Divergent Pharmacological Activity of Novel Marine-Derived Excitatory Amino Acids on Glutamate Receptors

James M. Sanders, Koichi Ito, Luca Settimo, Olli T. Pentikäinen, Muneto Shoji, Makoto Sasaki, Mark S. Johnson, Ryuichi Sakai, and Geoffrey T. Swanson

Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.M.S., K.I., G.T.S.); Department of Biochemistry and Pharmacy, Åbo Akademi University, Turku, Finland (L.S., O.T.P., M.S.J.); Laboratory of Biostuctural Chemistry, Graduate School of Life Sciences, Tohoku University, Sendai, Japan (M.S., Ma.S.); and School of Fisheries Sciences, Kitasato University, Iwate, Japan (R.S.)

Received March 16, 2005; accepted May 19, 2005

ABSTRACT

Kainate receptors show a particular affinity for a variety of natural source compounds, including dysiherbine (DH), a potent agonist derived from the marine sponge Dysidea herbacea. In this study, we characterized the pharmacological activity and structural basis for subunit selectivity of neodysiherbine (neoDH) and MSVIII-19, which are natural and synthetic analogs of DH, respectively. NeoDH and MSVIII-19 differ from DH in the composition of two functional groups that confer specificity and selectivity for ionotropic glutamate receptors. In radioligand binding assays, neoDH displayed a 15- to 25-fold lower affinity relative to that of DH for glutamate receptor (GluR)5 and GluR6 kainate receptor subunits but a 7-fold higher affinity for kainate (KA)2 subunits, whereas MSVIII-19 displaced [3H]kainate only from GluR5 subunits but not GluR6 or KA2 subunits. NeoDH was an agonist for kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolopropionic acid (AMPA) receptors in patch-clamp recordings; in contrast, MSVIII-19 acted as a potent antagonist for homomeric GluR5 receptor currents with weaker activity on other kainate and AMPA receptors. Neither neoDH nor MSVIII-19 activated group I metabotropic GluRs. Homology modeling suggests that two critical amino acids confer the high degree of selectivity between the dysiherbine analogs and the GluR5 and KA2 subunits. In summary, these data describe the pharmacological activity of two new compounds, one of which is a selective GluR5 receptor antagonist that will be of use for understanding native receptor function and designing more selective ligands for kainate receptors.

The primary mediators of excitatory transmission in the brain are glutamate receptors, which play key roles in the physiology and pathology of the brain. Glutamate activates a variety of both ionotropic and metabotropic receptors. The ionotropic glutamate receptor gene family is composed of three families with a number of constituent members: NMDA (NR1, NR2A–D, and NR3A), AMPA (GluR1–4), and kainate receptors (GluR5–7 and KA1–2), which were defined based on sequence homology and pharmacological specificity (Hollmann and Heinemann, 1994). Metabotropic receptors are subdivided into three groups: group I (mGluR 1 and 5), which are positively coupled to phospholipase C; group II (mGluR 2 and 3); and group III (mGluR4, 6, 7, and 8), which are negatively coupled to adenylate cyclase (Conn and Pin, 1997).

Natural source compounds have been instrumental in the pharmacological and functional characterization of ionotropic glutamate receptors. Recently, a novel marine toxin with potent convulsant activity, dysiherbine, was isolated, and designing more selective ligands for kainate receptors.

Acknowledgments

This study was supported by the Academy of Finland, the Technology Development Center of Finland, the Sigrid Juelius Foundation (to M.S.J.), the Foundation of Åbo Akademi (to L.S.), the Yamada Science Foundation and a grant-in-aid from the Japanesem Science, Science, Sports, Culture and Technology (to M.S.), the Zelda Zinn Casper Foundation and Training Grant T32 DA07287 from the National Institute for Drug Abuse (to J.M.S.), National Institute of Environmental Health Sciences Center at the University of Texas Medical Branch, and National Institute for Neurological Diseases and Stroke Grant R01 NS44322 (to G.T.S.).

Article publication date, and citation information can be found at http://jpet.aspetjournals.org. doi:10.1124/jpet.105.086389.

