dose of raclopride (40 μg) was based on previous behavioral experiments carried out in rat evidencing the inhibition of i.c.v. 8-OH-DPAT effect on ejaculation latency by raclopride coinfected at a dose twice as high as 8-OH-DPAT (Matuszewich et al., 1999). The dose of spiperone (10 μg) was chosen according to its 3-fold greater affinity for D2 receptor as compared with raclopride (Chivers et al., 1988). Finally, the dose of quinelorane was selected identical to that of 8-OH-DPAT.

Experimental Design

Dose-Response Study. After a 5-min baseline period was obtained, 8-OH-DPAT was i.c.v. delivered in a volume of 12 μl at a flow rate of 2 μl/min, and BS muscle electrical activity was monitored over 30 min. Five doses (0.3, 3, 10, 30, and 90 μg) were tested, each dose being tested separately in groups of five rats.

Pharmacological Characterization of Central Action of 8-OH-DPAT. After a 5-min baseline was obtained, antagonists of 5-HT1A receptors (WAY100635, 20 μg) or D2-like receptors (raclopride, 40 μg; spiperone, 10 μg) were i.c.v. coinjected with 8-OH-DPAT (20 μg according to the results of the dose-response study). In addition, a D2-like agonist (quinelorane, 20 μg) was i.c.v. delivered alone. All i.c.v. treatments were delivered in a volume of 12 μl at a flow rate of 2 μl/min, and BS muscle electrical activity was monitored over 30 min after i.c.v. delivery. Each compound was tested in distinct groups of nine rats.

Data Analysis

Analysis of the BS muscle electrical activity recordings was performed after a posteriori using software built in our laboratory. The dose-response curve was analyzed by computerized nonlinear regression using sigmoidal equation: $Y = Y_{\text{max}} + (Y_{\text{min}} - Y_{\text{min}})(1 + (\frac{10^{\log ED_{50}}}{1 + X})), $ where Y is the number of clusters of BS muscle contractions, and X is the logarithm of 8-OH-DPAT doses. The proportion of responding rats, i.e., exhibiting at least one cluster of organized BS muscle contractions after treatment, was determined. The clusters of BS muscle contractions were numbered during the 30-min recording period. Latency for the first cluster to occur after the end of i.c.v. injection, duration of clusters, time interval between two consecutive clusters, and frequency of bursts within a cluster were also calculated. Only responding rats were considered for determination of the mean values of these parameters for each treatment group.

Statistical Analysis

The proportion of responding rats was statistically compared between each treatment group with an exact Fisher’s test. Statistical comparisons of the other parameters characterizing BS EMG were performed between treatment groups using one-way analysis of variance followed, whenever $p < 0.05$, by Student-Newman-Keuls post hoc test.

Results

Dose-Response Curve. Although i.c.v. delivery of the vehicle alone was without effect on BS EMG, i.c.v. injection of 8-OH-DPAT induced a complex pattern of bursts of BS mus-
cule contractions (Fig. 1). 8-OH-DPAT effect on the number of BS muscle clusters of contractions was dose-dependent with an estimated effective dose 50 (ED50) of 17 μg (Fig. 2). Therefore, an i.c.v. dose of 20 μg of 8-OH-DPAT was selected for the rest of the study.

Effects of 8-OH-DPAT Combined with 5-HT1A Antagonist on BS Muscle Contractions. Intracerebroventricular administration of 20 μg of 8-OH-DPAT elicited rhythmic contractions of BS muscles in seven of the nine animals tested (Table 1). The 5-HT1A antagonist, WAY100635 (20 μg), was not responsible for any change in the proportion of responding rats to the i.c.v. delivery of 20 μg of 8-OH-DPAT (Table 1). Five of nine animals that received the combination of WAY100635 and 8-OH-DPAT displayed rhythmic contractions of BS muscles with a pattern similar to that observed in 8-OH-DPAT-treated animals. None of the parameters characterizing BS muscle contractions was altered in this treatment group in comparison with 8-OH-DPAT-injected rats (Table 2).

