Characterization of Prejunctional Serotonin Receptors Modulating $[^3$H]Acetylcholine Release in the Human Detrusor

Gianluigi D’Agostino, Anna M. Condino, Paola Gallinari, Gian P. Franceschetti, and Marcello Tonini

Departments of Experimental and Applied Pharmacology (G.D., A.M.C., P.G.) and Physiological and Pharmacological Sciences (M.T.), University of Pavia, Italy; and Division of Urology, General Hospital, Voghera, Italy (G.P.F.)

Received July 13, 2005; accepted September 13, 2005

ABSTRACT

Bladder overactivity (OAB) is a chronic and debilitating lower urinary tract (LUT) disorder that affects millions of individuals worldwide. LUT symptoms associated with OAB, such as urgency and urinary incontinence, cause a hygienic and social concern to patients, but their current pharmacological treatment is largely inadequate due to the lack of uroselectivity. Although OAB etiology remains multifactorial and poorly understood, increasing evidence indicates that serotonin $[5$-hydroxytryptamine (5-HT)] is involved in the control of micturition at central and peripheral sites. In this study, we demonstrated the presence of three distinct 5-HT receptors localized at parasympathetic nerve terminals of the human bladder by measuring electrically evoked tritiated acetylcholine release in isolated detrusor strips. These prejunctional receptors, involved in both positive and negative feedback mechanisms regulating cholinergic transmission, have been characterized by means of three highly selective 5-HT antagonists for 5-HT$_4$, 5-HT$_7$, and 5-HT$_{IA}$ receptors, namely GR113808A ($[1-[2-\{(-methylsulphonyl) amino\} ethyl]4-piperidinyl]methyl1-methyl-1H-indole-3-carboxylate succinate$), SB269970 ($[R]-3-(2-(4-(4-methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol hydrochloride$), and WAY100635 ($N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl)-cyclohexane-carboxamide trichloride$). Under these conditions, we confirmed the facilitatory role of 5-HT$_4$ heteroreceptors on acetylcholine release and revealed for the first time the occurrence of 5-HT$_5$, and 5-HT$_{IA}$ heteroreceptors with a facilitatory and an inhibitory action, respectively. Our findings strengthen the novel concept for the use of recently patented selective 5-HT agonists and antagonists for the control of OAB dysfunctions associated with inflammatory conditions, although their therapeutic efficacy needs to be explored in the clinical setting.

Increasing evidence indicates that serotonin [5-hydroxytryptamine (5-HT)] is involved in the control of the micturition process at central and peripheral sites where 5-HT can either reduce or facilitate the lower urinary tract functions (Andersson and Pehrson, 2003; Andersson and Wein, 2004; D’Agostino et al., 2004). 5-HT interacts with multiple types of 5-HT receptors that have been divided into subfamilies by convention (Zifa and Fillion, 1992; Hoyer et al., 1994). Seven subfamilies have been characterized, and some have been further subdivided by overlapping pharmacological properties and second messenger coupling pathway (Raymond et al., 2001). The 5-HT$_1$, 5-HT$_2$, 5-HT$_3$, 5-HT$_5$, 5-HT$_6$, and 5-HT$_7$ receptors couple to G-proteins, whereas the 5-HT$_4$ receptors are 5-HT-gated ion channels (Hoyer et al., 2002). Centrally, serotonergic cell bodies in the raphe project to the dorsal horn as well as to autonomic and somatic nuclei of the ventral horn in the lumbosacral spinal cord (de Groat, 2002). These neurones contain 5-HT$_2$ and 5-HT$_{IA}$ receptors located on different loci at postjunctional or prejunctional sites (Burgard et al., 2003). Collectively, the serotonergic descending pathway is essentially inhibitory.

At variance, peripherally 5-HT induces neuromuscular excitatory effects that have been described in detrusor muscle strips of mouse (Clean et al., 1989), guinea pig (Messori et al., 1995), rabbit (Barras et al., 1996), pig (Sellers et al., 2000), and man (Tonini et al., 1994). Several in vitro studies have shown that the contractile effect of mammalian detrusor in response to 5-HT exposure is mediated by activation of 5-HT$_2$, 5-HT$_3$, and 5-HT$_4$ receptors (Yoshida et al., 2002). In

This work was supported by the University of Pavia Grants FAR 2000 and 2002 (to G.D.) and complies with the current Italian laws. The authors have no conflicting financial interests.

