Ketamine Produces Lasting Disruptions in Encoding of Sensory Stimuli

Christina R. Maxwell, Richard S. Ehrlichman, Yuling Liang, Danielle Trief, Stephen J. Kanes, Jonathan Karp, and Steven J. Siegel

Division of Neuropsychiatry, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania (C.R.M., R.S.E., Y.L., D.T., S.J.K., S.J.S.); and Department of Biology, Rider University, Lawrenceville, New Jersey (J.K.)

Received June 17, 2005; accepted September 27, 2005

ABSTRACT

The current study analyzed the acute, chronic, and lasting effects of ketamine administration in four inbred mouse strains (C3H/HeHsd, C57BL/6Hsd, FVB/Hsd, and DBA/2Hsd) to evaluate vulnerability to ketamine as a drug of abuse and as a model of schizophrenia. Serum half-life of ketamine was similar between all strains (approximately 13 min). Also, the ratio of brain-to-serum ketamine levels was 3:1. Examination of multiple phases of auditory processing using auditory-evoked potentials (AEPs) following acute ketamine (0, 5, and 20 mg/kg) treatment revealed C3H/HeHsd mice to be most vulnerable to ketamine-induced alterations in AEPs, whereas FVB/Hsd mice exhibited the least electrophysiological sensitivity to ketamine. Overall, the precortical P1-evoked potential component increased in amplitude and latency, whereas the cortically generated N1 and P2 components decreased in amplitude and latency following acute ketamine across all strains. Brain catecholamine analyses indicated that ketamine decreased hippocampal epinephrine levels in C3H/HeHsd but elevated hippocampal epinephrine levels in FVB/Hsd, suggesting one potential mechanism for AEP vulnerability to ketamine. Based on results of the acute study, the immediate and lasting effects of chronic low-dose ketamine on AEPs were examined among C3H/HeHsd (sensitive) and FVB/Hsd (insensitive) mice. We observed a decrement of the N1 amplitude that persisted at least 1 week after the last exposure to ketamine across both strains. This lasting deficit in information processing occurred in the absence of acute changes among the FVB/Hsd mice. Implications for both ketamine abuse and N-methyl-D-aspartate hypo-function models of schizophrenia are discussed.

N-Methyl-D-aspartate receptor antagonists such as ketamine are frequently abused by adolescents, college students, and military and medical personnel (Gahlinger, 2004; Morgan et al., 2004). Although these drugs produce hallucinations and delusions as well as exacerbating preexisting psychosis, several studies have argued that the psychotic and dissociative features are less prominent than the lasting cognitive disruptions (Malhotra et al., 1997; Morgan et al., 2004). Indeed, the nature of these lasting cognitive deficits remains unclear, and few studies have distinguished the effects of ketamine on the multiple phases of information processing. The current study uses auditory evoked potentials (AEPs) to examine the acute, chronic, and lasting effects of ketamine on various phases of sensory encoding in mice. In so doing, we will further elucidate the precise phases of information processing during which N-methyl-D-aspartate antagonists affect sensory processing.

The physiological and cognitive effects of N-methyl-D-aspartate antagonist drugs of abuse are also relevant to models of schizophrenia. Acute administration of ketamine produces behavioral, cognitive, and physiological AEP changes consistent with schizophrenia (Malhotra et al., 1997; Newcomer et al., 1999; Umbricht et al., 2000; Micallef et al., 2002). Several investigators have proposed that reduced function at N-methyl-D-aspartate receptors may precede overt manifestations of schizophrenia (Newcomer et al., 1999; Greene, 2001). It has been difficult to test such hypotheses in humans because of the inability to identify schizophrenia probands before their first-break episode (McConaghy, 2000). Alternatively, animal studies can measure acute, chronic, and lasting effects of N-methyl-D-aspartate antagonists to evaluate the potential risks of substance abuse and can be used as models for understanding the neurobiology of schizophrenia.