Effects of 8-OH-DPAT Combined with D2-Like Receptor Antagonists on BS Muscle Contractions. The combination of 8-OH-DPAT (20 μg) with the D2-like antagonist 40 μg of raclopride demonstrated a significant reduction in the number of rats displaying BS muscle contractions (Fisher’s exact test, p < 0.05; Table 1). Because in this treatment group only one rat responded displaying a single BS muscle cluster, no statistical intergroup comparison was possible, but latency of the BS muscle cluster, duration of the BS muscle cluster, or frequency of bursts within the BS muscle cluster did not seem altered when compared with animals treated with 8-OH-DPAT alone (Table 2), thus indicating an all or none effect for the combination of 8-OH-DPAT (20 μg) with raclopride (40 μg). When 8-OH-DPAT was i.c.v. injected with 0.5% β-cyclodextrin (solvent for spiperone), a slight but nonsignificant (Fisher’s exact test, p = 0.33) decrease in the proportion of responding rats was observed (Table 1). However, the parameters characterizing the pattern of BS muscle contractions were comparable with those determined in 8-OH-DPAT-treated animals (Table 2). Intracerebroventricular injection of the D2-like antagonist spiperone (10 μg) in combination with 8-OH-DPAT abolished the occurrence of BS muscle contractions in all the rats, although Fisher’s exact test did not yield significant difference in comparison with 0.5% β-cyclodextrin (p = 0.08; Table 1).

Effects of the D2-Like Receptors Agonist Quinelorane on BS Muscle Contractions. Intracerebroventricular administration of 20 μg of quinelorane was able to evoke the same rhythmic contractions of the BS muscles as 20 μg of 8-OH-DPAT. Eight of nine rats treated with quinelorane displayed rhythmic BS muscle contractions (Table 1). In comparison with 8-OH-DPAT, quinelorane induced a significantly higher number of clusters occurring more rapidly after i.c.v. administration (indicated by a decreased latency of the first BS muscle cluster), whereas the intercluster interval was unchanged (Table 2).

Discussion

The 5-HT1A agonist, 8-OH-DPAT, has been known for years to be a potent facilitator of ejaculation in conscious rats. This facilitation has been proposed to be mediated by the inhibition of the serotonergic system (Ahlenius and Larsson, 1987). The present results are in agreement with previous studies reporting a facilitation of ejaculation in male rats after administration of 8-OH-DPAT in behavioral testing. Injection of 8-OH-DPAT systemically or into the cerebral ventricles or in brains structures, i.e., nucleus accumbens.
and medial preoptic area, reduced ejaculation latency and the number of intromissions before ejaculation (Ahlenius et al., 1991; Hillegaart et al., 1991; Fernandez-Guasti et al., 1992). Our data showed for the first time that i.c.v. delivery of 8-OH-DPAT triggered rhythmic bursts of BS muscle contractions that are responsible for the propulsion of semen from the prostatic urethra to the urethral meatus as well as its forceful expulsion.

It has been hypothesized that the 8-OH-DPAT effect on ejaculation in behavioral experiments could be blocked by the 5-HT1A antagonist. In this regard, it has been shown that injection of pindolol, which is a relatively selective antagonist for 5-HT1A receptors (Hoyer, 1988), blocked the facilitator effect of 8-OH-DPAT on ejaculation (Ahlenius and Larsson, 1989). However, pindolol acts as an antagonist at the noradrenergic β-receptors as well as the 5-HT1A receptors (Harik et al., 1991), and other data support the interaction between the noradrenergic system and 8-OH-DPAT (Fernandez-Guasti and Rodriguez-Manzo, 1997).

In a previous behavioral study carried out in rats, it was shown that coadministration of the highly selective 5-HT1A antagonist MPPI (Kung et al., 1995) with 8-OH-DPAT into the MPOA was unable to reverse the proejaculatory effect of 8-OH-DPAT (Matuszewich et al., 1999). In this study, the authors also demonstrated that the facilitator activity of 8-OH-DPAT on ejaculation was consistently reduced by intra-MPOA codelivery of the D2-like antagonist raclopride. Our findings that the 5-HT1A antagonist WAY100635 did not modify the effect of 8-OH-DPAT on BS muscle activity and both D2-like antagonists raclopride and spiperone abolished the procontractile activity of 8-OH-DPAT on BS muscles are in agreement with these previous findings. Our results have to be interpreted with respect to the selectivity of the various antagonists employed in the present study. WAY100635 has been described as a highly potent and selective 5-HT1A antagonist (Forster et al., 1995) with, to our knowledge, no significant interaction with other receptors. Pharmacological properties of raclopride have been studied in detail, and this compound seems to be highly selective for D2-like receptors (comprising D2, D3, and D4 subtypes according to the most recent classification) with a similar nanomolar affinity for D2 and D3 subtypes and a 125-fold higher affinity for D2/D3 than for D4 subtypes (Hall et al., 1990; Sokoloff et al., 1990). Spiperone has a comparable subnanomolar affinity for D2, D3, and D4 subtypes (Andersen et al., 1985; Sokoloff et al., 1990) but also exhibits nanomolar affinity for adrenergic α1- (Peroutka and Snyder, 1980) and 5-HT2 receptors (Leysen et al., 1982). In addition, a moderate affinity of spiperone for D1 (Kᵢ = 44 nM) and 5-HT1A (Kᵢ = 33 nM) receptors has been reported (Fuller and Mason, 1986; Hoyer, 1988). The fact that no noticeable interaction between 8-OH-DPAT and adrenergic α-1, 5-HT2, or D1 receptors has been evidenced strongly suggest that brain D2 and/or D3 receptors, and not 5-HT1A ones, mediate the facilitator effect of 8-OH-DPAT on ejaculation.