Article, publication date, and citation information can be found at http://jpet.aspetjournals.org. doi:10.1124/jpet.105.092551.

ABBREVIATIONS: 5-HT, 5-hydroxytryptamine; ACh, acetylcholine; $[^3$H]ACh, tritiated acetylcholine; GR113808A, $[1-[2-\{(-methylsulphonyl) amino\} ethyl]4-piperidinyl]methyl1-methyl-1H-indole-3-carboxylate succinate$; 5-HT, 5-carboxamidotryptamine; SB269970, $[R]-3-(2-(4-(4-methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol hydrochloride$; WAY100635, $N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl)-cyclohexane-carboxamide trichloride$; EFS, electrical field stimulation; UI, urinary incontinence; OAB, overactive bladder.
the human detrusor, 5-HT potentiates the neurogenic contractions by activating the 5-HT_T receptor type (Candura et al., 1996). Since this enhancing effect of 5-HT is antagonized by the muscarinic antagonist atropine and the nerve conduction blocker tetrodotoxin, it was suggested that prejunctional 5-HT receptors located at parasympathetic postganglionic neurons are implicated into the control of acetylcholine (ACh) release (Corsi et al., 1991). Such an assumption, however, was based on postjunctional effects (contractions) only and not verified by assessment of changed of neurotransmitter release. The measurement of the electrically evoked tritiated ACh (3H]ACh) release in human detrusor strips allowed us to provide direct evidence that 5-HT_T heteroreceptors are implicated in this stimulation of ACh release and to ascertain the involvement of other subtypes of 5-HT receptors in the control of the cholinergic neurotransmission in the human bladder.

Materials and Methods

Drugs and Chemicals. GR113808A and ondansetron were kindly supplied by GlaxoSmithKline (Verona, Italy). Methiothepin maleate was purchased from Tocris Cookson Inc. (Bristol, UK), and 5-carboxamidotryptamine maleate (5-CT) was obtained from RBI (Natick, MA). Hemicholinium-3, 5-hydroxytryptamine creatinine sulfate, ketanserin tartrate salt, SB269970, and WAY100635 were purchased from Sigma-Aldrich (St. Louis, MO), and [methyl-3H]choline maleate was purchased from GE Healthcare (Little Chalfont, Buckinghamshire, UK).

Tissue Preparation. Specimens from the anterior part of the urinary bladder dome were obtained from 62 male patients (average age, 69) undergoing total cystectomy due to bladder base malignancy. The study was approved by the Ethics Committee of General Hospital of Voghera (Pavia, Italy). Specimens were transported to the laboratory in oxygenated Krebs’ solution (120 mM NaCl, 4.7 mM KCl, 0.6 mM MgSO$_4$, 25 mM NaHCO$_3$, 1.2 mM KH$_2$PO$_4$, 2.0 mM CaCl$_2$, and 10 mM glucose) maintained at 5 to 6°C. Muscular strips (20 mm long, 4 mm wide), free of serosal and mucosal layers and with a good alignment of the muscle bundles, were prepared and stored overnight at 4°C. Strips were then mounted isometrically in 2-ml organ baths superfused with Krebs’ solution at 37°C bubbled with 95% O$_2$ and 5% CO$_2$. The tissues were allowed to equilibrate for 45 min before the start of the experiment. Electrical field stimulation (EFS) was applied by means of two platinum electrodes placed parallel to the longitudinal axis of the strip. This allowed us to record simultaneously in each experiment both pre- and postjunctional effects. Postjunctional effects evoked by EFS were assessed as the mean of six peak contractions evoked by S$_1$ and S$_2$.

Data Analysis. Values from individual experiments were averaged, and the S.E.M. values were calculated. Concentration-response curves for prejunctional effects of 5-HT and 5-CT were constructed in the absence and in the presence of 5-HT antagonists. Drug potency estimates were calculated as $-\log EC_{50}$ (negative log of the molar concentration-producing half-maximal effect) by nonlinear curve fitting (GraphPad Prism, version 3.02; GraphPad Software Inc., San Diego, CA). Affinity (p_A) and apparent affinity ($p_{A'}$) estimates were calculated according Schidt plot analysis and the method of Furchgott (1972), respectively. The differences between groups of data were evaluated by Student’s unpaired t test. A p value less than 0.05 was considered statistically significant.