ABBREVIATIONS: NMDA, N-methyl-D-aspartate; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolopropionic acid; GluR, glutamate receptor; mGluR, metabotropic glutamate receptor; KA, kainate; DH, dysiherbine; LBD, ligand binding domain; MSVIII-19, (2R,3aR,6aR,4aR,7aS,6[S,7S,8aR])-6-(4-carboxyphenyl)methyl-1,2,3,4,5,6,7,8,8a-decاهydroxysoquinoline-3-carboxylic acid; UBP296, (3S,4aR,6S,8aR)-6-(4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid; UBP296, (3S,4aR,6S,8aR)-6-(4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decacydroisoquinoline-3-carboxylic acid; UBP296, (3S,4aR,6S,8aR)-6-(4-carboxyphenyl)methyl-1,2,3,4,
synthesized, and characterized as a glutamate receptor agonist with 5-fold selectivity for evoking currents from neuronal kainate receptors compared with AMPA receptors (Sasaki et al., 1999; Sakai et al., 2001a). DH also had weak agonist activity on the group I metabotropic receptor mGluR5. The very high affinity that DH exhibited for the GluR5 and GluR6 subunits compared with the KA2 subunit proved useful as a tool for elucidating the functional role of individual subunit activation within heteromeric kainate receptors (Swanson et al., 2002). DH is a rigid analog of glutamate structurally distinct from other high-affinity agonists such as kainate and domoate, and recently other structurally related compounds were shown to have biological activity (Sasaki et al., 1999; Sakai et al., 2001a).

Binding of glutamate and other compounds that act competitively on glutamate receptors occurs at the ligand binding domain (LBD), which is composed of the noncontiguous S1 and S2 regions of subunit proteins. The S1 region precedes the first membrane domain, and the S2 region is contained within an extracellular loop between the second and third membrane domains (Stern-Bach et al., 1994). The crystal structure of the GluR2 subunit LBD was determined in complex with a number of ligands as well as in the apo form; these seminal findings produced the first testable models for structural correlates of receptor binding and function (Armstrong et al., 1998; Armstrong and Gouaux, 2000). Homology models based on the GluR2 structures have provided insight into which residues are important for the selectivity of various compounds on kainate receptors (Pentikäinen et al., 2003). The utility of modeling interactions between ligands and kainate receptor binding site domains was validated by recent crystallographic resolution of an initial set of domain-ligand complexes (Mayer, 2005; Nanao et al., 2005; Naur et al., 2005) that closely matched those predicted by homology modeling.

To correlate structural elements of DH-related marine toxins with their specificity on ionotropic glutamate receptors, we characterized the pharmacological action of two new compounds, neodysiherbaine (neoDH) and MSVIII-19 (Fig. 1). NeoDH is a natural analog of DH that is produced in much lower quantities by the marine sponge Dysidea herbacea (Sakai et al., 2001a). MSVIII-19, in contrast, is a synthetic analog lacking two critical functional groups that likely confer specificity and selectivity for kainate receptors (Sasaki et al., 1999). Neither neoDH nor MSVIII-19 demonstrates affinity for rat brain NMDA receptors (Sakai et al., 2001a; K. Shimamoto, personal communication). When injected into mice, neoDH elicits seizure behavior similar to that of DH, whereas MSVIII-19 evokes initial brief seizures that are followed by an extended period of unconsciousness (Sasaki et al., 1999). We report here that neoDH is similar to DH in its pharmacological activity on kainate receptors, albeit with slightly different binding affinities for individual receptor subunits. In contrast, MSVIII-19 is a selective antagonist for GluR5 kainate receptors with no activity on GluR6 kainate receptors. MSVIII-19 also inhibits activation of recombinant and native AMPA receptors with much lower potency. To facilitate an understanding of structural elements that confer the specificity of neoDH and MSVIII-19 for a subset of kainate receptors, we modeled the ligand binding domain of GluR5 and KA2 subunits and predict that the large difference in affinity might be accounted for by two residues in the S2 domain of the kainate receptor subunits.

Materials and Methods

Electrophysiology. HEK293 cells were transfected with receptor cDNAs (0.05–0.3 μg) in combination with enhanced green fluorescent protein cDNA for the visualization of transfected cells. A ratio of 1:6 [GluR6(Q) or 1:3 GluR5(R) to KA2 cDNA] was used for expression of heteromeric receptors. GluR1, GluR2, and GluR4 AMPA receptor cDNAs were flip isoforms. Patch-clamp recordings were made 24 to 72 h after transfection. The internal solution contained 110 mM CsF, 30 mM CsCl, 4 mM NaCl, 0.5 mM CaCl₂, 10 mM HEPES, and 5 mM EGTA (adjusted to pH 7.3 with CsOH). The external bath solution was composed of 150 mM NaCl, 2.8 mM KCl, 2 mM CaCl₂, 1.0 mM MgCl₂, and 10 mM HEPES (pH adjusted to 7.3 with NaOH). Patch electrodes were pulled from thick-walled borosilicate glass (Warner Instruments, Hamden, CT) with a final resistance of 1.5 to 2.5 MΩ after fire polishing. Fast application of drugs was achieved through a three-barrel glass tube mounted on a piezo-bimorph, as described previously (Swanson et al., 1997). Briefly, cells were lifted from coverslips to provide a laminar flow across the cells. Fast application of drugs was achieved by applying TTL pulses controlled by pClamp9 (Axon Instruments Inc, Union City, CA). Whole cell patch-clamp recordings were performed with an Axopatch 200B amplifier (Axon Instruments Inc.). The holding potential for all patch-clamp recordings was −70 mV. In general, only a single cell was recorded per coverslip of GluR5 or GluR6 receptor-expressing cells in the neoDH experiments because of the long duration of action of this compound.