Sensory encoding and information processing have been measured using the P1, N1, and P2 components of AEPs in
humans and animals. The P1 reflects pre cortical processing, whereas the N1 and P2 are cortically generated and can be modulated by directing the subject’s attention during the auditory task (Picton et al., 1974; Gallinat et al., 2002). Preliminary studies in humans suggest that these components may have different sensitivities to the effects of acute N-methyl-D-aspartate receptor blockade. For example, one study found that ketamine did not change gating of the human P1, but it did not evaluate amplitude (van Berckel et al., 1998). Another study found increased N1 amplitude with ketamine without alteration of the P2 (Umbricht et al., 2000). Initial studies in rodents suggest that the mouse P1 increases in amplitude following acute ketamine, whereas the mouse and rat P2 decrease in amplitude following acute ketamine exposure (de Bruin et al., 1999; Connolly et al., 2004). Although such studies suggest different sensitivities to acute N-methyl-D-aspartate antagonists among various phases of auditory processing, little is known about the lasting effects of ketamine on such measures.

The current study uses AEPs as physiological measures to elucidate immediate and lasting effects of acute and chronic N-methyl-D-aspartate receptor blockade on multiple phases of auditory processing. The acute exposure studies use four inbred mouse strains to determine genetic vulnerability to ketamine as a predictor of chronic and lasting effects. Subsequent studies to assess the immediate and lasting effects of chronic exposure were then performed using one vulnerable and one resistant inbred strain. The inclusion of such natural genetic variation was intended to provide a foundation for future studies directed at addressing genetic susceptibility to N-methyl-D-aspartate antagonists in humans.

Materials and Methods

Animals

In total, 280 mice were used in this study. Male C57BL/6Hsd, FVB/Hsd, C3H/HeHsd, and DBA/2Hsd mice were obtained at 8 weeks of age from Harlan (Indianapolis, IN). All testing was conducted between 10 and 13 weeks of age. Mice were housed four to five per cage in a light- and temperature-controlled Association for Assessment and Accreditation of Laboratory Animal Care-accredited animal facility. Water and standard rodent chow were available ad libitum. Experiments were conducted at the University of Pennsylvania during the light phase between 9:00 AM and 1:00 PM. Mice were acclimated to the housing facility for at least 1 week before all procedures. All protocols were performed in accordance with University Laboratory Animal Resources guidelines and were approved by the Institutional Animal Care and Use Committee.

Surgery

Animals underwent stereotaxic implantation of electrode assemblies (Plastic Products, Roanoke, VA) for nonanesthetized recording of auditory evoked potentials. The surgical procedure has been reported previously (Connolly et al., 2003, 2004; Siegel et al., 2003; Maxwell et al., 2004a,b). Animals were anesthetized with isoflurane. Unipolar recording electrodes were placed unilaterally in the CA3 hippocampal region, (1.4 mm posterior, 2.65 mm lateral, and 2.75 mm deep relative to bregma) and referenced to the ipsilateral frontal sinus to reflect whole brain electrical activity. The electrode pedestal was secured to the skull using dental cement and Super Glue. Electrode placement was verified to be in the target region using the Perl’s iron reaction (LaBossiere and Glickstein, 1976).

AEP Treatment Groups

Acute Study. One hundred twenty-eight mice were used in the AEP portion of this study. In the acute ketamine experiment, 32 mice (eight per strain, four strains) were used in each of the following conditions: vehicle (0 mg/kg), 5 mg/kg ketamine, or 20 mg/kg intraperitoneal ketamine. These animals were tested 2 weeks after electrode surgery.

Chronic Study. The chronic exposure portion of this study used an additional 32 mice to model the effects of repeated ketamine abuse. FVB/Hsd and C3H/HeHsd mice received daily injections of saline (eight FVB/Hsd and eight C3H/HeHsd mice) or 5 mg/kg ketamine (eight FVB/Hsd and eight C3H/HeHsd mice) for 2 weeks. These animals were tested for the effects of chronic ketamine after 2 weeks of exposure and again for the lasting effects of ketamine 7 days later.

Recording. The recording session for the AEP experiments consisted of a baseline, drug-naive trial followed by an i.p. injection of either ketamine or vehicle. The recording parameters for the chronic experiments were identical to those of the acute experiments with recording following the 14th daily injection. Drug exposure trials were recorded 5 min after the injection. Stimuli were generated by Micro1401 hardware and Spike 5 software (Cambridge Electronic Design, Cambridge, UK) and were delivered through speakers attached to the cage top. A series of 50 white noise clicks (10 ms in duration) were presented with a 9-s interstimulus interval at 85 dB compared with background of 70 dB. Waveforms were filtered between 1 and 500 Hz and baseline corrected at stimulus onset. Individual sweeps were rejected for movement artifact based on a criterion of 2 times the root mean squared amplitude per mouse. Average waves were created from 50-ms prestimulus to 200-ms poststimulus (Fig. 1). All recordings were performed within the animal’s home cage, which was placed in a Faraday cage 15 min before stimulus onset.

