Pharmacokinetics and Biodistribution of the Antitumor Immunoconjugate, Cantuzumab Mertansine (huC242-DM1), and Its Two Components in Mice

Hongsheng Xie, Charlene Audette, Mary Hoffee, John M. Lambert, and Walter A. Blättler

ImmunoGen, Inc., Cambridge, Massachusetts

Received October 7, 2003; accepted November 17, 2003

ABSTRACT

The humanized monoclonal antibody maytansinoid conjugate, cantuzumab mertansine (huC242-DM1) that contains on average three to four linked drug molecules per antibody molecule was evaluated in CD-1 mice for its pharmacokinetic behavior and tissue distribution, and the results were compared with those of the free antibody huC242. The pharmacokinetics in blood were similar for 125I-labeled conjugate and antibody with terminal half-lives of 154 and 156 h, respectively. Pharmacokinetic analysis using an enzyme-linked immunosorbent assay (ELISA) method, which measures intact conjugate in plasma samples revealed a faster clearance for the conjugate corresponding to a half-life of 42.2 h. This faster clearance is explained as the result of clearance from circulation and concomitant clearance of drug from circulating conjugate through linker cleavage. An antibody-specific ELISA allowed the determination of the clearance rate of the antibody component from circulation. The drug clearance rate from circulating conjugate was then calculated as the difference between the clearance of the conjugate and the clearance of the antibody component and found to be about three times that of the antibody component. The above results were confirmed with a conjugate, huC242-[3H]DM1, where the linked DM1 drugs carried a stable tritium label. Tissue distribution studies with 125I-labeled conjugate and antibody showed antibody-like behavior for the conjugate; the antibody of the conjugate did not distribute or bind significantly to any solid tissue.

The effectiveness of chemotherapeutic agents is limited by their intrinsic toxicity to most, if not all, tissues. One approach to ameliorate this problem is to change the in vivo distribution of the agent. Conceptually, conjugation of such agents to monoclonal antibodies that bind selectively to tumor tissues should not only alter the distribution in vivo through the large changes in the physicochemical characteristics of the agents but also through the selective retention of the conjugate by target tumor tissue. Antibody conjugates of the cytotoxic agent mertansine (DM1, a maytansinoid) have demonstrated exceptional antitumor activity in preclinical tumor models (Chari et al., 1992; Liu et al., 1996) and are currently in clinical evaluation for the treatment of several types of tumors; in particular, cantuzumab mertansine (huC242-DM1) is evaluated in patients with colorectal, pancreatic, and nonsmall cell lung cancer (Tolcher et al., 2003).

Cantuzumab mertansine is composed of the humanized monoclonal IgG antibody, huC242, and the maytansinoid drug mertansine or DM1. HuC242 is a resurfaced, humanized version (Roguska et al., 1994) of the murine monoclonal antibody C242, which had been generated against the human colon cancer cell line COLO 205 (Baeckström et al., 1991) and reacts with the tumor selective carbohydrate epitope CanAg present on the membrane-associated mucine MUC1. CanAg is strongly expressed in most cancers of the colon, pancreas, and stomach and on a large percentage of nonsmall lung cancers and is only detected weakly on some normal tissues of the gastrointestinal tract (Tolcher et al., 2003). Mertansine is a semisynthetic analog of the natural compound maytansine (Kupchan et al., 1972; see Fig. 1B) and is a potent antimicrotubule agent. On average, three to four DM1 molecules are linked to an antibody molecule via a short linker that contains a hindered disulfide bond and that forms an amide bond with an ε-amino group of a lysine residue of the antibody (see Fig. 1A). Mertansine is a small molecular weight cytotoxic agent (Mr = 737.5 Da), and the conjugation of four DM1 molecules to huC242 (Mr = 147 kDa) contributes

ABBREVIATIONS: huC242-DM1, cantuzumab mertansine; ELISA, enzyme-linked immunosorbent assay; AUC tot, area under the time-concentration curve; CL, clearance; Vss, volume of distribution at steady state; PBS, phosphate-buffered saline; TBS, Tris-buffered saline; BSA, bovine serum albumin; %ID/g, percentage of the total injected dose per gram; R, organ-to-body weight ratio; ABTS, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid).
only about 2% to the molecular mass of cantuzumab mertansine. Accordingly, the biochemical characteristics of the conjugate huC242-DM1, such as its chromatographic behavior and the solubility in aqueous media, are similar to those of the antibody huC242. The questions asked with preclinical in vivo studies are therefore, whether the antibody drug conjugate demonstrates pharmacokinetic and tissue distribution characteristics similar to those of the antibody. The question is not a trivial one since the antibody has been altered through the covalent linking of three to four lipophilic drug molecules, and animals have efficient mechanisms for the recognition and removal of altered or damaged proteins from circulation (Wright and Morrison, 1994; Seternes et al., 2002).