Horizontal hippocampal slices (0.35 μm) were made from P30 to P40 129SvEv mice as described previously (Ito et al., 2004). Whole cell patch-clamp recordings of AMPA-excitatory postsynaptic currents (AMPA-EPSCs) were made from CA1 pyramidal cells while stimulating Schaffer collateral inputs with a monopolar glass electrode in the stratum radiatum. The internal solution for the EPSC recordings consisted of 95 mM CsF, 25 mM CsCl, 10 mM Cs-HEPES, 10 mM Cs-EGTA, 2 mM NaCl, 2 mM Mg-ATP, 10 mM QX-314, 5 mM tetraethylammonium-Cl, and 5 mM 4-aminopyridine, with the pH adjusted to 7.3 with CsOH. AMPA-EPSCs were recorded in the presence of d-(-)-2-amino-5-phosphonopentanoic acid (25 μM), bicuculline (10 μM), and picrotoxin (50 μM) at a basal stimulation of 0.05 Hz. Inhibitory postsynaptic potentials were recorded from CA1 pyramidal neurons after monopolar stimulation in the stratum radiatum. The internal solution for IPSC recordings was identical to that for EPSC recordings, with the exception that it contained 120 mM CsCl rather than CsF/CsCl. Paired pulse stimulation used two pulses delivered at a 40-ms interval. IPSCs were recorded in the presence of d-(-)-2-amino-5-phosphonopentanoic acid (25 μM) and 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (50 μM). Data were acquired and analyzed using pClamp9 software (Axon Instruments Inc.), Origin 6.0 (MicroCal Software, Northampton, MA), and Prism 4 (GraphPad Software Inc., San Diego, CA).

Calcium Imaging. Two to 3 days after transfection of HEK293 cells with mGluR1 or mGluR5 cDNAs, cells were incubated in 5 mM
Fura-2/AM (Molecular Probes, Eugene, OR) for calcium imaging as described previously (Sakai et al., 2001b). Cells were visualized on an inverted microscope (Nikon Eclipse TE2000) equipped with a 12 digital monochrome cooled charge-coupled device camera (Roper Coollamp HQ) in combination with a DG-4 illumination and rapid excitation-filter-changer (Sutter Instrument Company, Novato, CA). Control of the system was carried out using MetaFluor (Universal Imaging Corporation, Downington, PA). (R,S)-3,5-DHPG was used as a positive control for the transfection of the cells.

Radioisotope Binding. Membrane preparations from COS-7 cells were prepared and used in radioisotope displacement assays as described previously (Swanson et al., 1997). Unlabeled neoDH and MSVIII-19 were used to displace the radioligand 3Hkainate (5–18 nM; PerkinElmer Life and Analytical Sciences, Boston, MA) from kainate receptor subunits in COS-7 cell membranes (with 25 μg of protein per assay tube). MSVIII-19 was also tested for displacement of 3HIAMP (20 nM) from GluR4 AMPA receptors expressed in HEK293 cells. Nonspecific binding was measured in the presence of 1 μM glutamate. Membranes were incubated at 4°C for 1 h and harvested by rapid filtration onto Whatman GF/C membranes. After addition of scintillation fluid, membranes were incubated at room temperature for 1 h before quantitation on a Beckman LS5000 TD scintillation counter (Beckman Coulter, Inc., Fullerton, CA). Data were plotted and fit with a one-site competition curve using Prism 4 (GraphPad Software Inc.).

Structural Modeling, Ligand Binding, and Ligand Docking. Protein structures were obtained from the Protein Data Bank (PDB) (Berman et al., 2000). Among the crystal structures for GluR2 with bound agonist ligands, ATPA has the most similar ligand dimensions and subtype selectivity as those of DH. Thus, the crystal structure of GluR2 with bound ATPA (PDB 1nnp; Lunn et al., 2003) solved at 1.9-Å resolution was selected as a template for GluR5, GluR6, and KA2 modeling. For the partial agonist models, we used the 1.6-Å resolution crystal structure of GluR2 with bound kainate (PDB 1ftk; Armstrong and Gouaux, 2000); and for the antagonist ligand binding models, we used the 2.1-Å resolution crystal structure of GluR2 with bound ATPA (PDB 1n0t; Hogner et al., 2003). Among the crystal structures for GluR2 with bound agonist ligands, ATPA has the most similar ligand dimensions. Ligand binding experiments from rat brain membranes suggested that these substituents were critical determinants of affinity for ionotropic glutamate receptors (Sasaki et al., 1999; Sakai et al., 2001a).