Results

In human isolated detrusor strips, EFS produced a contractile response ($7.65 \pm 1.57 \, g, \, n = 27$) and a marked 3H outflow (S$_1$: 8354 ± 1243 Bq/g dry tissue) (Fig. 1, A and C). The contractile effect was cholinergic and neuronal in origin (Tonini et al., 1994), and the 3H outflow reflected the release of $[^3$H]ACh from neural stores as previously demonstrated (D’Agostino et al., 2000). The S$_2$/S$_1$ ratio, 0.805 ± 0.04 in control experiments, was not affected significantly following exposure to any of the 5-HT antagonists. Conversely, 5-HT (1 nM–10 μM) affected S$_2$/S$_1$ ratio in comparison with control experiments producing a dual concentration-related effect on transmitter release. At concentrations lower than 3 nM, 5-HT slightly but significantly reduced the electrically evoked $[^3$H]ACh release ($\sim 7.92 \pm 4.7\%$ at 1 nM; $n = 4$) (Fig. 2). On the other hand, within the 3 nM to 10 μM concentration range, 5-HT potentiated both contraction and $[^3$H]ACh release in a concentration-dependent manner with a maximal effect at 10 μM (106 ± 7.4% compared with control; $n = 5$) (Figs. 1, B and D, and 2). A potency (prejunctional pEC$_{50}$ value) of 7.92 ± 0.09 ($n = 5$; Fig. 2) was calculated. The facilitation of $[^3$H]ACh release paralleled the enhancement of neurogenic contractions (maximum effect = 96 ± 8.2%; pEC$_{50}$ value of 8.15 ± 0.07).

The facilitatory $[^3$H]ACh release curve of 5-HT was shifted to the right in the presence of 10 to 60 nM GR113808A, a potent and selective 5-HT$_1$ antagonist, with a progressive depression of the maximal response (approximately 50% at 60 nM; $n = 4$, Fig. 2), indicating a noncompetitive (func-
An apparent affinity value (pK_b) of 9.50 ± 0.05 was estimated.

In the presence of 1 μM methiothepin, a putative 5-HT_{1/2/3/7} receptor antagonist, the prejunctional inhibitory effect observed during the exposure of 1 nM 5-HT was abolished, whereas the facilitatory component of the 5-HT curve was not affected (pEC_{50} value of 8.06 ± 0.04, n = 5). In such a condition of 5-HT_{1/2/3/7} receptor blockade, GR113808A (3–30 nM) was able to antagonize in a competitive manner the facilitatory curve induced by 5-HT (Fig. 3). According to Schild analysis, a pA_2 value of 9.43 ± 0.27 with a slope of 1.06 ± 0.19 (n = 20) was calculated.

In the presence of 3 μM GR113808A, a concentration producing a nearly complete blockade of 5-HT_4 receptors, 5-HT (1 nM–1 μM) caused a concentration-dependent inhibitory effect on [3H]ACh release with a maximal decrease of 22.58% ± 6.37 (n = 5) and a calculated pEC_{50} of 7.99 ± 0.69. In this condition, the inhibition of the [3H]ACh release was reversed yielding an enhancement (by about 20% at 10 μM concentration of 5-HT) (Fig. 4). The putative 5-HT_{1/7} agonist 5-CT, in a 0.1 nM to 1 μM concentration range, caused dual effects on electrically evoked [3H]ACh release (Fig. 4), similar to 5-HT (maximal decrease of 23.05% ± 0.45, n = 5) but with an inhibitory potency (pEC_{50} of 9.03 ± 0.05) 10-fold higher than that showed by 5-HT. Both the inhibitory and facilitatory component of the curve was not affected in the presence of 100 nM ketanserin, a putative 5-HT_2 antagonist, or 10 nM ondansetron, a selective 5-HT_3 antagonist, or 3 μM GR113808A (not shown). SB269970 (0.3–30 nM), a new potent and selective 5-HT_7 antagonist, counteracted in a concentration-dependent fashion only the facilitatory component produced by 5-CT (100 nM–1 μM) (Fig. 5) with a pK_b value of 9.07 ± 0.05 (n = 4).

In condition of 5-HT_7 blockade by 30 nM SB269970, the inhibitory component of the curve produced by 0.1 to 10 nM 5-CT was antagonized in a competitive manner by the selective 5-HT_{1A} antagonist WAY100635 (0.3–3 nM) (Fig. 6). The WAY100635 affinity was calculated by Schild plot analysis (pA_2 value, 9.81 ± 0.10; slope, 0.98 ± 0.01; n = 4).

