Endothelin (ET)-1-Induced Inhibition of ATP Release from PC-12 Cells Is Mediated by the ET_B Receptor: Differential Response to ET-1 on ATP, Neuropeptide Y, and Dopamine Levels

A. Gardner, T. C. Westfall, and H. Macarthur

Departments of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts (A.G.); and Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri (T.C.W., H.M.)

Received November 19, 2004; accepted January 25, 2005

ABSTRACT

During sympathetic neurotransmitter release, there is evidence for differential modulation of cotransmitter release by endothelin (ET)-1. Using nerve growth factor (NGF)-differentiated PC12 cells, the effects of ET-1 on K⁺-stimulated release of ATP, dopamine (DA), and neuropeptide Y (NPY) were quantified using high-pressure liquid chromatography or radioimmunoas-

say. ET-1, in a concentration-dependent manner, inhibited the release of ATP, but not DA and NPY. Preincubation with the ETA_B antagonist, PD 142893 ([N-acetyl-β-phenyl-d-Phe-Leu-Asp-Ile-Ile-Trp], reversed the inhibitory effect of ET-1 on ATP release, which remained unaffected in the presence of the ET_B specific antagonist BQ123 (cyclo(D-Asp-Pro-d-Val-Leu-o-Trp)). The ET_B agonists, sarafotoxin 6c (Cys-Thr-Cys-Asn-Asp-Met-Thr-Asp-Glu-Glu-Cys-Leu-Asn-Phe-Cys-His-Gln-Asp-Val-Ile-Trp), BQ 3020 ([N-acetyl-[Ala^{11,15}]-endothelin 1 fragment 6-21Ac-Leu-Met-Asp-Lys-Glu-Val-Tyr-Phe-Ala-His-Leu-Asp-Ile-Ile-Trp], and IRL 1620 ([N-succinyl-][Glu⁹, Ala^{11,15}]-endothelin 1 fragment 8-21Suc-Asp-Glu-Glu-Ala-Val-Tyr-Phe-Ala-His-Leu-Asp-Ile-Ile-Trp], decreased K⁺-stimulated release of ATP in a dose-dependent manner, and this effect was reversed by the ET_B antagonists RES 701-1 (cyclic (Gly¹-Asp⁹-Thr³-Ala⁹-Pro⁶-Asp⁶-Thr³-Leu⁶-Val⁶-Leu⁶-Trp)) and BQ 788 (N-[N-[2,6-dimethyl-1-piperidinyl]carbonyl]-4-methyl-L-leucyl]-1-(methoxycarbonyl)-d-tryptophyl]-d-norelucine sodium salt). Preincubation of PC12 cells with pertussis toxin reversed the ET-1-induced inhibition of the K⁺-evoked ATP release. Real-time intracellular calcium level recordings were performed on PC-12 cell suspensions, and ET-1 induced a dose-dependent decrease in the K⁺-evoked calcium levels. Nifedipine, the L-type voltage-dependent Ca²⁺ channel antagonist, caused inhibition of the K⁺-stimulated ATP release, but the N-type Ca²⁺ channel antagonist, ω-conotoxin GVIa, did not reverse the effect on ATP release. These data suggest that ET-1 modulates the release of ATP via the ET_B receptor and its associated G_q, G-protein through attenuation of the influx of extracellular Ca²⁺ through L-type channels.

Evidence has accumulated indicating that in addition to the coexistence of NE, NPY, and ATP in sympathetic nerves, there is differential cotransmission of each of these transmitters (Lundberg, 1996). Each neurotransmitter can be released independently under appropriate conditions, and the application of each transmitter mimics a phase of sympathetic nerve stimulation with each phase inhibited by appropriate antagonists (Todorov et al., 1994).

Each of the transmitters, NE, NPY, and ATP, negatively modulate their own release from sympathetic nerves, as well as the release of each other (Lundberg, 1996). At the vascular
neuroeffector junction of the guinea pig vas deferens and rabbit ileocolic artery, stimulation of α2-adrenergic receptors inhibited the release of NE and, to a lesser extent, ATP (Bulloch and Starke, 1990; Driessan et al., 1993). ATP has been observed to inhibit nerve-stimulated release of NE from the guinea pig heart (Haass et al., 1989). In the rat mesenteric arterial bed and guinea pig vas deferens, NE not only negatively regulated its own release but also produced a negative feedback modulation of NE and ATP release (Ellis and Burnstock, 1990; Westfall et al., 1995).