Analysis. The amplitude and latency of the P1 (most positive deflection between 10 and 30 ms), N1 (most negative deflection between 20 and 70 ms), and P2 (most positive deflection between 60 and 200 ms) were analyzed. A general liner models analysis of variance was used to determine main effects and interactions of ketamine and strain, where drug condition and strain were designated independent variables. The next portion of this study evaluated influences of strain and ketamine on habituation of each auditory component during the acute ketamine administration study. The average of the responses to the first 25 stimuli was compared with the average of the responses to the last 25 stimuli (habitation variable) for each component using a repeated measures analysis of variance with strain and ketamine designated independent variables and habituation designated the repeated measure. Significant interactions were followed up with Fisher’s least significant difference post hoc analyses. α levels were set at $p < 0.05$ for all analyses.

Serum Half-Life. This experiment determined the serum half-life of ketamine in four mouse strains. Eighty additional mice (four per strain at each of five time points) were injected with 100 mg/kg intraperitoneal ketamine and sacrificed at 5 ($n = 16$), 10 ($n = 16$), 20 ($n = 16$), 30 ($n = 16$), and 60 ($n = 16$) min after injection. The dose of 100 mg/kg was used to facilitate a detectable level at 60 min after injection. Serum was pooled to allow for amplification 1 h after injection, which produces a mean value per strain per time point. The HPLC protocol for ketamine extraction in serum is adapted from the phencyclidine extraction protocol provided by Waters (Milford, MA) for use with Breeze software. The wavelength for ketamine was 210 nm with a retention time of 7.4 min. The exponential decay equation $x(t) = x(0)e^{-kt}$, where t (time) and $x(0)$ (initial value or x-intercept), was used to calculate the unknown decay constant (α). Once the decay constant (α) is determined, the half-life equation is $t_{1/2} = \ln(2)/\alpha$.

Serum and Brain Concentration. Thirty-two mice (eight mice per strain) were injected i.p. with 20 mg/kg acute ketamine to eval-
uate serum for ketamine and norketamine, a ketamine metabolite, 15 min after injection to determine serum concentration at the time consistent with AEP testing. The ketamine extraction protocol is described above. Norketamine was evaluated using the same parameters with a retention time of 4.6 min. An analysis of variance followed by Fisher’s least significant difference post hoc analyses was performed to determine strain differences in metabolism of ketamine and norketamine. Twelve additional FVB/Hsd mice were sacrificed after 15 min of exposure to 0, 5, 20, or 100 mg/kg ketamine. Serum and brain levels were assayed for ketamine and norketamine to determine the correlation between serum and brain ketamine levels at time of AEP testing.

Regional Catecholamine Levels in Brain. The effects of ketamine on brain catecholamine levels in vulnerable (C3H/HeHsd) and resistant (FVB/Hsd) strains were evaluated to investigate a potential neurochemical mechanism by which ketamine alters evoked potentials. Eight FVB/Hsd and eight C3H/HeHsd mice were treated with 0 or 20 mg/kg ketamine to evaluate dopamine, norepinephrine, and epinephrine levels in hypothalamus and hippocampus. Animals were sacrificed using rapid decapitation 15 min after injection. The brains were removed, regionally dissected, and immediately placed in ice-cold 0.1 M HClO₄ spiked with an internal standard of 3,4-dihydroxybenzylamine. Samples were frozen at -80°C until catecholamines were assayed by HPLC with electrochemical detection. Briefly, samples were sonicated and centrifuged with aliquots of the supernatants added to sodium phosphate buffer, pH 6.1, 1.5 M Tris-EDTA buffer, pH 8.6, and acid-washed alumina. The alumina was washed in water, and the catecholamines were eluted off the alumina with 0.1 M HClO₄. This extract from each sample was manually injected into the HPLC. The HPLC system consisted of pumps (Varian ProStar; Varian, Inc., Palo Alto, CA) and a C18 reverse-phase column (150 mm x 4.6, 5 μm) located in a temperature-controlled housing (27°C) with an electrochemical detector (Varian Star 9080). The system was operated at a flow rate of 1.0 ml/min with the detector potential set at 0.75 V versus a Ag-AgCl reference electrode. The mobile phase buffer consisted of 0.33 M citrate, 0.67 M phosphate, pH 4.5, with 1.2 mM sodium octyl sulfate and 12% methanol. The signal from the detector was recorded by a PC computer (Dell Optiplex) fitted with an ADC controller card using Varian Star Chromatography software version 5.