Here we report the pharmacokinetics and biodistribution in mice for cantuzumab mertansine and compare them with those of its components, the humanized antibody, cantuzumab (huC242) and the chemically stable DM1 analog maytansine (Kupchan et al., 1972), which lacks the free sulfhydryl group of mertansine (see Fig. 1B). The pharmacokinetic parameters were obtained with 125I-labeled samples, radioactivity measurements, and nonlabeled samples using specific ELISA methods. The drug release from the conjugate was further studied with radiolabeled conjugate where a 3H label had been introduced only into the drug component [3H]mertansine ([3H]DM1). The tissue distribution of cantuzumab mertansine was also studied in mice and compared with that of the unconjugated (“naked”) antibody to evaluate whether the conjugation of three to four hydrophobic drug molecules influences the in vivo distribution of the IgG1 antibody.

Materials and Methods

Animals. Female CD-1 mice were purchased from Charles River Laboratories (Raleigh, NC) or Taconic Farms, Inc. (Germantown, NY) at 7 weeks old and were housed in lexan resin cages. All animals were allowed to acclimate for 7 days before any experimental procedure was performed. The animals showed no signs of disease or illness upon arrival or before administration of the test materials. The temperature of the animal rooms was maintained at 20–25°C and the humidity between 50 and 75% with a minimum of eight air changes per hour. Animals were kept on a 12-h light/dark cycle and had free access to food (Prolab 3000 obtained from Old Mother Hubbard, Lowell, MA) and water at all times. All animal studies

Fig. 1. A, structure of cantuzumab mertansine: $n = 3$ to 4. The asterisk (*) indicates where the 3H label is located in huC242-[3H]DM1. B, structures of maytansinoid drugs.

R=CH$_3$: maytansine
R=CH$_2$-CH$_2$-SH: mertansine or DM1
were carried out in accordance with the Guide for the Care and Use of Laboratory Animals of the U.S. National Institutes of Health.

Preparation of 125I-Labeled Samples. The antibody huC242 and the conjugate huC242-DM1 were radiolabeled with 125I using the Bolton-Hunter reagent (PerkinElmer Life and Analytical Sciences, Boston, MA) and purified over a Dowex-1 column. Radiolabeling analysis of a SDS-polyacrylamide gel run under nonreducing conditions demonstrated that the radioactivity in both samples was associated with a single band at a position for intact antibody. Furthermore, 98.4% and 99.0% of the radioactivity was precipitable with trichloroacetic acid in the conjugate and in the antibody sample, respectively. Both samples were formulated in phosphate-buffered saline (PBS) at a concentration of 1.01 mg/ml. The specific radioactivity of the 125I antibody and the 125I conjugate were 5.09 × 104 and 2.73 × 104 cpm/mg, respectively. The ratio of DM1 molecules linked per antibody molecule in the conjugate was 4.07 DM1/huC242.

Synthesis of [3H]DM1 and Preparation of huC242-[3H]DM1. [3H]Ansamitocin P-3 was synthesized by the method similar to that previously described (Sawada et al., 1993) for [14C]ansamitocin P-3, by substituting [3H]-methyl iodide for [14C]-methyl iodide. Reduction of the ester group of [3H]ansamitocin P-3 with lithium trimethylaluminum hydride in tetrahydrofuran at −40 °C provided [3H]maytansinol. Maytansinol was acetylated with N-acetyl-N-(3-(methylthio)-1-oxopropyl)-l-alanine in the presence of dicyclohexylcarbodiimide and zinc chloride in dichloromethane as described previously (Kawai et al., 1984). The disulfide bond in the resulting maytansinoid was reduced by treatment with diithiothreitol, and the resulting [3H]DM1 was purified by high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The resulting [3H]DM1 was purified by high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS. The [3H]DM1 was further purified by reverse phase high-performance liquid chromatography using a C18 column in the reverse phase mode eluting with PBS.
plates at a 1:5000 dilution (100 μl/well). After incubation at room temperature for 1 h, the plates were washed repeatedly and then developed using ABTS (Zymed Laboratories) in 0.1 M citrate buffer, pH 4.0, with 0.05% H2O2 for 15 min at room temperature. The light absorption at 405 nm was measured on a BioTek plate reader. For each sample dilution the mean of the duplicates was used to determine the concentration of the huC242 component. The lower limit of the assay in plasma was about 10 ng/ml in a 2% serum matrix. The acceptance criteria for the ELISA data were the same as described above.

[^3H]DM1 Drug Release in Vivo from huC242-[^3H]DM1 Conjugate. Conjugate comprising unlabeled antibody and tritium-labeled maytansinoid DM1 (huC242-[^3H]DM1) was administered i.v. to nine mice (body weight 26.2 ± 0.9 g, mean ± S.D.). Each mouse received 0.25 ml of a solution that contained 0.103 mg (0.7 nmol) of antibody linked to 2.1 nmol[^3H]DM1 (3.0[^3H]DM1 drug molecules per molecule of huC242). The radioactivity of the administered solution was determined by mixing 50 μl of the solution with 50 μl of mouse serum and then with 15 ml of scintillant. Under these conditions of counting, more quenching was observed, and the dose of radioactivity administered in 0.25 ml was 8520 cpm/mouse (the counting was for 1 h), and the specific radioactivity of[^3H]DM1 was calculated to be 4057 cpm/nmol. After 2 and 30 min, 2, 6, 12, 24, 48, and 72 h, blood (120 μl) was collected from three mice in nonheparinized capillary tubes assuring that animals were bled maximally three times. Serum (50 μl) was withdrawn from the tubes to determine the radioactivity, and approximately 10 μl of serum from each sample was stored at −80°C until it was used to measure the concentration of huC242 antibody component by ELISA as described above.