Evidence indicates that release of neurotransmitters at the neuroeffector junction is subject to differential modulation by various mechanisms. During electrical field stimulation of the guinea pig vas deferens, temporal differences in the release of ATP and NE from the sympathetic nerves have been demonstrated. At lower frequencies of stimulation, ATP levels reached a peak at 20 s, after which levels diminished with continued stimulation; however, peak levels of NE were not observed until 40 s and remained constant during the period of stimulation (Todorov et al., 1994). In contrast, ATP release from sympathetic nerves required higher frequencies of stimulation, which can be inhibited by the NPY Y1-specific antagonist BIBP3226 (Smyth et al., 2000).

There is also evidence for modulation of sympathetic neurotransmission at the vascular neuroeffector junction by non-neuronal mediators. The vasoactive peptide endothelin (ET)-1 attenuates sympathetic neurotransmission prejunctionally by decreasing nerve stimulation induced release of NE. This has been observed in the guinea pig pulmonary and femoral arteries (Wiklund et al., 1989), rat and guinea pig vas deferens (Wiklund et al., 1990), dog coronary artery (Aarnio et al., 1993), and rat mesenteric artery (Tabuchi et al., 1989). In the rat mesenteric bed, ET-1 negatively modulates the release of ATP, but not NE (Hoang et al., 2002). Postjunctionally, ETs modulate sympathetic neurotransmission by enhancement of the contractile effect of both nerve stimulation and a variety of vasoactive agents (Henrion and Laborer, 1993; Hoang et al., 2003). ET-1, through activation of the ET1 receptor, potentiates the postjunctional contractile effects of ATP (Mutafova-Yambolieva and Radomirov, 1993; Hoang et al., 2003).

The present investigation endeavored to delineate the molecular signaling mechanism by which ET-1 modulated sympathetic neurotransmitter release. Nerve growth factor (NGF)-differentiated rat pheochromocytoma (PC12) cells were chosen as a functional model of sympathetic neurotransmission because they phenotypically resemble sympathetic neurons and contain both small vesicles and dense core granules (Greene and Tischler, 1976). They are a well-established model to study intracellular mechanisms related to sympathetic neurotransmission signaling because they synthesize and release catecholamines, specifically dopamine (Chen and Westfall, 1994), purines (Kasai et al., 2001), and NPY (Chen et al., 1997). PC12 cells express G-proteins (Li et al., 1995), voltage-dependent ion channels (McCullough et al., 1998), and various second messenger systems (Vaudry et al., 2002).

NPY is costored with catecholamines, NE and dopamine, in large dense core vesicles, and ATP is costored with catecholamines in small synaptic vesicles (Lundberg, 1996) in sympathetic neurons. Release of these transmitters is modulated by spatial differences in calcium concentrations (Lundberg, 1996). ATP and catecholamines are costored and coreleased from secretory granules of adrenal chromaffin cells from which PC12 cells are derived. Much work has been carried out on vesicle exocytosis coupled with neurotransmitter release from both chromaffin and PC12 cells (Ahnert-Hilger et al., 1985; Strasser et al., 1999).

We report that ET-1 differentially modulates the release of the sympathetic cotransmitters. Specifically, ET-1 functions as a negative modulator of sympathetic neurotransmission and inhibits the release of the sympathetic cotransmitter ATP from NGF-differentiated PC12 cells. The mechanism of inhibition involves a specific endothelin receptor subtype and G-protein family, which modulate intracellular calcium levels.

Materials and Methods

Growth and Differentiation of PC12 Cells. PC12 cells were grown directly on six-well plates (treatment C; MatTek, Ashland, MA) in Dulbecco’s modified Eagle’s medium (DMEM) and differentiated with NGF (50 ng/ml) for 5 days as described previously (Chen and Westfall, 1994).