Results

Pharmacokinetic Analyses

Serum Half-Life. The decay constant (α) was found to be -0.053. This yielded a serum half-life of 13 min for ketamine across 80 mice and four strains. The half-life of ketamine in each strain is as follows: C57BL/6Hsd (α = -0.055), 12.7 min; DBA/2Hsd (α = -0.050), 14.0 min; FVB/Hsd (α = -0.051), 13.7 min; and C3H/HeHsd (α = -0.060), 11.6 min (Fig. 2A).

Serum Concentration. Main effects of strain were found for both ketamine [F(3,28) = 5.14, p = 0.006] and norketamine [F(3,28) = 4.34, p = 0.012] levels. DBA/2Hsd mice had higher serum ketamine concentration than FVB/Hsd, C3H/...
HeHsd, and C57BL/6Hsd mice. In addition, C57BL/6Hsd mice have significantly lower norketamine concentrations compared with all strains. We also evaluated the relationship between serum concentration of ketamine and whole brain ketamine levels within a subset of FVB/Hsd mice. Our results indicate a 3.33:1 ratio of brain-to-serum ketamine concentration (milligrams per milliliter serum and nanograms per milligram brain) and a 1.43:1 ratio of brain-to-serum norketamine levels (ketamine correlation: $r = 0.996, p < 0.001$; norketamine correlation: $r = 0.993, p < 0.001$) (Fig. 2, B–D).

Acute AEPs

Trends. Main effects of ketamine and interactions between ketamine and strain indicate that ketamine influenced amplitudes and latencies of the P1, N1, and P2. Across all four strains, the main effects of ketamine displayed the following trends: 1) ketamine increased the P1 amplitude and lengthened the P1 latency, 2) ketamine decreased N1 amplitude and shortened N1 latency, and 3) ketamine did not change P2 amplitude but shortened P2 latency. The strain by ketamine interactions described below suggest that there are also strain-dependent vulnerabilities to ketamine (Tables 1 and 2).

Strain-Specific Findings.

C3H/HeHsd. P1 amplitude and latency did not change with ketamine in this strain. The N1 amplitude dose dependently decreased with ketamine administration, whereas the latency remained unchanged. The P2 amplitude did not change with ketamine, but the latency dose dependently decreased (Figs. 3 and 4).

FVB/Hsd. P1, N1, and P2 amplitudes and latencies did not change with ketamine exposure in this strain. The P1 amplitude increased with ketamine exposure, whereas the latency remained unchanged. The N1 amplitude was unchanged with ketamine exposure, whereas the N1 latency decreased. The P2 amplitude was unchanged, whereas the P2 latency decreased at 20 mg/kg.

C57BL/6Hsd. P1 amplitude increased with ketamine exposure, whereas the latency remained unchanged. The N1 amplitude was unchanged with ketamine exposure, whereas the N1 latency decreased. The P2 amplitude was unchanged, whereas the P2 latency decreased at 20 mg/kg.

DBA/2Hsd. The 5-mg/kg dose of ketamine increased the P1 amplitude without changes in latency. The N1 amplitude increased with both doses of ketamine, whereas latency was unchanged. The P2 amplitude was unchanged with ketamine, whereas the P2 latency decreased at both doses.