To test the role of the C8 and C9 side groups in conferring affinity for kainate receptor subunits, we initially characterized the ligand binding affinity of neoDH and MSVIII-19 for the GluR5, GluR6, and KA2 subunits. Varying concentrations of neoDH and MSVIII-19 were used to displace 3Hkainate from membranes prepared from receptor-expressing COS-7 cells (Table 1; Fig. 2). Table 1 summarizes the Ki values calculated from the average displacement curves for the compounds on each kainate receptor subunit. For the purpose of comparison, we included the Ki values for DH in Table 1 (Sakai et al., 2001b) and representative displacement curves for the compounds on each kainate receptor subunit. As shown in Fig. 2, neoDH displaced 3Hkainate most potently from GluR5 receptors, with a Ki value of 7.7 ± 1.3 nM, compared with 33 ± 9.0 nM and 0.6 ± 0.1 μM for GluR6 and KA2 subunits, respectively (n = 3–4 for each concentration). NeoDH was a lower affinity ligand than DH for GluR5 and GluR6 kainate receptors by 15- to 25-fold (Swanson et al., 2002), consistent with a weaker potency for seizure induction in mice (Sakai et al., 2001a). NeoDH exhibited a markedly lower affinity for the KA2 subunits compared with GluR5 or GluR6 subunits, but compared with DH was of ~10-fold higher affinity for KA2 subunits (Table 1). MSVIII-19 displayed a unique profile on kainate receptors compared with DH and neoDH. This synthetic analog displaced 3Hkainate from GluR5 kainate receptor subunits with a Ki value of 128 ± 21 nM (Table 1; Fig. 2) but did not significantly displace the radioligand from either GluR6 or KA2 kainate receptor subunits at concentrations as high as 100 μM. MSVIII-19 also weakly displaced 3HIAMP from GluR1, GluR2, and GluR4 AMPA receptor subunits (dis-

<table>
<thead>
<tr>
<th>GluR5</th>
<th>GluR6</th>
<th>KA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki(nM)</td>
<td>Ki(nM)</td>
<td>Ki(μM)</td>
</tr>
<tr>
<td>DH</td>
<td>0.5 ± 0.1a</td>
<td>1.3 ± 0.1*</td>
</tr>
<tr>
<td>neoDH</td>
<td>7.7 ± 1.3</td>
<td>33 ± 9.0</td>
</tr>
<tr>
<td>MSVIII-19</td>
<td>128 ± 21</td>
<td>>100,000</td>
</tr>
</tbody>
</table>

^a Ki values for DH on GluR5 and GluR6 subunits taken from Sakai et al. (2001).
^b Ki value obtained for DH on KA2 from Swanson et al. (2002).
Marine-Derived Ligands for Glutamate Receptors

Fig. 2. Displacement of [3H]kainate from kainate receptors by DH (squares), neoDH (circles), and MSVIII-19 (triangles). [3H]Kainate was displaced from membrane preparations of GluR5 receptors (A), GluR6 receptors (B), and KA2 receptors (C) expressed in COS-7 cells. Glutamate (1 mM) was used to determine nonspecific binding. Curves are fit with a one-site competition curve. A representative set of data for displacement by DH is shown and is consistent with affinities determined previously (Sakai et al., 2001b; Swanson et al., 2002). n = 3 to 4 at each concentration for neoDH and MSVIII-19. Kᵢ values calculated from these curves are presented in Table 1.

Fig. 3. NeoDH acts as a high affinity agonist for recombinant AMPA and kainate receptors. A, individual currents evoked by application of neoDH (50 μM) to GluR4 (top), GluR5 (middle), and GluR6 (bottom) receptors. B, recovery of control glutamate responses after application of neoDH. Individual traces on the left depict an initial current evoked by glutamate (10 mM), and the traces on the right depict the response to glutamate 10 min after a 5-s application of neoDH (10 μM). Currents were evoked from GluR5 (top), GluR6 (middle), and GluR6/KA2 (bottom) receptors. C, percentage of initial amplitudes graphed against time of test applications. Test application currents were normalized to the initial control glutamate (10 mM) responses (before neoDH application at time indicated). Data points represent the mean ± S.E.M. for three separate experiments. D, NeoDH differentially activates GluR5 and KA2 subunits within the GluR5/KA2 heteromeric receptor. Trace on the left represents a control response from the 100-ms application of glutamate (10 mM). Middle trace represents the response seen during a 5-s application of neoDH (10 μM). As is seen with DH, a tonic current develops after removal of neoDH; this current arises due to high-affinity interaction with the GluR5 subunit and consequent partial activation of the heteromeric receptors. Scale bars, 100 pA and 5 s. Inset shows the response on a condensed time scale. The trace on the right represents the response to glutamate (10 mM) after application of neoDH. The apparent positive deflection is due to desensitization of the entire receptor complex back to the pre-neoDH baseline current amplitude (dotted line) (for a detailed description of this phenomenon, see Swanson et al., 2002).