Neurotransmitter Release Measurements. The media surrounding the cells were removed and replaced with 1.5 ml of warmed (37°C) Krebs’ buffer. The composition of the Krebs’ buffer was as follows: 119 mM NaCl, 2.5 mM KCl, 1.3 mM MgSO4, 2.5 mM CaCl2, 1.0 mM NaH2PO4, 26.2 mM NaHCO3, and 10 mM HEPES, pH 7.4. The plates were then placed in a shaking water bath at 37°C for 15 min to allow for equilibration. ET-1 or the ETB agonists were added 5 min prior to exposure to buffer containing KCl (50 mM). If an antagonist was to be studied, then it was added 5 min prior to the addition of ET-1. After a further 5 (catecholamine and ATP studies) or 15 (NPY studies) min of incubation with KCl (50 mM), the plates were removed from the water bath and placed on ice. The buffer from each well was removed and spun at 1000 rpm for 2 min to remove any cells. The supernatant was then assayed for catecholamine, NPY, or ATP content. The cells remaining on the plates were extracted with 1 ml of 0.4 N perchloric acid and added to the pellets in the tubes for determination of protein by the Lowry method or total catecholamine or NPY content.

The Krebs’ solution was initially altered so as to account for alterations in ionic content. However, in comparison, in experiments where KCl was simply added to give a final concentration of 50 mM, no differences in neurotransmitter release or cell function were observed. As a result, all subsequent experiments were carried out in this manner.

The K+-stimulated neurotransmitter release was stable over time. Depending on the neurotransmitter analyzed, KCl was added for variable times. The rationale for the different periods was based on previous studies where it has been observed that the peak release of NPY immunoreactivity (ir) occurred after incubation with the high-K+ buffer for 15 min (Chen et al., 1997), and the peak release of ATP and catecholamine occurred after incubation with the high-K+ buffer for 5 min (Chen et al., 1994). Cells were pretreated with pertussis toxin (PTX) for 20 h because the peak ribosylation of Gα subunits was shown to occur between 18 and 20 h (Chen et al., 1994; McCullough et al., 1998).

Analysis of Purines. Purines were analyzed according to the method described previously by Levitt et al. (1984). Chloroacetaldehyde was used to form fluorescent 1,N6-ethenopurine (E-purine) analogs, which can be simultaneously separated from the same sample by reverse-phase HPLC and quantified by fluorescence detection. Chloroacetaldehyde (50 μl; synthesized according to the modified method by Secrist et al., 1972) was added to each cell sample, which was then incubated in a dry bath at 80°C for 40 min. The reaction was stopped by placing the samples on ice, and the samples were then analyzed by HPLC-fluorometric detection.

Separation of purine compounds was achieved on a reverse-phase C18 column. A dual buffer gradient system was used to separate and
elute the purines from the column by gradually increasing the concentration of buffer B while decreasing the concentration of buffer A (Varian 9010 solvent delivery system; Varian, Inc., Palo Alto, CA). Buffer A, pH 6.0, consisted of 0.1 M phosphate buffer, and buffer B, pH 6.0, consisted of 75% 0.1 M phosphate buffer and 25% methanol. The fluorescent purine derivatives were detected at an excitation wavelength of 300 nm and an emission wavelength of 420 nm (Varian 9070 Fluorescence Detector). Identification of the purine peaks was carried out by comparison of retention times of purine standards. Sample purine content was quantified by peak integration using a 5-day disequilibrium method. Duplicated samples were included for quality control.

Catecholamine Measurements. Endogenous catecholamines in cell extracts were identified and quantified by HPLC with electrochemical detection as previously published (Chen and Westfall, 1994). Separation of catecholamines was achieved on a reverse-phase C-18 column. The system consists of a Varian model 2510 solvent delivery system and a model 9900 autosampler (Varian, Inc.) coupled to a C-18 column and an ESA Coulchem II detector. Separations were performed isocratically using a filtered and degassed mobile phase consisting of 10% methanol, 0.1 M sodium phosphate, 0.2 mM sodium octyl sulfate, and 0.1 mM EDTA, adjusted to pH 2.8 with phosphoric acid. The HPLC system is coupled to a computer with which chromatograms were recorded and analyzed with Varian Star workstation software. Dopamine analysis was performed on both cells (total release) and perfusates (fractional release), and amounts of neurotransmitter released were calculated on the basis of: (fractional release/fractional release + total release).