Pharmacokinetic Study with Maytansine. Maytansine obtained from the National Cancer Institute (Bethesda, MD) was stored at −80°C in ethanol at a concentration of 500 μg/ml as assessed by absorbance at 252 nm using an ε value of 28,044 M−1 cm−1. Before dosing, the solution was diluted 20-fold with PBS (pH 6.5). Fifteen CD-1 mice (body weight 26.2 ± 1.5 g, mean ± S.D.) was each injected with 2.62 μg of maytansine (100 μg/kg) in a volume of 105 μl and were randomly divided into five groups (n = 3). Blood (150 μl) was withdrawn into heparinized capillary tubes twice from animals in each group, therefore allowing for 10 different collection time points which were 0.5, 1, 2, 5, 10, and 30 min and 1, 2, 4, and 8 h after administration of the test samples. Samples were centrifuged, and 70 μl of plasma was withdrawn. The rest of the samples, which contained the cell pellets, were resuspended in 320 μl of water and placed on ice for 5 min to generate a blood cell lysate. The plasma and cell lysate samples were stored at −80°C until used in ELISAs to measure maytansine concentration. While it may be assumed that 5 μl of plasma was left with the blood cell fraction (Jacob and Fox, 1984), the measurements made on the cell lysate were not subject to any correction. Urine was also sampled at 5, 10, and 30 min and 1, 2, 4, and 8 h by stimulating urination through bladder massaging. Each time the bladder of the mice was emptied 20 min before urine collection.

An ELISA method was used to determine the concentration of maytansine in whole blood, the plasma, and the blood cell lysate. Plates were coated with (100 μl/well) a solution of 0.1 μg/ml DM1 that had been conjugated to bovine serum albumin (BSA-DM1, Immunogen, Inc.). Following an overnight incubation at 4°C, the wells were blocked with a 0.5% BSA solution in TBS (pH 7.5) for 1 h at room temperature. Dilution samples (50 μl) of a maytansine standard solution prepared with normal mouse plasma and test samples (50 μl) were mixed in separate plates with 50 μl of a 0.1 nM solution of biotinylated anti-maytansine antibody (Immunogenc, Inc.). Then 50 μl of the mixtures were transferred to the BSA-DM1-coated plate. After incubation at 37°C for 30 min, the plate was washed with 0.1% Tween/TBS and then treated with 100 μl/well of a 1:2000 dilution of streptavidin-horseradish peroxidase solution (Jackson Immunoresearch Laboratories Inc.). The assay plate was washed extensively and then developed using ABTS (Zymed Laboratories) dissolved in 0.1 M citrate buffer, pH 4.0, containing 0.03% hydrogen peroxide as described above.

Tissue Distributions of 125I-huC242 Antibody and 125I-huC242-DM1 Conjugate in Mice. Thirty-six female CD-1 mice were separated into two sets. One set of 18 mice (body weight 27.8 ± 2.6 g, mean ± S.D.) was used for determining tissue distribution of 125I-huC242 and a second set (body weight 27.8 ± 2.7 g, mean ± S.D.) for 125I-huC242-DM1. All animals were dosed at 1.0 mg/kg of antibody. Therefore, each mouse in the first set received 0.2 ml of antibody solution containing 27.8 μg of 125I-huC242 with 2.6 × 106 cpm of radioactivity. Mice in the second set received 0.2 ml of conjugate containing 27.8 μg of 125I-huC242-DM1 with 2.0 × 106 cpm and 1.18 μg of linked DM1 (average, 3.2 DM1 molecules linked per antibody molecule). At 2 and 6 h and 1, 2, 4, and 8 days after administration of the test articles, three mice from each set were euthanized. Immediately thereafter, the blood was flushed from the animals by injecting PBS into the left (3 ml) and right (2 ml) ventricle of the heart and draining the liquid through incisions in the vena cava and the left atrium, respectively. The organs or tissues, blood, heart, lungs, spleen, kidneys, liver, stomach, small intestine, colon, uterus, muscle, fat, thyroid gland, brain, and tail were collected, weighed, and assayed for radioactivity. The percentage of the total injected dose per gram of a given organ (%ID/g) was then calculated. Values for the %ID per whole organ were calculated with the formula: %ID per organ = %ID/mg × the animal weight × R, with R being the organ to body weight ratio. R values were experimentally determined for most organs by isolating and weighing the organs from five individual untreated animals (for values see Table 2). R × 100 values are described elsewhere.