Fig. 2. Results for pharmacokinetic experiments. A, serum half-life of ketamine across four strains ($t_{1/2} = 13$ min). B, mean ± S.E.M. for serum concentrations of ketamine and norketamine (ketamine metabolite). Fisher’s least significant difference post hoc analyses indicate that C57BL/6Hsd mice differ from DBA/2Hsd mice ($p < 0.001$) for ketamine concentrations and that DBA/2Hsd mice are marginally different from C3H/HeHsd ($p = 0.056$) and FVB/Hsd mice ($p = 0.041$) [mean square (MS) = 75068, df = 28]. Analyses for norketamine concentrations indicate that C57BL/6Hsd mice differ from C3H/HeHsd, DBA/2Hsd, and FVB/Hsd mice ($p = 0.007, p = 0.009$, and $p = 0.004$, respectively) (MS = 82917, df = 289). C, 3.33:1 linear relationship between ketamine concentration in brain (nanograms per milligram) and serum (milligrams per milliliter). D, 1.42:1 linear relationship between norketamine concentration in brain and serum. Points in C and D represent data from 5, 20, and 100 mg/kg ketamine ($n = 3/dose$).
Statistical values for strain, ketamine, and strain × ketamine interactions for the amplitude and latency of the P1, N1, and P2 AEP components. Significant effects (a level set at $p < 0.05$) of acute ketamine are in boldface.

<table>
<thead>
<tr>
<th>Variable</th>
<th>P1</th>
<th>N1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>Strain</td>
<td>$F(3,84) = 4.9, p = 0.003$</td>
<td>$F(3,84) = 4.3, p = 0.007$</td>
</tr>
<tr>
<td></td>
<td>Ketamine</td>
<td>$F(2,84) = 4.5, p = 0.014$</td>
<td>$F(2,84) = 5.2, p = 0.007$</td>
</tr>
<tr>
<td>Latency</td>
<td>Strain × ketamine</td>
<td>$F(6,84) = 2.5, p = 0.025$</td>
<td>$F(6,84) = 4.9, p < 0.001$</td>
</tr>
<tr>
<td></td>
<td>Ketamine</td>
<td>$F(3,84) = 4.0, p = 0.010$</td>
<td>$F(3,84) = 15.8, p < 0.001$</td>
</tr>
<tr>
<td></td>
<td>Strain × ketamine</td>
<td>$F(6,84) = 2.0, p = 0.067$</td>
<td>$F(6,84) = 2.9, p = 0.011$</td>
</tr>
</tbody>
</table>

TABLE 2
Schematic representation of trends for amplitude and latency of the P1, N1, and P2 following acute ketamine

<table>
<thead>
<tr>
<th>Strain</th>
<th>P1</th>
<th>N1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amp</td>
<td>Lat</td>
<td>Amp</td>
</tr>
<tr>
<td>Across all</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>C3H</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>C57</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>DBA</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>FVB</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

Amp, amplitude; Lat, latency.

Regional Catecholamine Analyses. This analysis evaluated dopamine, norepinephrine, and epinephrine levels in hippocampus and hypothalamus in two mouse strains defined to be resistant (FVB/Hsd) and sensitive (C3H/HeHsd) based on acute AEP data. We found that FVB/Hsd mice have more dopamine in hypothalamus compared with C3H/HeHsd, irrespective of ketamine treatment. Also, hippocampus epinephrine levels were reduced with ketamine in C3H/HeHsd, irrespective of strain and ketamine treatment. Additionally, these strains were selected because they had similar serum levels of both ketamine and norketamine, facilitating a comparison of central nervous system mechanisms of vulnerability without peripheral metabolic variation.

Chronic and Lasting AEPs

In this design, AEPs were recorded from C3H/HeHsd and FVB/Hsd mice after receiving daily ketamine (5 mg/kg) or saline i.p. injections for 14 days. The dose of 5 mg/kg ketamine was chosen based on the acute data in which C3H/HeHsd mice show decreased N1 amplitude at this dose, whereas FVB/Hsd mice did not. Additionally, to determine lasting effects of ketamine, AEPs were recorded on day 21 (7 days after last injection of ketamine or saline).

P1. Chronic and lasting effects. There were no main effects of ketamine or interactions with strain on the amplitude or latency of the P1 after the final daily injection or 7 days later (Table 4).

N1. Chronic effects. There were no main effects of ketamine or interactions with strain on the amplitude or latency of the N1 after the final daily injection on day 14.

Fig. 3. Mean ± S.E.M. for the amplitude of the P1, N1, and P2 components for each strain and dose of ketamine in the acute study. Note, asterisk (*) indicates a significant difference ($p < 0.05$) from the other inbred strains at each dose, and † indicates significant difference ($p < 0.05$) from the control condition in the same strain using Fisher’s least significant difference post hoc (P1: mean square (MS) = 1401, df = 84; N1: MS = 2146, df = 84; and P2: no interaction).