The dominant catecholamine neurotransmitter synthesized and released from the NGF-differentiated PC12 cell is dopamine (Greene and Tischler, 1976). Although the NGF-differentiated PC12 cell has all the major enzymes necessary to produce all catecholamines, it lacks the essential cofactor ascorbate that is necessary in the conversion of dopamine to norepinephrine. Consequently, in the NGF-differentiated PC12 cell model, dopamine is the major catecholamine synthesized, and negligible amounts of NE and epinephrine are produced. Dopamine, therefore, is utilized as an index of catecholamine release from the PC12 cell.

NPY Measurements. NPYir was determined using the protocol of Chen et al. (1997) directly in acid extracts of release medium by radioimmunoassay using a specific antisera, which was raised in rabbit against porcine NPY. Radioimmunoassays were performed using a 5-day disequilibrium method. Duplicated samples were incubated with the NPY antisera. Twenty-four hours later, 125I-NPY was added to each tube. Following a 72-h (at 4°C) incubation period, antibody-bound NPY and free NPY were separated by a second antibody method, and the radioactivity was measured by a gamma counter. Triplicates were used in standard curves with a sensitivity range of 1 to 100 fmol. NPYir analysis was performed on both cells (total release) and perfusates (fractional release), and amounts of neurotransmitter released calculated on the basis of: (fractional release/fractional release + total release).

Intracellular Calcium ([Ca2+]i) Measurements. Real-time [Ca2+]i recording was performed on PC-12 cell suspension loaded with fura acetoxymethyl ester (Fura-2/AM) during a 60-min incubation. A cell suspension of 5 × 10^6 cells/ml in DMEM-HEPES (10 mM) was loaded with Fura-2/AM during a 60-min incubation with 10 μM Fura-2/AM in DMEM at room temperature. Following the incubation period, the cells were microcentrifuged and resuspended in 1 ml of BSS (139 mM NaCl, 5.5 mM KCl, 1 mM MgCl2, 0.75 mM CaCl2, and 8 mM HEPES), and the wash and BSS suspension were repeated twice. Cells were then aliquoted into a new microcentrifuge tube at 1.5 × 10^6 cells/ml, and the volume was increased to 2 ml with BSS. The cells were then incubated at room temperature for 45 min to allow for esterase cleavage of the AM-ester. The suspension was then microcentrifuged, suspended in 1 ml of BSS, and repeated twice.

A dual-excitation spectrofluorometric system (model CM111; Spex Industries, Edison, NJ) was used. In these experiments, the system was programmed to alternate between 340- and 380-nm excitation every second to obtain 1-s data points for each wavelength. After subtraction of background noise (see below), the 340:380-nm ratio was subsequently calculated for each pair of data points to obtain the final tracing. A steady-state system was used in this study. After a stable baseline period, cells were exposed to KCl, which produced an increase in [Ca2+]i. Alternatively, the cells were exposed to endothelin-1 (porcine; Calbiochem, San Diego, CA) and then stimulated with KCl. The fluorescence signal was calibrated according to Grynkiewicz’s method by using the relationship: [Ca2+]i = KF(R - Rmin)/(Rmax - R), where R is measured as 340:380-nm ratio, Rmax and Rmin are the values of R at very low and saturating concentration of Ca2+, respectively, and β is the ratio of emission intensities at 380-nm excitation in these two sets of conditions. The Kd for Fura-2 + Ca2+ is assumed to be 224 nM. Calcium saturation was achieved by addition of 1 μM ionomycin and zero Ca2+ by further addition of 5 mM EGTA. MnCl2 (5 mM) was subsequently added to obtain background fluorescence. [Ca2+]i was calculated by subtracting basal [Ca2+]i, from stimulated [Ca2+]i, using Prism statistical analysis software (GraphPad Software Inc., San Diego, CA).