Results

Pharmacokinetic Studies with Radiolabeled Conjugate 125I-huC242-DM1 and Radiolabeled Antibody 125I-huC242. Radiolabeled conjugate and antibody with similar specific radioactivities, 2.73 × 107 cpm/mg and 5.09 × 107 cpm/mg, respectively, were prepared with the help of Bolton-Hunter reagent. CD-1 mice were injected intravenously in the same amount (4.16 mg/kg) of either 125I-labeled antibody or 125I-labeled conjugate that had, on the average, 4.07 molecules of DM1 linked per antibody molecule. Blood samples were withdrawn at different time points over a period of 7 days to assay the level of 125I radioactivity in the whole blood. The data are shown in Fig. 2, where the blood concentrations of antibody and conjugate, respectively, as calculated from the radioactivity measurements, are plotted against the time of sampling in hours after administration. Each data point is the mean value from three samples from three individual animals. We also demonstrated (data not shown) that at each time point about 99% of the radioactivity was associated with protein (precipitable by trichloroacetic acid). The two clearance curves for radiolabeled antibody and conjugate shown in Fig. 2 are superimposable within the precision of the experiments and show the standard biphasic characteristics of an initial rapid α or distribution phase lasting about 10 h and a slower β or disposition phase. Therefore, all data points beyond 10 h (11.5–168 h) were used for the calculation of the kinetic parameters of the β phase. The rate constants, kβ, for the clearance of the antibody and the conjugate were derived from the slopes of the curves in Fig. 2 and found to be equal within the precision of the experiment, i.e., 4.45 × 10−3 h−1 for the antibody and 4.5 × 10−3 h−1 for the conjugate. These
rate constants correspond to half-lives, $t_{1/2}(\beta)$, of 155.8 and 153.7 h, respectively. The pharmacokinetic parameters, AUC$_{tot}$, CL, V_{SS}, and C_{max}, were obtained as described under Materials and Methods and are given in Table 1. They are also similar for the conjugate and the antibody although the values for AUC$_{tot}$ and CL must be considered estimates rather than precise determinations because the end correction portion of the AUC$_{tot}$ value is greater than 40% for the antibody curve (Gabrielson and Weiner, 1997). From the closeness of the two clearance curves, we conclude that covalently linking an average of about four DM1 molecules to a cantuzumab antibody molecule does not alter the pharmacokinetic properties of the antibody in the conjugate in a measurable way.

Pharmacokinetic Studies with huC242-DM1 Conjugate Using ELISA Methods. The 125I label was introduced into the conjugate by labeling the antibody component with the Bolton-Hunter reagent; the above measurements of radioactivity, therefore, can only describe the behavior of the antibody component and no information is obtained for the drug component. Since the half-life of the active conjugate may be the product of clearance from circulation and the loss of linked drug from the conjugate, we performed pharmacokinetic studies with unlabeled conjugate using ELISA methods that assay the intact conjugate and the antibody component separately. Mice were injected intravenously with 10 mg/kg of conjugate bearing 3.2 covalently linked DM1 molecules per antibody molecule. At different time points thereafter, over a period of 8 days, blood samples were withdrawn (from three animals at each time point), and plasma was prepared. The conjugate concentration in the plasma samples was measured with an ELISA, which captured the conjugate with an antimaytansinoid antibody (anti-DM1) and then detected it with a horseradish peroxidase-conjugated donkey anti-human IgG immunoglobulin. Since the standard curve for the ELISA was prepared with the conjugate that was administered to the animals and that contains 3.2 covalently linked DM1 molecules, the results will represent equivalent amounts of administered conjugate with a DM1 to antibody ratio of 3.2. In the same plasma, the antibody component of the conjugate was measured with an ELISA that used a goat anti-human IgG immunoglobulin in the capture step and the same horseradish peroxidase-labeled donkey anti-human IgG immunoglobulin as above in the detection step. The measured plasma concentrations of conjugate and antibody component were plotted against sampling time in hours after administration, and the resulting clearance curves are shown in Fig. 3. Data points are mean values from three samples obtained from three different animals. Both curves display the expected biphasic behavior, although the conjugate plasma clearance curve has a steeper slope for the disposition phase. The pharmacokinetic parameters derived from this data set are given in Table 1. Although only the AUC$_{tot}$ for the conjugate clearance curve can be determined with sufficient accuracy and the value for the antibody component is only an estimate (AUC$_{192-\infty}$ is 36.6% of AUC$_{tot}$), both sets of data are listed. The AUC$_{tot}$ for the conjugate curve was decreased to about a quarter of that for the antibody component (7.01 versus 27.68 h mg ml$^{-1}$) and CL, increased accordingly from 0.36 to 1.43 ml h$^{-1}$ kg$^{-1}$, whereas the clearance unrelated pharmacokinetic parameters, such as the C_{max} and V_{SS}, are similar for both curves (see Table 1).

