Nicotinic Receptor Modulation of Dopamine Transporter Function in Rat Striatum and Medial Prefrontal Cortex

Lisa S. Middleton, Wayne A. Cass, and Linda P. Dwoskin

College of Pharmacy (L.S.M., L.P.D.) and the Department of Anatomy and Neurobiology (W.A.C.), College of Medicine, University of Kentucky, Lexington, Kentucky

Received June 5, 2003; accepted September 29, 2003

ABSTRACT

Nicotine activates nicotinic acetylcholine receptors (nAChRs) on dopamine (DA) terminals to evoke DA release, which subsequently is taken back up into the terminal via the DA transporter (DAT). nAChRs may modulate DAT function thereby contributing to the regulation of synaptic DA concentrations. The present study determined the dose-response for nicotine (0.1–0.8 mg/kg, s.c.) to modulate DA clearance in striatum and medial prefrontal cortex (mPFC) using in vivo voltammetry in urethane anesthetized rats and determined if this effect was mediated by nAChRs. Exogenous DA (200 μM) was pressure-ejected at 5-min intervals until reproducible baseline signals were obtained. Subsequently, nicotine or saline was administered, and DA pressure ejection continued at 5-min intervals for 60 min. In both striatum and mPFC, signal amplitude decreased by ~20% across the 60-min session in saline-injected rats. A monophasic dose-response curve was found in striatum, with a maximal 50% decrease in signal amplitude after 0.8 mg/kg. In contrast, a U-shaped dose-response curve was found in mPFC, with a maximal 50% decrease in signal amplitude after 0.4 mg/kg. Onset of nicotine response occurred 10 to 15 min after injection in both brain regions; however, the amount of time before maximal response was 45 and 30 min in striatum and mPFC, respectively. Mecamylamine (1.5 mg/kg) completely inhibited the nicotine-induced (0.8 and 0.4 mg/kg) decrease in signal amplitude in striatum and mPFC, respectively, indicating mediation by nAChRs. Thus, nicotine enhances DA clearance in striatum and mPFC in a mecamylamine-sensitive manner, indicating that nAChRs modulate DAT function in these brain regions.

Previous research on the neurobiology of reward and drug addiction has focused on the mesocorticolimbic and nigrostriatal dopamine (DA) systems, emphasizing the role of the nucleus accumbens, medial prefrontal cortex (mPFC), and striatum. The accumbens shell, which is innervated by dopaminergic projections from the ventral tegmental area, and its associated neurocircuitry are believed to encode primary appetitive stimuli associated with unconditioned drug reward (Wise and Bozarth, 1987; Robbins and Everitt, 1996; Bardo, 1998; Koob, 1999; Di Chiara, 2000; Kelley and Berridge, 2002). The mPFC, which includes the anterior cingulate cortex and is innervated by dopaminergic projections from the ventral tegmental area, is believed to encode secondary conditioned stimuli associated with environmental cues paired with the drug, leading to reward expectancy, which is recognized as important to the process of addiction and relapse to drug use (Berridge and Robinson, 1998; Shima and Tanji, 1998; Kelley, 1999; Di Chiara, 2000; Kelley and Berridge, 2002; Peoples, 2002). Integration of the motivational information from the mPFC occurs at least in part in striatal neurons, which are innervated by dopaminergic projections from the nigra, leading to the initiation and execution of movement in reward expectancy and detection of reward (Martin-Soelch et al., 2001).

Tobacco is the most common drug of abuse and the leading preventable cause of death in the United States (Surgeon General’s Report, 1988; Jaffe, 1990). Nicotine, the most abundant alkaloid in tobacco, has intrinsic rewarding properties, which are believed to be responsible for tobacco dependence (Corrigall et al., 1992; Koob, 1992; Stolerman and Jarvis, 1995; Garrett et al., 2003). The mechanisms underlying the reinforcing properties of nicotine are not well understood, although the mesocorticolimbic and nigrostriatal DA systems are believed to be involved. For example, c-fos activation of the anterior cingulate cortex, nucleus accumbens, and striatum has been demonstrated in nicotine self-administering rats (Pagliusi et al., 1996; Pich et al., 1997), and cortical c-fos has been shown to be activated following exposure to envi-
nal activity in the cingulate cortex, frontal lobe, and nucleus accumbens, as determined using functional magnetic resonance imaging (Stein et al., 1998).

Extracellular DA concentrations are increased following nicotine stimulation of nicotinic acetylcholine receptors (nAChRs) in terminal regions of the mesocorticobasal and nigrostriatal systems. mRNA for nine subunits (α2–α7 and β2–β4) of nAChRs have been identified in substantia nigra and ventral tegmental dopaminergic neurons (Klink et al., 2001; Azam et al., 2002; Zoli et al., 2002; Wooltorton et al., 2003), indicating that potentially a large number of heteromeric nAChR subtypes of pentameric structure may be expressed by these neurons. Specific subunit combinations of nAChRs mediating nicotine-evoked DA release (Imperato et al., 1986; Vezina et al., 1992; Niessel et al., 1996, 1997; Teng et al., 1997; Zhou et al., 2001) have not been elucidated conclusively.