Materials. ET-1 was purchased from Peninsula Laboratories (Belmont, CA). ET-1 (Cys-Ser-Cys-Ser-Ser-Leu-Met-Asp-Ays-Lys-Gly-Cys-Val-Tyr-Phe-Cys-His-Leu-Asp-Ile-Ile-Trp) was made fresh from the lyophilized pure peptide, first as a concentrated solution in distilled water and then diluted with 0.1% bovine serum albumin in saline. The peptide was reconstituted prior to an experiment. Low concentrations of endothelin have been used in specific in vivo studies using this method (Mutafova-Yambolieva and Radomirov, 1993). PD 142893, BQ123, sarafotoxin 6c, BQ 3020, and IRL 1620 were all purchased from Sigma/RBI (Natick MA). NPY was reconstituted with Sigma/RBI (Natick MA). MA. RES-701-1 was kindly donated by Kyowa Hakko Kogyo Co. Ltd. (Tokyo, Japan). BQ 788 was purchased from Alexis Corporation (Läufelfingen, Switzerland). PTX and all buffer salts were purchased from Sigma-Aldrich (St. Louis, MO). Perchloric acid (HClO4) was purchased from Fisher Scientific Co. (Pittsburgh, PA). NF was purchased from Collaborator Biomedical Products (Bedford, MA). Reagents for tissue culture including DMEM, fetal calf serum, horse serum, glutamine, and pyruvate were obtained from JRH Biosciences (Lenexa, KS).

Statistics. Statistical analysis between treatments was determined by one-way analysis of variance (ANOVA), followed by Student-Newman-Keuls test. ANOVA was performed on raw data in experiments where controls were normalized to 100%. Statistical differences were accepted when P < 0.05.

Results

Endothelin Differentially Modulates the Release of Neurotransmitters and Neuromodulators. To determine whether ET-1 had a differential effect on the release of the neurotransmitters ATP, NPY, and dopamine, the effects of ET-1 on the K+ -evoked release of ATP from NGF-differentiated PC12 cells was investigated. Incubation of PC12 cells with 50 mM KCl caused an increase in the release of ATP over basal. This increase in release was inhibited in a dose-dependent manner in the presence of ET-1 (Fig. 1A). In contrast, in the presence of ET-1 the release of the sympathetic cotransmitters dopamine, and NPY was not significantly inhibited at these concentrations of the peptide (Fig. 1, B and C, respectively). These initial set of experiments indicated that the ET-1-induced inhibition was specific, for ATP, and thus in this case sympathetic cotransmission was differentially modulated.

A Specific Endothelin Receptor Subtype Mediates ET-1 Inhibition of ATP Release. A pharmacological approach was utilized to elucidate the mechanism by which ET-1 modulated the release of the cotransmitter ATP. Ini.
tially, the effect of the ET$_A$/ET$_B$ antagonist, PD 142893, on the K$^+$-evoked release of ATP from NGF-differentiated PC12 cells was examined to assess whether this agent could reverse the ET-1-induced inhibition on the K$^+$-evoked release of ATP from these cells. ET-1 reduced the K$^+$-evoked release of ATP (Fig. 2). Although the degree of inhibition was greater than the previous experiments, it should be noted that the response of PC12 cells to K$^+$-evoked depolarization was also variable in this experiment, and subsequent experiments and, therefore, their susceptibility to ET-1. Preincubation of the PC12 cells with the ET$_A$/ET$_B$ antagonist PD 142893 (Fig. 2) reversed the inhibitory effect of ET-1 on ATP release.

To further elucidate the nature of the receptors involved in this effect, the ETA-specific antagonist BQ123 was used. In these experiments, ET-1 reduced the K$^+$-evoked release of ATP from the PC12 cells compared with basal. This reduction was not inhibited by BQ123 at two different concentrations (Fig. 3), suggesting that the ETA receptor does not mediate the ET-1-induced inhibition of ATP. To confirm whether the

Fig. 1. Endothelin-induced inhibition of sympathetic cotransmitters. ET-1 (10$^{-15}$ to 10$^{-8}$ M; solid bars) caused a dose-dependent inhibition (10$^{-15}$ to 10$^{-8}$ M; 353 ± 58%, 190 ± 36%, 132 ± 39% and 40 ± 17%, respectively) of the K$^+$-evoked release (open bars; 50 mM) of ATP (A) from NGF-differentiated PC12 cells. The fractional release of the catecholamine dopamine (B) and NPY (C) from NGF-differentiated PC12 cells was unaffected by the presence of ET-1. Each bar represents the mean ± S.E.M. of 12 wells from four individual experiments. *, $P < 0.05$ versus K$^+$-evoked release.