Lasting effects. A main effect of ketamine demonstrated that ketamine treatment produced a reduction of N1 amplitude on day 21 relative to animals that received matched saline injections (Fig. 6). There were no lasting effects on the latency of the N1. Also, there were no interactions between strain and ketamine on either measure of this component.

P2. Chronic and lasting effects. There were no main effects of ketamine or interactions with strain on the amplitude or latency of the P2 after the final daily injection or 7 days later.
Habituation of AEPs

P1. There were no main effects of habituation or interactions with strain and ketamine on the amplitude of the P1 (Table 5).

N1. An interaction between strain and habituation indicated that C57BL/6Hsd mice showed significantly higher N1 amplitude in response to the last 25 stimuli relative to the first 25 stimuli. No other strains displayed significant differences between the first and last 25 stimuli presented (Table 6). A second interaction between habituation and ketamine demonstrated that the 20-mg/kg ketamine dose significantly decreased the amplitude of response to the first 25 stimuli relative to the last 25 stimuli, suggesting that the inhibitory effects of ketamine were attenuated during progression of the task (Table 7).

Discussion

The current study demonstrates both acute and lasting alterations in sensory encoding of auditory stimuli following ketamine exposure. Acute effects were characterized by increased P1 amplitude with decreased N1 amplitude and decreased P2 latency. These studies also defined differential vulnerability to ketamine among four inbred mouse strains, suggesting that genetic background influences the physiological response to this class of drugs of abuse. Among these differences, C3H/HeHsd and DBA/2Hsd mice demonstrate opposing reactions for N1 amplitude following acute ketamine, whereas C57BL/6Hsd and FVB/Hsd mice were insensitive to its effects. Also, pharmacokinetic data allowed for evaluation of peripheral metabolic factors that may have influenced this differential sensitivity. These data indicated that DBA/2Hsd mice had higher serum ketamine and C57BL/6Hsd mice had lower serum norketamine than other strains, limiting the interpretation of differences among the AEP findings in these two inbred strains. However, C3H/HeHsd and FVB/Hsd mice have similar levels of both ketamine and its main metabolite, indicating that differential vulnerability was more likely because of central neuronal factors. This hypothesis is further supported by the modulation of hippocampal epinephrine levels with ketamine in C3H/HeHsd and FVB/Hsd mice.

These data suggest that epinephrine is a central factor that could influence strain-specific ketamine vulnerability through alterations in hippocampal catecholamine concentrations. Specifically, ketamine decreases hippocampal epinephrine levels in C3H/HeHsd mice, which have decreased AEP amplitudes, demonstrating a vulnerability to N-methyl-D-aspartate receptor antagonism. Ketamine administration increases epinephrine levels in the ketamine-resistant strain (FVB/Hsd), which show no alterations in AEPs. One rodent study showed systemic epinephrine increased the N1-P2 AEP amplitude, suggesting that epinephrine may modulate late latency AEPs (Berntson et al., 2003). Similarly, human studies have proposed that the hippocampus plays a role in sensory gating of late latency AEPs (Grunwald et al., 2003). To our knowledge, this is the first report of differential AEP sensitivities to acute ketamine in mice that coincide with changes in hippocampal epinephrine concentrations. There are several limitations to the interpretation of this finding. Since other brain regions were not evaluated, a generalized increase in epinephrine concentrations throughout the brain may occur in FVB/Hsd mice with ketamine, and an overall decrease may occur in C3H/HeHsd mice. Similarly, dopamine and norepinephrine levels may be altered with ketamine treatment in other brain regions not examined in this study. Also, our data reflect a snapshot of epinephrine levels at a single time point and therefore cannot distinguish changes in synthesis from changes in release and/or turnover. Future studies will evaluate catecholamine levels in multiple brain regions of animals treated with acute and chronic ketamine to further explore catecholamine modulation of AEPs.