Table 1

<table>
<thead>
<tr>
<th>Test Article (Compartment)</th>
<th>Measured Entity</th>
<th>Dose (D) per Kilogram</th>
<th>Protein</th>
<th>Linked DM1</th>
<th>$t_{1/2}(\beta)$</th>
<th>k_{d} (Period)</th>
<th>AUC$_{tot}$</th>
<th>CL</th>
<th>V_{SS}</th>
<th>C_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[^{125}]$I-huC242-DM1 (blood)</td>
<td>[^125]I</td>
<td>4.16</td>
<td>0.08</td>
<td>153.7</td>
<td>4.5 x 10$^{-3}$ (10–168 h)</td>
<td>8.18</td>
<td>0.51</td>
<td>115.7</td>
<td>74.8</td>
<td></td>
</tr>
<tr>
<td>$[^{125}]$I-huC242 (blood)</td>
<td>[^125]I</td>
<td>4.16</td>
<td>155.8</td>
<td>4.45 x 10$^{-3}$ (10–168 h)</td>
<td>7.18</td>
<td>0.58</td>
<td>126.2</td>
<td>69.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>huC242-DM1 (plasma)</td>
<td>huC242-DM1</td>
<td>10.0</td>
<td>0.16</td>
<td>42.2</td>
<td>1.64 x 10$^{-2}$ (8–192 h)</td>
<td>7.01</td>
<td>1.43</td>
<td>82.7</td>
<td>220.4</td>
<td></td>
</tr>
<tr>
<td>huC242-[H]-DM1 (serum)</td>
<td>huC242</td>
<td>3.93</td>
<td>0.06</td>
<td>23.9</td>
<td>2.9 x 10$^{-3}$ (6–72 h)</td>
<td>1.995</td>
<td>3.59</td>
<td>146.1</td>
<td>74.5</td>
<td></td>
</tr>
</tbody>
</table>

May

Plasma	N/A	0.1	2.1	0.34	110	3282	9800	0.4
Blood	2.2	0.31	315	1068	3300	0.4		
Blood cells	2.1	0.31	596	630	1900	0.4		
During the β or disposition phase, both curves demonstrate first-order kinetics. The rate constants \(k \) were calculated through linear regression analysis using all data points from 8 to 192 h and found to be 5.7 \(10^2 \) h\(^{-1}\) for the antibody component and 1.64 \(10^2 \) h\(^{-1}\) for the conjugate, which correspond to half-lives \(t_{1/2}(\beta) \) of 122.6 h for the antibody and 42.2 h for the conjugate. These results, together with the data from the clearance study with \(^{125}\)I-labeled samples, indicate that the number of linked drug molecules per antibody molecule diminishes during the time it takes to clear the antibody component from circulation of mice. The conjugate clearance curve should therefore be labeled an apparent clearance curve, since it is the combination of elimination from circulation and the clearance of linked DM1 from circulating conjugate. Since clearance rates are additive, the apparent clearance of conjugate (\(CL_{\text{con}} = 1.43 \text{ ml h}^{-1} \text{ kg}^{-1} \)) can be presented as the sum of the clearance of total antibody (\(CL_{\text{Ab}} = 0.36 \text{ ml h}^{-1} \text{ kg}^{-1} \)) and the clearance of DM1 from circulating conjugate (\(CL_{\text{DM1}} = 1.07 \text{ ml h}^{-1} \text{ kg}^{-1} \)). This indicates that the loss of DM1 drug from circulating conjugate is about three times as fast as the clearance of the antibody component from circulation.

\[^{[3H]} \text{DM1 Drug Release in Vivo from huC242-[}^{3H}\text{]DM1 Conjugate.} \]

To be able to directly measure the release of covalently linked DM1 drug from the conjugate in circulation, we prepared a conjugate of unlabeled huC242 antibody and tritiated \(^{3H}\)DM1 drug and performed pharmacokinetic studies with the huC242-[\(^{3H}\)DM1 conjugate. Animals were injected intravenously with 3.93 mg/kg conjugate that had 3.2 \(^{3H}\)DM1 molecules linked per antibody molecule. Blood samples were withdrawn at several time points until 72 h after the intravenous administration of the conjugate. At later times, there was no longer sufficient radioactivity present in the serum for accurate measurements. Serum samples were prepared and assayed for radioactivity by scintillation counting and for the huC242 component by the ELISA method described above. The clearance curve for the radioactivity and the ELISA clearance curve for the antibody component of the conjugate are shown in Fig. 4A and the calculated parameters are listed in Table 1. The curves show that the radioactive drug is cleared faster from circulation than the antibody component of the conjugate (\(CL_{\text{radio}} = 3.59 \text{ ml h}^{-1} \text{ kg}^{-1} \) versus \(CL_{\text{Ab}} = 0.61 \text{ ml h}^{-1} \text{ kg}^{-1} \)). With the assumption that released DM1 drug has a short serum half-life and therefore never achieves significant serum levels (see pharmacokinetic data below), the radioactivi-
ity measured in serum represents the amount of DM1 co-
valently bound in the huC242-[3H]DM1 conjugate. Thus the
radioactivity clearance (CL_{[3H]}^\text{DM1}) is a composite of the clear-
ance of the conjugate from circulation as measured by the
CL_{AB}^\text{huC242} and the clearance of DM1 from circulating conjugate.
The latter calculates as 2.98 ml h^{-1} kg^{-1} and is therefore
nearly five times as fast as the clearance of the antibody
component. The kinetic parameters for the β phase were
calculated using the data points from 6 to 72 h (see Table 1).
First-order rate constants k_\beta were found to be 2.9 \times 10^{-2} h^{-1}
for the radioactivity and 6.9 \times 10^{-3} h^{-1} for the antibody
component, which correspond to half-lives t_1/2(β) for the
clearance of the radioactivity and the antibody component of
23.9 and 99.8 h, respectively.