Fig. 2. The effect of an ETA/ETB antagonist on ATP release. The ETA/ETB antagonist PD 142893 (hatched bar; 10$^{-5}$ M) reversed the inhibition, caused by ET-1 (solid bar; 10$^{-10}$ M), of the K$^+$-evoked release (open bar; 50 mM) of ATP from NGF-differentiated PC12 cells from −6 ± 22% to 154 ± 43%. Each bar represents the mean ± S.E.M. of 12 to 15 wells from five individual experiments. *, $P < 0.05$ versus K$^+$-evoked release; †, $P < 0.05$ compared with ET-1.

Fig. 3. The effect of an ETA antagonist on ATP release. In NGF-differentiated PC12 cells, the ETA antagonist BQ123 (hatched bars; 10$^{-6}$ to 10$^{-5}$ M; −24 ± 13% and −16 ± 23%, respectively) did not reverse the inhibition caused by ET-1 (solid bar; 10$^{-10}$ M) of the K$^+$-evoked release (open bar; 50 mM) of ATP from these cells. Each bar represents the mean ± S.E.M.; $n = 6$. *, $P < 0.05$ versus K$^+$-evoked release.
inhibitory effect of ET-1 on cotransmitter release was via the ET$_B$ receptor, the effects of the ET$_B$-specific agonists, Sarafotoxin 6c (STX 6c), BQ 3020, and IRL 1620, on the K$^+$/H11002-evoked release of ATP from PC12 cells were studied (Fig. 4). Each of the ET$_B$ agonists mimicked the inhibitory effect of ET-1 on ATP release. STX 6c, BQ 3020, and IRL1620 reduced the K$^+$/H11001-evoked release of ATP. STX 6c, BQ 3020, and IRL1620 reduced the K$^+$/H11001-evoked release of ATP in a concentration-dependent effect (Fig. 4). ET-1 inhibited

To confirm that the ET$_B$ receptor subtype was indeed mediating the effects of ET-1 in these experiments, the effect of specific ET$_B$ receptor antagonists, RES 701-1 and BQ 788, was analyzed (Fig. 5). In these experiments ET-1 inhibited the K$^+$/H11001-evoked ATP release from the PC12 cells, and the ET$_B$ antagonist RES 701-1 (Fig. 5A) reversed this inhibition. Similarly, BQ 788 reversed the effect of ET-1 (Fig. 5B).

A Pertussis Toxin-Sensitive, Calcium-Dependent Pathway Mediates ET-1 Inhibition of ATP Release. ET$_A$ and ET$_B$ receptors are members of the G-protein-coupled receptor superfamily; therefore, the next set of experiments investigated whether PTX could alter ET-1-induced inhibition of ATP release. In the absence of PTX, ET-1 inhibited the K$^+$/H11001-evoked ATP release from the PC12 cells (Fig. 6). Following preincubation of PC12 cells with 50 mM PTX, the ET-1-induced inhibition of the K$^+$/H11001-evoked ATP release was reversed, which paralleled the K$^+$/H11001-evoked ATP release control.

Essential to the exocytic release of most neurotransmitters is the increase in intracellular calcium. If the mechanism of ET-1-induced inhibition of ATP release involves a decrease in the availability of Ca$^{2+}$, then an effect on intracellular levels of calcium [Ca$^{2+}$], should be evident. Therefore, to ascertain whether ET-1 does alter levels of [Ca$^{2+}$], we examined the effect of ET-1 via quantitative analysis of [Ca$^{2+}$].