On the basis of acute AEP and pharmacokinetic findings, C3H/HeHsd and FVB/Hsd strains were selected as vulnera-
ble and resistant strains, respectively, to evaluate chronic and lasting alterations following 14 days of repeated low-dose exposure. Interestingly, neither strain displayed alterations in AEP measures directly following the final daily exposure, suggesting adaptation among the previously vulnerable C3H/HeHsd group. Equally intriguing, both groups then demonstrated lasting decrement of the N1 amplitude following 7 days without ketamine exposure, indicating sensitivity to ketamine in FVB/Hsd mice over time. As we demonstrate, the serum half-life for this drug is approximately 13 min in mouse, strongly suggesting that no ketamine remains in the animal at the final time point, which equals 775 half-lives after final administration. Thus, genetic heterogeneity to the physiological effects of ketamine does not seem to protect against the lasting alterations in the neural substrates of sensory encoding of the N1 AEPs.

Acute ketamine exposure in both human and animal literature is also commonly used to model schizophrenia-like deficits in information processing. Multiple studies have shown that decreased N1 amplitude is a reproducible physiological characteristic of schizophrenia (Lifshitz et al., 1987; Boutros et al., 1999, 2004a,b). Additionally, recent data from the clinical Schizophrenia Research Center affiliated with our group demonstrates both decreased N1 amplitude and reduced P2 latency among people with schizophrenia (B. I. Turetsky, S. C. Johnson, S. J. Siegel, and R. E. Gur, unpublished data). Therefore, AEP alterations secondary to reduced N-methyl-D-aspartate-mediated glutamate transmis-

Table 3

Hippocampus and hypothalamic catecholamine levels following acute ketamine

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hippocampus</th>
<th>Hypothalamus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Norepinephrine</td>
<td>Epinephrine</td>
</tr>
<tr>
<td>Strain</td>
<td>F(1,12) = 0.25, p = 0.567</td>
<td>F(1,12) = 0.18, p = 0.683</td>
</tr>
<tr>
<td>Ketamine</td>
<td>F(1,12) = 0.23, p = 0.642</td>
<td>F(1,12) = 0.05, p = 0.833</td>
</tr>
<tr>
<td>Strain × ketamine</td>
<td>F(1,12) = 0.36, p = 0.561</td>
<td>F(1,12) = 6.23, p = 0.028</td>
</tr>
</tbody>
</table>

Fig. 5. Catecholamine levels in hippocampus and hypothalamus in FVB/Hsd and C3H/HeHsd mice following either saline or ketamine injections. The levels (mean ± S.E.M.) for epinephrine (A) and norepinephrine (B) in hippocampus are shown for FVB/Hsd and C3H/HeHsd mice treated with saline and ketamine. Note that ketamine induces a reduction in hippocampal epinephrine in C3H/HeHsd mice and an elevation in FVB/Hsd mice. The levels (mean ± S.E.M.) for norepinephrine (C) and dopamine (D) in hypothalamus are shown for FVB/Hsd and C3H/HeHsd mice treated with saline and ketamine. Dopamine levels were undetectable in hippocampus and epinephrine levels were undetectable in hypothalamus. Asterisk (*) indicates p < 0.05.
TABLE 4
Amplitude and latency of AEP components following chronic ketamine
Statistical values for the chronic and lasting ketamine experiments. Significant effects are in boldface.