Discussion

The modulatory role of 5-HT on parasympathetic function in the human detrusor has been investigated previously in functional experiments dealing with nerve-mediated contractile response to EFS. Under these conditions, a facilitatory role of 5-HT in enhancing cholinergic twitch response through 5-HT_4 receptor activation has been demonstrated (Tonini et al., 1994). This study allowed the demonstration by means of a direct [3H]ACh release measurement that the modulatory role of 5-HT on parasympathetic nerve terminals innervating the human detrusor is more complex than that previously thought. Indeed, we found that three different

Fig. 1. Time course of electrically evoked contractile responses (top panels) and [3H]ACh outflows (bottom panels) in human detrusor strips in control conditions (A and C) and in the presence of 1 μM 5-HT (B and D). C and D, each point represents the radioactivity per gram of tissue in the superfusate collected in 3-min samples.
5-HT receptor sites are operative prejunctionally; namely the 5-HT4, 5-HT7, and 5-HT1A receptors. The first two receptor types, which are positively coupled to adenylyl cyclase, enhance [3H]ACh release, whereas the 5-HT1A subtype, which is coupled to Gi/o effector proteins, negatively controls transmitter release. The inhibitory control of [3H]ACh release prevails at subnanomolar concentrations of 5-HT, whereas the facilitatory effect is prominent at higher 5-HT concentrations.

Based on the evidence that the two opposite mechanisms are working simultaneously, the excitatory component was studied after blockade of the inhibitory component, and vice versa. In the presence of methiothepin, a 5-HT receptor antagonist for all but the 5-HT4 type (see Table 1), the facilitatory curve to 5-HT obtained at nanomolar concentrations was shifted to the right in a competitive fashion by the selective 5-HT4 antagonist GR113808A. The pA2 affinity value for GR113808A of 9.43 is consistent with its affinity at the 5-HT4 receptor type reported in the literature (range, 9.0–9.7; Gale et al., 1994), thus indicating the involvement of this receptor in the facilitatory mechanism. In the presence of a complete 5-HT4 receptor blockade by 3 μM GR113808A, but in the absence of methiothepin, 5-HT was able to reveal a concentration-dependent inhibitory effect (maximum effect, 23% versus control), which was followed by an excitatory effect at micromolar concentrations unrelated to 5-HT4 receptor activation.

A dependable receptor analysis of both components of the curve was carried out by means of 5-CT, a 5-HT1/7 receptor-preferring agonist, with an affinity/potency higher than 5-HT (see Table 1). 5-CT caused a biphasic curve characterized by an inhibitory component followed by an excitatory component. The biphasic response caused by 5-CT was unaffected
by ketanserin, ondansetron, and GR113808A, thus excluding the involvement of 5-HT₂, 5-HT₃, and 5-HT₄ receptors (see Table 1 for antagonist receptor selectivity). Conversely, in the presence of SB269970, a potent and selective 5-HT₇ antagonist (Lovell et al., 2000; Thomas et al., 2000), the excitatory component of the curve was concentration-dependently inhibited up to the suppression at 30 nM. The calculated apparent affinity value (pKᵦ) of 9.07 indicates that the second excitatory component occurring at high 5-HT/5-CT concentrations is mediated by the 5-HT₇ receptor type. In the presence of 5-HT₇ receptor blockade, a pure 5-CT-mediated inhibitory curve was observed. This curve was concentration-dependently antagonized in a competitive manner by WAY100635, a selective 5-HT₁A receptor antagonist (Forster et al., 1995). The calculated affinity value (pA₂) of 9.81 characterized unambiguously the inhibitory 5-HT receptor as the 5-HT₁A subtype.