To further our understanding of the mechanism by which ET-1 attenuates the K$^+$/H11001-evoked release of ATP, we examined the effect of the calcium channel antagonists, α-conotoxin GVIA (CTX) and nifedipine, that are specific for N- and L-type voltage-dependent channels, respectively. As shown in Fig. 9A, the L-type Ca$^{2+}$ channel antagonist nifedipine caused a concentration-dependent inhibition of the K$^+$/H11001-evoked release of ATP, which mimicked the effect of ET-1. In contrast, preincubation of PC12 cells with the N-type Ca$^{2+}$ channel antagonist CTX at concentrations of 5 x 10$^{-8}$ and 5 x 10$^{-8}$ M (Fig. 9B) showed no significant inhibitory effect on the K$^+$/H11001-stimulated release of ATP. At a concentration of 10$^{-8}$ M, the inhibitor appeared to facilitate the K$^+$/H11001-stimulated release; however, analysis revealed that the apparent increase in K$^+$/H11001-stimulated ATP release was not statistically significant. These results suggest that ET-1 may

Fig. 4. Pharmacological characterization of the ET$_B$ agonists on ATP release. The ET$_B$ agonists (solid bars) STX 6c (A), BQ 3020 (B), and IRL 1620 (C) caused a dose-dependent inhibition of the K$^+$/H11001-evoked release (open bars; 50 mM) of ATP from NGF-differentiated PC12 cells: STX6c (10$^{-12}$ to 10$^{-8}$ M), from 213 ± 63% to 69 ± 36%, 33 ± 26%, and −5 ± 26%, respectively; BQ 3020 (10$^{-12}$ to 10$^{-8}$ M), from 213 ± 63% to 39 ± 19%, 58 ± 22%, and −5 ± 21%, respectively; and IRL 1620 (10$^{-12}$ to 10$^{-8}$ M), from 213 ± 63% to 6 ± 22%, 16 ± 33%, and −24 ± 17%, respectively. Each bar represents the mean ± S.E.M. of 12 to 15 wells from five individual experiments. *, P < 0.05 versus K$^+$/H11001-evoked release.
attenuate the influx of extracellular Ca2+ by modulating L-type Ca2+ channels, which consequently results in inhibition of ATP release in PC12 cells.

Discussion

The results indicate that release of ATP from the NGF-differentiated PC12 cell can be modulated by ET-1. Further-
types appear to participate in the inhibition of NE release from the rat stomach, although to different degrees. The selective ETA receptor antagonist, BQ123, attenuated the concentration-dependent ET-1-induced inhibition of NE release, but the selective ETB antagonist, BQ 788, had no effect. However, activation of the ETB receptor by the highly selective ETB receptor agonist, sarafotoxin S6c, inhibited NE release from the stomach to a small but significant degree (Nakamura et al., 2003). These observations raise the possibility that ET-1 and its receptor subtypes play a dual role in modulating sympathetic neurotransmission.

ET-1 is released from the vascular endothelium by a variety of stimuli. ATP is released both prejunctionally from the sympathetic nerves (Burnstock and Kennedy, 1986) and postjunctionally from smooth muscle upon contraction (Muramatsu et al., 1981). It is also known that the ATP metabolite, adenosine, can feed back through A1 receptors to inhibit the further release of ATP from the nerve endings (Dalziel and Westfall, 1994). This, coupled with the fact that ET-1 also appears to feed back negatively on ATP release through the ETB receptor, provides more insight into the control of the release of ATP at the neuroeffector junction. Moreover, these observations suggest that the release of ATP is modulated by independent mechanisms.

The ET-1 receptor is a G-protein-coupled receptor, and their associated G-proteins are pivotal in intracellular signaling events following agonist-induced receptor activation. The Gi or Go family of G-proteins can be differentiated from the Gq,G12/13 subtypes by PTX-mediated ADP-ribosylation of their GαH9251 subunits. In this study, pretreatment of NGF-differentiated cells with PTX reversed the ET-1-induced inhibition of the KαH11001-evoked ATP release, suggesting that PTX-sensitive G-proteins, Gi or Go, are involved in intracellular signaling events caused by ET-1 to inhibit ATP release. The observations in this study are consistent with other investigations that have shown involvement of PTX-sensitive G-proteins in the mechanism of ET-1-mediated events. PTX-sensitive G-proteins have been observed to prevent the ET-1-induced inhibition of NE release from the rat stomach (Nakamura et al., 2003), pig coronary artery smooth muscle contraction (Kasuya et al., 1992), and L-type voltage-dependent calcium currents in myocytes (Boixel et al., 2001).