With the help of the specific molar radioactivity of
[3H]DM1, the number of linked DM1 molecules per antibody
molecule was calculated for each sampling point. When the
logarithm of the number of linked drugs was plotted versus
sampling time (see Fig. 4B) the set of data points could be
described best with a linear relation (square of correlation
coefficient: r^2 = 0.869). This indicates that the loss of linked
drug molecules from the conjugate is a first-order or pseudo
first-order process.

Pharmacokinetic Studies with Maytansine. For the
interpretation of the results above we had assumed a very
rapid clearance from circulation of released DM1 drugs.
Therefore, for experimental verification we set out to study
the pharmacokinetics of maytansine, a very close chemical
analog of DM1 that lacks the unstable sulfhydryl group (see
Fig. 1B). Mice were injected intravenously with a nontoxic
dose of maytansine (0.1 mg/kg) and blood samples were
collected at different time points. The samples were processed
to allow the determination of the maytansine concentration in
whole blood, plasma, and blood cell lysate using an ELISA
method. The data yielded three clearance curves (see Fig. 5)
that are all characterized by an initial distribution phase
with a rapid and large decline in the concentration of may-
tansine over about 30 min, which is followed by a slower rate
of disappearance during the disposition phase with a first-
order rate constant k_\beta of about 0.3 h^{-1}. One minute after the
injection, only about 3.5% of the injected dose was still
present in the plasma, and after 30 min the content had
decreased to 0.2%, thus validating our assumption that after
the administration of huC242-[3H]DM1 conjugate the meas-
urable amount of [3H]DM1 in plasma is nearly exclusively
found in the conjugate.

The clearance curves also show that a remarkably higher
concentration (about 7-fold) of maytansine is present in the
blood cell compartment than in the plasma during the test
period of 8 h. This suggests that maytansine associates with
cells due to its known lipophilic character, and its clearance
from plasma is in equilibrium with the blood cell compart-
ment. As a consequence, the concentration of drug in the
whole blood compartment is larger than that in plasma with
about 11.4% of the injected dose remaining in the blood 1 min
after administration and about 2% remaining 30 min post-
injection. The pharmacokinetic parameters derived from the
curves (see Table 1) are also typical for a lipophilic drug.
Particularly the V_ss is manyfold larger than the whole blood
compartment, indicating that maytansine is extensively
bound to tissues.

We also collected the urine from the animals during the
experiment and assayed it for maytansinoid drugs. In accor-
dance with the high lipophilicity and poor water solubility of
the drug, very little, about 2% of the injected dose was ex-
creted through the urine during the 8-h test period (data not
shown).

**Tissue Distributions of 125I-huC242 Antibody and
125I-huC242-DM1 Conjugate in Mice.** To further assess if the
chemical linking of four lipophilic maytansinoid drugs to
the humanized IgG1 antibody huC242 altered the in vivo
behavior of the antibody, we compared the tissue distribution
of the maytansinoid conjugate huC242-DM1 with that of the
antibody. Two separate groups of mice were treated either
with 125I-labeled antibody or 125I-labeled conjugate at a 1
mg/kg dose via tail vein injections. At 2 and 6 h and 1, 2, 4,
and 8 days after the administration, three animals in each
group were euthanized and exsanguinated by flushing the
circulation with phosphate-buffered saline. The organs were
then removed, weighed, and assayed for 125I radioactivity.
The %ID/g was calculated for each animal. The mean values
for the three animals at each time point were calculated and
are graphically presented in Fig. 6, A and B. A comparison of
the two graphs shows that no significant differences at any of
the tested time points could be observed for the tissue local-
ization of the antibody from the conjugate or the unmodified
antibody. At any time point measured, both agents are
largely present in the blood compartment. The observed
accumulation in the tail is assumed to be an experimental
artifact from the tail vein injection.