NeoDH Is an Agonist for AMPA and Kainate Receptors. To determine whether neoDH acts as an agonist for AMPA and kainate receptors, we carried out patch-clamp recordings from HEK293 cells expressing representative recombinant AMPA and kainate receptors. NeoDH (50 μM) elicited nondesensitizing currents from GluR4 AMPA receptors (Fig. 3A) similar to those evoked by either kainate or DH. The compound elicited desensitizing currents in cells expressing homomeric GluR5 and GluR6 kainate receptors (Fig. 3A). Because the homomeric kainate receptor remained in a desensitized state for prolonged periods after application of neoDH, we assessed the relative affinity of the interaction between neoDH and kainate receptors by measuring the recovery of glutamate responses after a brief application of neoDH (10 μM for 5 s). The rate at which the
receptors can be reactivated by glutamate will be determined predominantly by the stabilization of the desensitized state of the receptor and the affinity of neoDH for the kainate receptor subunits. Figure 3B shows representative glutamate-evoked currents before (left) and 10 min after (right) application of neoDH. As was observed with DH, glutamate currents did not recover to a measurable degree after application of neoDH to GluR5 subunit-expressing cells (Fig. 3B, top row). GluR6 and GluR6/KA2 receptors recovered to control glutamate current amplitudes within the 10 min period after neoDH application. The rate of recovery of glutamate-evoked currents after neoDH application was analyzed by normalizing glutamate current amplitudes to the initial control amplitudes (Fig. 3C). GluR5 homomeric receptors displayed a very slow recovery of glutamate sensitivity after neoDH application relative to GluR6 homomeric kainate receptors and GluR6/KA2 heteromeric kainate receptors, which exhibited single exponential rates of recovery of 1.9 ± 0.4 and 0.6 ± 0.2 min, respectively (n = 3–4 for each receptor type; Fig. 3C). Twenty minutes after application of neoDH, currents elicited from GluR5 homomeric kainate receptors recovered to <15% of control responses. These data demonstrate that neoDH is indeed an agonist of recombinant AMPA and kainate receptors with a particularly high affinity for homomeric GluR5 subunits, which neoDH activates and traps in a closed, desensitized state.

We found previously that DH has a complex action on heteromeric GluR5/KA2 receptors (Swanson et al., 2002). DH binds and activates subunits within the heteromeric complex differentially by virtue of its highly divergent affinity for GluR5 and KA2 subunits. Application of DH to GluR5/KA2 receptors elicited a peak current that desensitized to a proportionally small equilibrium current; unusually, removal of the agonist was followed by the emergence of a tonic inward current arising from stable, selective activation of the GluR5 subunits. The tonic current typically was observed for >20 min after removal of DH, reflecting the very slow rate of unbinding from the GluR5 subunits. Because DH did not remain bound to KA2 subunits, subsequent glutamate application elicited a peak desensitizing response (from activation of KA2 subunits) followed by a complete desensitization of the heteromeric receptors to the baseline current present before DH application.

In our current experiments, we determined whether neoDH had similar actions on heteromeric GluR5/KA2 receptors despite the lower affinity of neoDH for GluR5 subunits observed in displacement assays. Glutamate (10 mM) was applied to GluR5/KA2 receptor-expressing cells to determine the control current amplitude, followed by an application of neoDH (10 μM; 5 s). Representative traces from a single recording are shown in Fig. 3D. Glutamate activated a rapidly desensitizing current with very fast kinetics in control recordings. Similar to DH, neoDH elicited an initial peak desensitizing response that was then followed by a slow inward tonic current upon removal of agonist. Glutamate application in the presence of the tonic current induced a transient peak current followed by a rapid return to the baseline control current amplitude (Fig. 3D, dashed line). This behavior is similar to that observed with DH; however, we noted that the duration of the tonic current was much shorter with neoDH (<5 min) than with DH (>20 min), consistent with a somewhat lower affinity for the GluR5 subunit. In summary, these data demonstrate that neoDH is a potent agonist for kainate receptors with a shorter duration of action than DH, consistent with a somewhat lower affinity for GluR5 and GluR6 subunits. The higher affinity for KA2 subunits observed in displacement assays was not manifested in an obvious difference in physiological responses of GluR5/KA2 or GluR6/KA2 receptors to the marine toxins.