Central to the exocytotic release of most neurotransmitters is the rise in intracellular Ca2+ concentrations (Parnas et al., 2000). The release of ATP from the sympathetic nerve terminals has been determined to be a Ca2+-dependent process and has been demonstrated in a variety of preparations including the bladder, vas deferens, and neuromuscular junct-
ments, we tested the effect of ET-1 on whole-cell Ba2+ influx. The levels of [Ca2+], were negatively altered by ET-1, which was observed to inhibit [Ca2+], in a concentration-dependent manner. Interestingly, during ET-1-induced modulation of [Ca2+], levels, it was the transient calcium spike that was inhibited and not the sustained phase of [Ca2+]. ET-1-induced stimulation of myocardial ventricular cells increases [Ca2+], levels in a biphasic manner, and the initial calcium spike has been suggested to be mediated by the ETB receptor because the ETB receptor antagonist BQ 788, abrogated this transient spike (Hong, 2002). These observations support the concept that a specific receptor can modulate calcium dynamics and in the PC12 cell ET-1, through the ETB receptor, may negatively modulate ATP release through inhibiting the rise of intracellular Ca2+ concentrations.

In many excitable cells, neurotransmitter release is coupled to Ca2+ influx through voltage-dependent channels. NGF-differentiated PC12 cells possess a complement of functional voltage-dependent Ca2+ channels including the L-, N-, and P-types (McCullough et al., 1998) and, therefore, are a useful model to further explore the mechanism by which ET-1 inhibits ATP release. In a preliminary set of experiments, we tested the effect of ET-1 on whole-cell Ba2+ current. ET-1, in a dose-dependent manner (100 and 300 nM; data not shown), inhibited voltage-dependent Ca2+ channels in NGF-differentiated PC12 cells, suggesting that these channels may have a key role in the mechanism by which ET-1 negatively modulates ATP release. This observation, although preliminary, is consistent with those who demonstrated that ET-1 inhibits voltage-dependent Ca2+ channels and that negative modulation of neurotransmitter release is mediated by these channels. N-type voltage-dependent Ca2+ channels have been shown to be involved in the mechanism by which ET-1 negatively modulates the release of NE from sympathetic gastric nerve terminals (Nakamura et al., 2003). In this study, the L-type voltage-dependent Ca2+ channel may be mediating the ET-1-induced inhibition of ATP release as nifedipine, an L-type voltage-dependent antagonist, dose dependently inhibited ATP release. At concentrations of 5 × 10−7 and 5 × 10−8 M, the N-type Ca2+ channel antagonist, ω-conotoxin GVIA, did not cause a statistically significant inhibition of the K+-stimulated ATP release.

The data presented indicate that ET-1-mediated attenuation of ATP is mimicked in a concentration-dependent manner by nifedipine, suggesting a potential role for the L-type voltage-dependent calcium channel in the molecular signaling mechanism. A possible mechanism for the inhibitory actions of ET-1 through the ETB receptor could be through the inhibition of L-type voltage-dependent Ca2+ channels in the nerve terminal, thereby preventing Ca2+ influx. Interestingly it has been shown that ET-1 inhibits L-type Ca2+ channels in the heart and that the ET-1-induced transient spike in [Ca2+]i was inhibited by nifedipine (Boixel et al., 2001), suggesting a potential role for this specific voltage-dependent channel in the ET-induced inhibition of ATP release. Presently, however, we do not know whether the link- age between the endothelin receptor and the calcium channel is direct or indirect. However, there are other studies where, in NGF-differentiated PC12 cells, NPY has been shown to indirectly inhibit extracellular Ca2+ influx through the L-type channel via a PKC and Ca2+ calmodulin-dependent protein kinase (McCullough and Westfall, 1996). Additionally, NPY can directly inhibit extracellular Ca2+ influx through the N-type voltage-dependent calcium channel (McCullough et al., 1998). Elucidation of the detailed molecular signaling mechanisms by which ET-1 has its effects is currently under investigation.

Acknowledgments
We thank Yee Kim and T. E. Egan for technical assistance and advice.

References

Address correspondence to: Alice Gardner, Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy—Worcester, 19 Foster Street, Worcester, MA 01608. E-mail: alice.gardner@wor.mcphs.edu