Further arguments for the role of D2-like receptors were provided by behavioral experiments in rat. Several studies have reported that systemic and intra-MPOA administration of apomorphine, a nonselective agonist of D1 and D2-like receptors, facilitates male ejaculatory behavior (Bitran et al., 1989; Hull et al., 1989). In addition, systemic or intra-MPOA injections of the D2-like agonists quinelorane and haloperidol have been shown to lower the threshold for ejaculation (Foreman and Hall, 1987; Hull et al., 1989; Pfau and Phillips, 1991). The fact that, in the present study, i.c.v. injection of quinelorane-induced BS muscle rhythmic contractions, even more efficiently than 8-OH-DPAT (as evidenced by the greater number of BS muscle clusters), falls into line with the above observations. This actually may be explained by the higher affinity of quinelorane for D2-like receptors compared with 8-OH-DPAT. The current lack of available pharmacological tools targeting very specifically one of the dopamine receptor subtypes constituting the D2-like family makes difficult the identification of the subtype(s) involved, and the use of highly selective D2 and D3 receptors agonists will undoubtedly contribute to the clarification of this issue.

In conclusion, because of the similarity of our results with those obtained in behavioral experiments, we propose that i.c.v. delivery of D2-like agonist does represent a pertinent model to investigate the expulsion phase of ejaculation in anesthetized rats. In addition, our data have confirmed that the facilitator effect of 8-OH-DPAT on ejaculation in rats is a central one and is very likely mediated by D2-like receptors and likely not by 5-HT1A ones. Further pharmacological investigations are required for stating whether stimulation of either D2 or D3 or both subtype receptors causes rhythmic BS muscle contractions.

Acknowledgments

We thank M. Laurin and S. Goyer for excellent technical assistance.

References

TABLE 2

Parameters characterizing BS muscle cluster of contractions following different pharmacological treatments i.c.v. delivered

One-way analysis of variance followed by Student-Newman-Keuls test was used for intergroup comparisons. Raclopride- and spiperone-treated groups were not included in statistics.

<table>
<thead>
<tr>
<th>Intracerebroventricular Treatment</th>
<th>Number of Clusters</th>
<th>Latency of First Cluster</th>
<th>Duration of Clusters</th>
<th>Intercluster Interval</th>
<th>Frequency of Bursts</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-OH-DPAT (20 μg)</td>
<td>+Saline</td>
<td>3.14 ± 0.26</td>
<td>433 ± 92*</td>
<td>17 ± 1</td>
<td>221 ± 38</td>
</tr>
<tr>
<td>+WAY100635 (20 μg)</td>
<td>+Raclopride (40 μg)</td>
<td>2.20 ± 0.37</td>
<td>628 ± 91*</td>
<td>19 ± 3</td>
<td>235 ± 41</td>
</tr>
<tr>
<td>+β-Cyclodextrin 0.5%</td>
<td>1</td>
<td>568</td>
<td>14</td>
<td>315 ± 81</td>
<td>0.51</td>
</tr>
<tr>
<td>+Spiperone (10 μg)</td>
<td>3.25 ± 0.63</td>
<td>722 ± 238</td>
<td>16 ± 3</td>
<td>0.63 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>Quinelorane (20 μg)</td>
<td>6.38 ± 0.75</td>
<td>98 ± 24</td>
<td>19 ± 1</td>
<td>226 ± 33</td>
<td>0.61 ± 0.04</td>
</tr>
</tbody>
</table>

* Significant difference (p < 0.05) compared with quinelorane treatment.
† Significant difference (p < 0.01) compared with quinelorane treatment.

Address correspondence to: Dr. F. Giuliano, Neuro-Urology Unit, Department of Neurological Rehabilitation, Raymond Poincaré Hospital, 104 bd Raymond Poincaré, 92380 Garches, France. E-mail: giuliano@cyber-sante.org