MSVIII-19 Is an Antagonist of Kainate and AMPA Receptors. We applied MSVIII-19 to HEK293 cells expressing representative recombinant kainate and AMPA receptors to determine whether this compound also exhibited agonist activity. MSVIII-19 (50 μM) application did not elicit currents from homomeric GluR4, GluR5, GluR6 receptors or heteromeric GluR5/KA2 receptors (representative glutamate and MSVIII-19 traces are shown in Fig. 4A). Instead, we found that MSVIII-19 reduced glutamate-evoked currents from both kainate and AMPA receptors with a wide range of potencies. Representative glutamate (10 mM) currents for GluR5, GluR6, GluR5/KA2, and GluR6/KA2 kainate receptors in the absence and presence of MSVIII-19 are shown in Fig. 4B. At a concentration of 10 μM, MSVIII-19 reduced glutamate currents elicited from GluR6/KA2 receptors by ~20%, inhibited GluR5/KA2 receptors by ~60%, and completely occluded activation of GluR5 receptors. Strikingly, a very high concentration of MSVIII-19 (100 μM) did not inhibit GluR6 kainate receptor currents (Fig. 4). Concentration-response curves for inhibition of peak glutamate currents from these receptors yielded IC50 values of 23 nM for GluR5, 1.9 μM for GluR5/KA2, and ~190 μM for GluR6/KA2 kainate receptors. MSVIII-19 (100 μM) did not inhibit GluR6 kainate receptors to a detectable degree (n = 3–4 for each MSVIII-19 concentration on the receptors; Fig. 4B).

MSVIII-19 also inhibited GluR1/GluR2 and GluR4 AMPA receptors, albeit with lower potency than GluR5-containing kainate receptors. Representative glutamate-evoked currents in the absence and presence of 10 μM MSVIII-19 are shown in Fig. 5A. Concentration-response data for MSVIII-19 inhibition of these AMPA receptors yielded IC50 values of 8 μM for GluR1/GluR2 and 23 μM for GluR4 AMPA receptors (n = 3–4; Fig. 5B). In summary, these data demonstrate that MSVIII-19 is a selective non-NMDA receptor antagonist that shows particular affinity for inhibition of GluR5-containing kainate receptors.

To test whether MSVIII-19 had an inhibitory action on neuronal AMPA receptors similar to that observed with recombinant AMPA receptors, we recorded EPSCs from CA1 pyramidal neurons during stimulation of Schaffer collateral inputs. CA1 pyramidal neuron AMPA receptors are composed of heteromeric GluR1/GluR2 and GluR2/GluR3 receptors (Wenthold et al., 1996). Paired stimulations were delivered at a basal frequency of 0.05 Hz; representative current traces in the absence and presence of MSVIII-19 (10 μM) are shown in Fig. 6A. An IC50 of 16 μM (n = 3) was calculated from the concentration-response relationship for inhibition of the first EPSC by MSVIII-19. The similarity of the neuronal and recombinant IC50 values demonstrates that MSVIII-19 has a roughly equivalent activity on AMPA receptors comprised of a variety of different subunits. The paired pulse ratio was not altered in the presence of subsaturating concentrations of the antagonist.

The behavioral effects of MSVIII-19 could be consistent with potentiation of inhibitory transmission (Sasaki et al., 2002).
1999). For that reason, we also tested the effect of MSVIII-19 on neuronal GABAA receptors by recording IPSCs in CA1 pyramidal neurons elicited by stimulation in the stratum radiatum. MSVIII-19 (10 or 20 μM) seemed to show slight inhibition of IPSCs, but this was not significantly different from control amplitudes and was more likely due to modest rundown of the IPSCs (Fig. 6B). The paired pulse ratio of IPSCs during MSVIII-19 application (0.67 ± 0.18; n = 8) was not different from control (0.75 ± 0.17; n = 8). These data show that MSVIII-19 does not exhibit activity on native postsynaptic GABAA receptors in the hippocampus.