<table>
<thead>
<tr>
<th>Variable</th>
<th>P1 Chronic</th>
<th>P1 Lasting</th>
<th>N1 Chronic</th>
<th>N1 Lasting</th>
<th>P2 Chronic</th>
<th>P2 Lasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude Strain</td>
<td>(F(1,28) = 1.3, p = 0.269)</td>
<td>(F(1,28) = 1.4, p = 0.246)</td>
<td>(F(1,28) = 12, p < 0.001)</td>
<td>(F(1,28) = 4.2, p = 0.050)</td>
<td>(F(1,28) = 0.9, p = 0.341)</td>
<td>(F(1,28) = 1.5, p = 0.225)</td>
</tr>
<tr>
<td>Ketamine</td>
<td>(F(1,28) = 0.9, p = 0.340)</td>
<td>(F(1,28) < 0.1, p = 0.899)</td>
<td>(F(1,28) = 0.2, p = 0.682)</td>
<td>(F(1,28) = 5.5, p = 0.026)</td>
<td>(F(1,28) = <0.1, p = 0.950)</td>
<td>(F(1,28) = 2.1, p = 0.155)</td>
</tr>
<tr>
<td>Latency Strain</td>
<td>(F(1,28) = 0.1, p = 0.745)</td>
<td>(F(1,28) = 2.2, p = 0.149)</td>
<td>(F(1,28) = 1.6, p = 0.223)</td>
<td>(F(1,28) = 1.2, p = 0.291)</td>
<td>(F(1,28) = 0.9, p = 0.345)</td>
<td>(F(1,28) < 0.1, p = 0.890)</td>
</tr>
<tr>
<td>Ketamine</td>
<td>(F(1,28) = 3.1, p = 0.086)</td>
<td>(F(1,28) = 0.5, p = 0.387)</td>
<td>(F(1,28) = 9.7, p < 0.001)</td>
<td>(F(1,28) = 0.8, p = 0.375)</td>
<td>(F(1,28) = 0.3, p = 0.586)</td>
<td>(F(1,28) = 4.1, p = 0.054)</td>
</tr>
<tr>
<td>Strain x Ketamine</td>
<td>(F(1,28) = 0.7, p = 0.413)</td>
<td>(F(1,28) = 0.1, p = 0.748)</td>
<td>(F(1,28) = 0.6, p = 0.451)</td>
<td>(F(1,28) = 1.2, p = 0.276)</td>
<td>(F(1,28) = 4.0, p = 0.056)</td>
<td>(F(1,28) = 3.1, p = 0.091)</td>
</tr>
</tbody>
</table>

However, this may differ from proposed mechanisms of ketamine abuse, during which continuous exposure from pumps or implants. This paradigm was selected to model chronic ketamine abuse, during which people self-administer chronic ketamine doses. During which continuous exposure from pumps or implants. This paradigm was selected to model chronic ketamine exposure. The chronic portion of this study and others provide further support that the human P1, N1, and P2 are analogous to the mouse P1, N1, and P2, respectively (Connolly et al., 2003, 2004; Siegel et al., 2003, 2005; Maxwell et al., 2004a,b; Umbreit et al., 2004; Segel et al., 2004). One additional clarification in this study regards the method of ketamine delivery. The use of repeated daily injections from pumps or implants may not represent an independent phenomenon if it results from adaptive changes within the brains of C3H/HeHsd and DBA/2Hsd mice. Moreover, the P2 latency shift may not represent an independent phenomenon if it results from adaptive changes within the brains of C3H/HeHsd and DBA/2Hsd mice. Additionally, the P2 latency shift may not represent an independent phenomenon if it results from adaptive changes within the brains of C3H/HeHsd and DBA/2Hsd mice.
ing the schizophrenia prodrome, perhaps limiting generalization to that disease model.

In summary, the current study indicates that inbred mouse strains differ in their physiological AEP response to acute N-methyl-D-aspartate receptor blockade. Our results also support the hypothesis that ketamine acts primarily to reduce cortical processing, but it has the opposite effect on precortical processing. Of note, neither the sensitive nor resistant strains showed alterations following chronic exposure, suggesting the presence of adaptive, compensatory mechanisms in N-methyl-D-aspartate-mediated transmission. Similarly, both strains demonstrated lasting deficits in sensory encoding, suggesting that long-term adaptations to chronic N-methyl-D-aspartate hypofunction occur even in the absence of acute effects.

Acknowledgments

We thank Jonathan Kahn, Kayla Metzger, and Chalon Majewski-Tiedeken for helpful comments.

References

![Fig. 6. Mean ± S.E.M. for the lasting effects of chronic low-dose ketamine (5 mg/kg/day for 14 days) or saline in C3H/HeJ and FVB/Hsd mice. There was no significant two-way interaction between ketamine and strain for the N1, suggesting that chronic ketamine affected this measure to the same extent in both strains. The main effect of ketamine resulted in decreased N1 amplitude across both strains.](image-url)

Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Nelson AK, Hershey T, Craft S, and Olney JW (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106–118.

Address correspondence to: Dr. Steven J. Siegel, Division of Neuropsychiatry and Stanley Center for Experimental Therapeutics in Psychiatry, Clinical Research Bldg., Rm. 145a, 415 Ci Blvd., University of Pennsylvania, Philadelphia, PA 19104. E-mail: siegels@mail.med.upenn.edu