We also calculated (see Materials and Methods) the total
accumulation of 125I-huC242-DM1 conjugate in each organ as a
percentage of the injected dose (%ID) at the six different test
time points. These values were used to calculate the total re-
covery of conjugate in the animal as a percentage of the injected
dose as well as the fraction contained in the blood (see Table 2).
The total recovery was 90.1% ID at 2 h after the injection and
155.8 h and an elimination rate constant \(k_e \) of \(4.5 \times 10^{-3} \) h\(^{-1}\). These values agree with previously reported data for the clearance of mouse-human chimeric antibodies from the circulation of mice (Zuckier et al., 1994). We described our pharmacokinetic results as estimates because we collected data only for up to 7 days (168 h) after intravenous administration of the samples. This time period is too small to generate accurate data for samples with half-lives of 153.7 and 155.8 h. However, the test period was not prolonged because of the possibility of generating an immune response to the humanized antibody. It had been demonstrated (Zuckier et al., 1994) that immune elimination of human-mouse chimeric antibodies often began in BALB/c mice on days 6 to 8 after intravenous administration.

At the cellular level, cantuzumab mertansine exerts its anticancer activity through a multistep process, which includes binding to a MUC1 carbohydrate epitope on the cell surface through its antibody component, internalization of the conjugate-antigen complex by the cancer cell, and release of DM1 from the antibody. This allows DM1 to reach its intracellular target tubulin and to inhibit tubulin polymerization. The pharmacologic activity of the conjugate is therefore dependent on the activity of all three of its components, i.e., the binding of the antibody, the cytotoxic or antimitotic activity of the drug, and the stability and cleavability of the linker. The above-described pharmacokinetic analysis with \(^{125}\text{I}\)-labeled conjugate only yields information about the antibody component of the conjugate, since the Bolton-Hunter-labeling method introduces the radioisotope exclusively to the antibody.

To perform a pharmacokinetic analysis of the “whole active conjugate” we employed an ELISA that captures the conjugate on the plate with an antimaytansinoid antibody and detects it with an anti-human IgG reagent. The same serum samples were also assayed for the antibody component with an ELISA that used an anti-human IgG capturing step and the same detection step as above. As expected, the clearance curve for the antibody component was similar to that obtained with the \(^{125}\text{I}\)-labeled antibody and conjugate samples; however, the curve for the intact conjugate showed a faster \(\beta \) elimination and shorter \(\beta \) half-life of 42.2 h (Fig. 3 and Table 1). The clearance rate for the conjugate was about four times faster than that for the antibody component (Table 1), which can only be explained by the loss of drug molecules from the conjugate, since the \(^{125}\text{I}\)-labeled naked antibody and conjugated antibody had identical clearance parameters. The observed clearance curve for the conjugate is therefore the sum of clearance from circulation as measured by the antibody clearance and clearance of drug molecules from circulating conjugate. The data in Table 1 shows that the rate of drug clearance from conjugate, calculated as the difference in the clearance rate of the conjugate and the antibody component, is about three times the rate of clearance of the antibody component from circulation of mice.

With a second method, we sought to measure directly the clearance of conjugated drug. Thus, we used the conjugate huC242-[\(^{3}\text{H}\)]DM1 where the DM1 drug carries a radioactive tritium label. Despite the expected release of drug from circulating conjugate, greater than 99% of any radioactivity present in the serum of animals at any sampling point could be attributed to conjugated drug since studies with a nonconjugated maytansinoid drug showed very rapid clearance of

Discussion

The first pharmacokinetic study used \(^{125}\text{I}\)-labeled antibody and conjugate samples and followed the disappearance of the radiolabel from the blood of injected mice. Similar biphasic clearance curves were obtained for both test articles (Fig. 2). The initial distribution phase lasted about 10 h and was followed by a disposition phase with a half-life of 153.7 to

![Fig. 6. A, tissue distribution of \(^{125}\text{I}\)-huC242-DM1 conjugate in CD-1 mice after intravenous administration via a tail vein at a dose of 1 mg/kg. At each time point, three animals were euthanized, exsanguinated, and their organs collected, weighted, and assayed for \(^{125}\text{I}\) radioactivity. Data are presented as %ID/g of tissue and values are the mean ± S.D. derived from three organs of three different animals. B, tissue distribution of \(^{125}\text{I}\)-huC242 antibody in CD-1 mice after intravenous administration via a tail vein at a dose of 1 mg/kg. Details are as described in the legend to Fig. 6, panel A.](image-url)
Assuming the specific molar radioactivity of [3H]DM1, we calculated the clearance rate of [3H]DM1 samples obtained from the animals and plotted the logarithm of the results versus sampling time (Fig. 4B). Analysis of the graph revealed that the set of data points obtained could be described with a linear relation ($r^2 = 0.869$), which indicates a first-order or pseudo first-order process for the loss of drug molecules from circulating conjugate. This eliminates the possibility of preferred removal of highly modified conjugate species and indicates that all drug links have similar cleavage rates.

The most likely mechanism for release of DM1 from conjugate is cleavage of the disulfide bond in the linker via a disulfide exchange reaction. Analysis of human plasma has shown (Mills and Lang, 1996) that there is a balance between free cysteine, cystine, and cysteine bound via a disulfide bond. Disulfide exchange reactions in plasma have been demonstrated (Mills and Lang, 1996) that there is a balance between free cysteine, cystine, and cysteine bound via a disulfide bond. Disulfide exchange reactions in plasma have been demonstrated (Mills and Lang, 1996). Such a balance is necessary for the disulfide bond to be cleaved in the linker. Analysis of the graph revealed that the set of data points obtained could be described with a linear relation ($r^2 = 0.869$), which indicates a first-order or pseudo first-order process for the loss of drug molecules from circulating conjugate. This eliminates the possibility of preferred removal of highly modified conjugate species and indicates that all drug links have similar cleavage rates.