NeoDH and MSVIII-19 Do Not Activate Group I Metabotropic Glutamate Receptors. We previously reported the high concentration of DH (100 μM) selectively activated mGluR5 but not mGluR1 (Sakai et al., 2001b). To determine the pharmacological profile of neoDH and MSVIII-19 on group I mGluRs, we imaged intracellular calcium signals elicited by activation of recombinant mGluR1 and mGluR5 expressed in HEK293 cells. (R,S)-DHPG (100 μM), a selective group I mGluR agonist used as a positive control, elicited responses from Fura-2/AM-loaded mGluR1 and mGluR5 receptor-expressing cells (Fig. 7). We also reproduced our previous results in which DH (100 μM) was shown to selectively activate mGluR5 (n = 23; Fig. 7, A and B, top). In contrast, neoDH (100 μM) and MSVIII-19 (100 μM) did not elicit calcium signals in DHPG-responsive cells expressing either group I receptor (n = 4–7; Fig. 7, A and B, middle and bottom). MSVIII-19 did not seem to reduce calcium signals from mGluR1- or mGluR5-expressing cells when coapplied with DHPG (data not shown). These results demonstrate that modification of the C8 functional group in DH eliminates the low-affinity agonist activity (at 100 μM) on group I mGluRs.

Discussion

The pharmacological properties of neoDH and MSVIII-19 demonstrate that functional groups at C8 and C9 are critical determinants of specificity and activity. Substitution of a hydroxyl for methylamine at C8 reduces the affinity of neoDH for GluR5 and GluR6 subunits but slightly increases affinity for the KA2 subunit. NeoDH remains an agonist for AMPA receptors but lacks the weak agonist activity on mGluR5 receptors exhibited by DH. Thus, the methylamine-
hydroxyl substitution has small but significant effects on activity of these excitatory amino acids, but the general pharmacological profile is maintained, consistent with similarities in behavioral effects (Sakai et al., 2001a). In contrast, removal of the C8 and C9 groups greatly alters pharmacological activity. MSVIII-19 is an antagonist for GluR5-containing kainate receptors with little detectable affinity for GluR6 or KA2 receptor subunits. MSVIII-19 also inhibits AMPA receptor activation with low potency. The unusual behavioral effects of MSVIII-19—induction of a hypoactive state at low doses (Sasaki et al., 1999)—therefore might be caused by a combination of GluR5 kainate and AMPA receptor inhibition in the central nervous system. This pharmacological characterization of neoDH and MSVIII-19 yields insight into the importance of the C8 and C9 side groups in conferring affinity for glutamate receptors and suggests potential sites of modification to generate compounds with novel activities.

Molecular Modeling of Receptor-Ligand Interactions. The divergent pharmacology of DH, neoDH, and MSVIII-19 provides us with an opportunity to study microenvironments within the LBDs of individual kainate receptor subunits. In addition to GluR2 AMPA and NR1 NMDA receptor subunits, the crystal structures of LBDs for GluR5 and GluR6 complexed with agonists were reported recently (Mayer, 2005; Nanao et al., 2005; Naur et al., 2005). We modeled the complexes between LBDs and DH, neoDH, and MSVIII-19 to elucidate possible subunit interactions that confer specificity for these compounds (Fig. 8). The GluR2-ATPA structure, rather than recent kainate receptor structures, was used to model ligand interactions with GluR5 and KA2 because ATPA is similar to DH in size and subunit selectivity. As well, modeling of kainate receptors using GluR2 structures (Pentikäinen et al., 2003) accurately predicted LBD-ligand interactions (Mayer, 2005; Nanao et al., 2005; Naur et al., 2005). Docking of DH and analogs resulted in binding modes similar to those observed for the α-amino, α-carboxylate, and γ-carboxylate groups of GluR2-bound L-glutamate (PDB code 1rj; Armstrong and Gouaux, 2000). The hydroxyl-group at C9 on DH and neoDH accepts a hydrogen bond from the main-chain NH group of Glu705. The hydroxyl-group at C9 on DH and neoDH accepts a hydrogen bond from the main-chain NH group of Glu705 (PDB code 1ftj; Armstrong and Gouaux, 2000). The hydroxyl-group at C9 on DH and neoDH accepts a hydrogen bond from the main-chain NH group of Glu705 (PDB code 1ftj; Armstrong and Gouaux, 2000).
NeoDH and MSVIII-19 do not activate group I mGluRs. Calcium signals were measured after loading of HEK293 cells with the calcium indicator Fura-2/AM. In all experiments, DHPG (100 μM) was used initially to identify mGluR-expressing cells. A, representative ratiometric calcium signals from mGluR1-expressing cells during application of DH (100 μM; top), neoDH (100 μM; middle), and MSVIII-19 (100 μM; bottom). B, representative ratiometric calcium signals from mGluR5-expressing cells during application of DH (100 μM; top), neoDH (100 μM; middle), and MSVIII-19 (100 μM; bottom). Drugs were applied for 1.5 min. Note that the DH-evoked rise in intracellular calcium in mGluR5-transfected cells was the only response elicited by the test compounds.