Our findings raise the intriguing possibility that 5-HT differentially regulates, via distinct 5-HT heteroreceptors, ACh release from parasympathetic nerve terminals, which, in turn, affects detrusor smooth muscle contraction. However, the importance of these 5-HT receptors in regulating cholinergic nerve activity and bladder tone in physiological conditions is presently unknown. In the bladder, the serotonergic innervation is scanty (de Groat and Booth, 1993; Hoyle and Burnstock, 1993); therefore, it is unlikely that neuronal 5-HT may substantially contribute to the regulation of parasympathetic function physiologically. This is in agreement with our results regarding the inefficacy of various 5-HT antagonists on ACh release. Conversely, the discovery of a double-positive serotonergic feedback mechanism together with a negative one, regulating the release of ACh, may have profound implications in the pathophysiological mechanisms underlying bladder disorders and therapy. In fact, since the 5-HT₄/5-HT₇-mediated potentiation of cholinergic transmission is experimentally prevalent when the levels of the agonist in the neural cleft are elevated, one can speculate that 5-HT might play a role in pathological conditions associated with enhanced turnover rates or increased levels from tissue sources. Although endogenous 5-HT is synthesized mostly by enterochromaffin cells in the gastrointestinal tract and, to a lesser extent, in the central and peripheral nervous system, inflammatory cells including mast cells are possible sources of 5-HT (Theoharides et al., 1982; Ford and Kava, 1997). It is noteworthy that mast cells are universally found in close proximity to nerves, where factors released from mast cells and neurotransmitters from nerves (i.e., ACh) (Spanos et al., 1996) are involved in a bidirectional communication, promoting axon reflex via local ganglia to the spinal cord and then to the brain (Maurer et al., 2003). In this respect, a well documented mastocytosis within the muscle bundles and in close proximity to bladder nerve terminals has been detected under pathological conditions associated with interstitial cystitis, a sterile bladder inflammation of unknown etiology (Theoharides et al., 2001). Interstitial cystitis is character-
ized by a variety of OAB symptoms that include urinary frequency and urgency (Chancellor and Yoshimura, 2004). It is conceivable to assume that these symptoms, partly related to parasympathetic activation, are due to 5-HT released by mast cell degranulation since in the light of our results elevated levels of 5-HT cause a marked rise in the release of ACh, the most important excitatory transmitter in the human detrusor. Indeed, an altered control of peripheral cholinergic activity is currently regarded as a key factor in the pathophysiology of OAB and urinary incontinence (UI) (Chess-Williams, 2002; Andersson and Wein, 2004; Fry et al., 2004).

With respect to the implication of 5-HT receptors in OAB and UI pathophysiology, the 5-HT4 agonist cisapride can cause UI (Boyd and Rohan, 1994) as well as an improvement of bladder function in patients with bladder-voiding defects associated with detrusor hypocontractility (Franceschetti et al., 1996). A modified 5-HT4 receptor-mediated response was observed in detrusor muscle strips of patients with different types of OAB (Mundy et al., 1994; Chapple et al., 2004), but no clinical data regarding the efficacy of 5-HT4-selective antagonists on neurogenic and non-neurogenic bladder dysfunctions are available, as well as information regarding the involvement or alteration of 5-HT7 receptors. Based on our results, however, selective antagonists at 5-HT4 receptors can be proposed for the treatment of micturition disturbances associated with detrusor hyperactivity since 5-HT4 and 5-HT7 receptors have been shown to potentiate cholinergic activity at both peripheral (this study) and supraspinal (D’Agostino et al., 2004) sites.

In addition, our study provides new insights into the use of selective 5-HT1A agonists in lower urinary tract disorders. Currently, these agents are considered potentially useful in the treatment of stress UI, a condition in which incontinence is often associated with a reduced outlet control. Al- though these compounds seem to exert their prevalent action on outlet resistance at spinal cord sites in the Onuf’s nucleus (Thor, 2003; Thor and Donatucci, 2004), our results suggest an additional site of action. In fact, the activation of 5-HT1A inhibitory heteroreceptors on cholinergic terminals might contribute to increase bladder capacity by reducing the cholinergic drive to the detrusor. This may represent an additional mechanism to prevent involuntary leakages due to sphincter incompetence and, in turn, stress UI. The same peripheral mechanism might be partly involved in the increased bladder capacity caused by 8-hydroxy-2-dipropylaminotetralin, a 5-HT1A agonist, in cats with spinal cord injury (Gu et al., 2004).

In conclusion, our findings provide the first evidence for the presence of peripheral excitatory 5-HT7 heteroreceptors other than 5-HT4 receptors and of the inhibitory 5-HT1A subtype that control parasympathetic drive in the human detrusor. The present study strengthens the novel concept for the use of recently patented selective 5-HT agonists and antagonists for the control of OAB dysfunctions (D’Agostino et al., 2004), although their therapeutic efficacy needs to be explored in the clinical setting.

References
Gu et al., 2004)

Address correspondence to: Dr. Gianluigi D’Agostino, Department of Experimental and Applied Pharmacology, School of Pharmacy, University of Pavia, Viale Taramelli 14, I-27100 Pavia, Italy. E-mail: dagg@unipv.it