The most likely mechanism for release of DM1 from conjugate is cleavage of the disulfide bond in the linker via a disulfide exchange reaction. Analysis of human plasma has shown (Mills and Lang, 1996) that there is a balance between free cysteine, cystine, and cysteine bound via a disulfide bond. Disulfide exchange reactions in plasma have been demonstrated (Mills and Lang, 1996). Such a balance is necessary for the disulfide bond to be cleaved in the linker.

Table 2

<table>
<thead>
<tr>
<th>Organ</th>
<th>$R \times 10^6$ Valuea</th>
<th>% ID (mean ± S.D.) of [125I]-huC242-DM1 Conjugate in Whole Organs at Different Time Points after Intravenous Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 h</td>
<td>8 h</td>
</tr>
<tr>
<td>Blood</td>
<td>50.2 ± 1.30</td>
<td>35.7 ± 1.22</td>
</tr>
<tr>
<td>Brain</td>
<td>1.8 ± 0.01</td>
<td>1.0 ± 0.00</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.7 ± 0.11</td>
<td>0.6 ± 0.22</td>
</tr>
<tr>
<td>Heart</td>
<td>0.52 ± 0.03</td>
<td>0.4 ± 0.11</td>
</tr>
<tr>
<td>Lung</td>
<td>0.69 ± 0.07</td>
<td>0.7 ± 0.66</td>
</tr>
<tr>
<td>Liver</td>
<td>5.23 ± 10.8</td>
<td>4.3 ± 3.80</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.4 ± 0.51</td>
<td>0.4 ± 0.51</td>
</tr>
<tr>
<td>Kidney</td>
<td>1.33 ± 1.86</td>
<td>0.5 ± 0.44</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.80 ± 0.12</td>
<td>0.5 ± 0.12</td>
</tr>
<tr>
<td>Small intestine</td>
<td>2.97 ± 2.10</td>
<td>1.6 ± 0.64</td>
</tr>
<tr>
<td>Colon</td>
<td>1.19 ± 0.51</td>
<td>0.8 ± 0.32</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.52 ± 0.1</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>Fat</td>
<td>8.0 ± 2.08</td>
<td>2.0 ± 0.47</td>
</tr>
<tr>
<td>Muscle</td>
<td>40.9 ± 2.66</td>
<td>9.8 ± 4.6</td>
</tr>
<tr>
<td>Tail</td>
<td>2.9 ± 3.98</td>
<td>3.6 ± 2.7</td>
</tr>
<tr>
<td>Total</td>
<td>90.1 ± 65.0</td>
<td>50.4 ± 48.1</td>
</tr>
</tbody>
</table>

a The whole organ was used to measure the radioactivity, and the %ID was calculated directly from the experimental value.

b The whole organ was used to measure the radioactivity, and the %ID was calculated directly from the experimental value.

The total retention in the animals at the given time points is also calculated together with the fraction present in the blood compartment.
the conjugate is located in the blood compartment. This indicates similar clearance rates from the blood compartment and the whole body, which is in good agreement with published findings for mouse-human chimeric antibodies in mice (Zuckier et al., 1994). We conclude that the covalent linking of three to four maytansinoid drug molecules to the humanized C242 antibody does not change the distribution of the antibody in mice. Although at the later sampling points most if not all drug molecules have been lost from circulating conjugate, the antibody is still modified by the linker molecule.

Comparison of the pharmacokinetic parameters of maytansine and the antibody maytansinoid conjugate shows the expected large differences. The small lipophilic agent maytansine clears rapidly from plasma and binds to tissues such as blood cells (Fig. 5 and Table 1), which leads to a small plasma AUCtot value and a large volume of distribution. Through conjugation of the maytansinoid to a monoclonal antibody, the drug acquires the pharmacokinetic characteristics of an antibody with a more than 60-fold increased AUCtot and a volume of distribution close to the plasma volume. It is hoped that this alteration in the pharmacokinetic parameters of the maytansinoid drug will enhance its therapeutic usefulness.

Acknowledgments

We acknowledge Wayne Widdison and Victor Goldmacher for the preparation of [3H]DM1 and [125I]-labeled samples, respectively, and Susan Derr, Jennifer Poveromo, Cynthia Ferris, Terri Caiazzo, Sherri Cook, Michele Mayo, and Lisa Garrett for technical assistance with various aspects of the studies.

References

Street, Cambridge, MA 02139. E-mail: hongsheng.xie@immunogen.com

Hongsheng Xie, ImmunoGen, Inc., 128 Sidney Street, Cambridge, MA 02139. E-mail: hongsheng.xie@immunogen.com