MSVIII-19 is missing polar groups on C8 and C9 and therefore cannot bind as stably to the receptor subunits as DH and neoDH. Water molecules may play critical roles during MSVIII-19 binding by occupying positions equivalent to methylamine of DH and hydroxyl group of neoDH. Similarly, the C9 hydroxyl group in DH and neoDH could be replaced with a water molecule. Inclusion of two water molecules in LBD-MSVIII-19 docking models results in unfavorable interactions and a more open conformation, consistent with antagonist activity. Water molecule w2 (Fig. 8C) might donate a hydrogen bond to the γ-carboxylate group of MSVIII-19; similar interactions are observed for the GluR2-glutamate structure (Armstrong and Gouaux, 2000).

Unfavorable interactions between MSVIII-19 and Asn686 in GluR6 and Ile650 in KA2 could explain the dramatic reduction in affinity for these receptor subunits. In summary, GluR5-selective antagonists have recently been developed with similar, but lower affinity, pharmacological properties to MSVIII-19. The competitive decahydroisoquinoline antagonists LY293558, LY377770, and LY382884 show varying degrees of selectivity for GluR5-containing kainate receptors compared with AMPA receptors; all three compounds exhibit little or no affinity for GluR6 or GluR7 subunits (Bleakman et al., 1996b; O’Neill et al., 1998; Simmons et al., 1998; Smolders et al., 2002; Alt et al., 2004). LY293558 is roughly equipotent for inhibition of AMPA and GluR5 kainate receptors (IC50 of ~2 μM) (Bleakman et al., 1996a; O’Neill et al., 1998), whereas LY382884 potently inhibits GluR5-containing kainate receptors but shows little affinity for AMPA receptors, making this compound a highly selective GluR5 antagonist.
antagonist (O’Neill et al., 1998; Simmons et al., 1998; Bortolotto et al., 1999; Smolders et al., 2002). A similar decahydroisoquinoline exhibited /H11022 300-fold selectivity for GluR5 kainate receptors in a preliminary characterization (Filla et al., 2002). More recently, a commercially available willardine derivative, UBP296, was shown to selectively inhibit GluR5 receptors with an IC50 of 3.5 /H9262 M, whereas only weakly inhibiting AMPA receptors (More et al., 2004). Noncompetitive GluR5 receptor antagonists with varying degrees of selectivity and potency have been described recently as well (Valgeirsson et al., 2003; Christensen et al., 2004). The pharmacological selectivity of MSVIII-19 is perhaps most similar to LY377770, which has IC50 values of 13 and 0.2 to 0.7 /H9262 M for inhibition of AMPA receptors and GluR5 receptors, respectively (Smolders et al., 2002; Alt et al., 2004). In comparison, MSVIII-19 is at least a 10-fold more potent inhibitor of GluR5-containing receptors, with an IC50 of 23 nM, compared with other kainate receptor antagonists.

GluR5-selective kainate receptor antagonists are the focus of interest for their potential therapeutic uses because they have exhibited efficacy in in vivo and in vitro pathological models. Kainate receptors likely play a prominent role in nociceptive transmission because they are the primary type of ionotropic glutamate receptor expressed in C-fiber dorsal root ganglion trigeminal ganglion neurons (Huettner, 1990; Sahara et al., 1997). Consistent with this hypothesis, antag-
onists acting on GluR5-containing kainate receptors reduce pain-related behaviors in formalin and capsaicin models of hyperalgesia in rats (Sang et al., 1998; Simmons et al., 1998), capsaicin-induced hyperalgesia and allodynia in humans (Sang et al., 1998), and postoperative pain (Gilron et al., 2000). GluR5-selective antagonists also have potential for therapeutic use in the treatment of migraine. In preclinical research, a produg of a GluR5 decahydroisoquinoline antag-

onist reduced protein extravasation in the dura and activation of pain-relevant GABAergic transmission with picrotoxin were not attenuated by treatment with either LY377770 or LY382884 (Smolders et al., 2002). Finally, LY377770 was neuroprotective in global and focal models of ischemia, suggesting that GluR5 receptors might contribute to ischemic brain damage (O'Neill et al., 1998).

In summary, the novel structures and pharmacological activities of natural and synthetic disulfinebephtaine-related mole-
cules make them useful for understanding the critical components of ligand-receptor interactions that confer selectivity and affinity for particular kainate receptor subunits. We suggest that these compounds represent a new template for future development of kainate receptor ligands with therapeu-
tic utility.

Acknowledgments

We thank Drs. Yanping Ye and John Cheng for technical assistance and Dr. Leoncio Vergara (Optical Imaging Laboratory, Uni-

versity of Texas Medical Branch). Access to docking software was provided by the Centre for Scientific Computing (CSC, Espoo, Finland).

References

Address correspondence to: Dr. Geoffrey T. Swanson, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555. E-mail: g.swanson@utmb.edu