Extracellular DA concentrations are the net result of exocytotic DA release from presynaptic terminals and reuptake of DA into presynaptic terminals (clearance) via the DA transporter (DAT). DA is also removed from the extracellular space by metabolism and diffusion, with the latter factor playing a larger role in brain regions with sparse dopaminergic innervation and lower DAT density, such as the mPFC. DAT is the major presynaptic terminal protein regulating extracellular DA concentrations and is a presynaptic target for psychostimulants drugs of abuse, as well as for several antidepressant agents. Psychostimulants, such as amphetamines, increase extracellular DA concentrations by reverse transport of DAT (Liang and Rutledge, 1982; Sulzer et al., 1995). Cocaine inhibits DAT function, which results in increased extracellular DA concentrations (Kuhar et al., 1991). The antidepressant and tobacco use cessation agent, bupropion, inhibits DAT function, but also is a nAChR antagonist (Hurt et al., 1997; Slemmer et al., 2000; Miller et al., 2002). Surprisingly, nicotine (0.4 mg/kg) has been reported to increase DA clearance (enhance DAT function) in the nucleus accumbens in anesthetized rats (Hart and Kair, 1996). The latter results also contrast findings in vitro in which nicotine and another nicotinic agonist, 1,1-dimethyl-4-phenyl-piperazinium, have been reported to decrease [3H]DA uptake into chopped striatum and PC12 cells, respectively (Izenwasser et al., 1991; Huang et al., 1999). However, these in vitro findings have not been replicated (Carr et al., 1989; Kramer et al., 1989; Rowell and Hill 1993; Zhu et al., 2004).

The observation that nicotine enhances DAT function in nucleus accumbens in vivo (Hart and Kair, 1996) is not expected considering the electrogenic nature of the transporter. Translocation of DA by DAT across the membrane is coupled with the cotransport of two Na+ ions and one Cl− ion down their electrochemical gradients, generating a small inward current (Kanner and Schuldiner, 1987; Rudnick and Clark, 1993). Moreover, the DA neuron membrane potential influences DAT function, such that hyperpolarization increases the velocity of DA transport by DAT and depolarization decreases DA transport velocity (Sonders et al., 1997). As such, nicotine-induced stimulation of nAChRs, which results in depolarization of the plasma membrane (Calabresi et al., 1989), would be expected to decrease DAT function and decrease DA clearance, thereby increasing extracellular DA concentrations.

With respect to nAChR modulation of DAT function, nicotine has also been reported to enhance amphetamine-evoked ([3H]DA release from mPFC slices incubated in assay buffer in the absence of calcium (Drew et al., 2000). These assay conditions precluded nicotine-evoked exocytotic DA release, suggesting the involvement of DAT in the nicotine-induced augmentation of the response to amphetamine. Surprisingly, nicotine did not enhance amphetamine-evoked ([3H]DA release in striatum or nucleus accumbens (Drew et al., 2000), indicating that this effect was specific to mPFC. The observed nicotine enhancement of the effect of amphetamine in mPFC was inhibited by nAChR antagonists, mecamylamine and dihydro-β-erythroidine, but not α-bungarotoxin, indicating that specific nAChR subtypes are involved. The latter findings suggest that nAChRs may modulate DAT function under physiological conditions, i.e., in the presence of extracellular calcium, at least in mPFC.

The goal of the present study was to characterize the dose-response relationships for nicotine enhancement of DAT function in striatum and mPFC. Furthermore, nAChR mediation was determined by assessing mecamylamine inhibition of the nicotine effect on DAT function in both striatum and mPFC. Under physiological conditions, clearance of exogenously applied DA was assessed with millisecond resolution using in vivo voltammetry, a technique which has been previously shown to reliably evaluate DAT function (Cass et al., 1992).

Materials and Methods

Materials. S(-)-Nicotine ditartrate (nicotine), 3-hydroxytrime hydrochloride (dopamine), mecamylamine HCl (mecamylamine), and sodium phosphate dibasic were purchased from Sigma/RBI (Natick, MA). Sodium phosphate monobasic, sodium chloride, ascorbic acid, and urethane were purchased from Fisher Scientific Co. (Pittsburgh, PA). Nafion perfluorinated ion-exchange resin was purchased from Aldrich Chemical Co. (Milwaukee, WI). Dental wax was purchased from Patterson Dental Supply, Inc. (Louisville, KY). Dental acrylic was purchased from CMA/Microdialysis (Acton, MA). Epoxylite and FX grade Graphpox were purchased from Epoxylite Corp. (Irvine, CA) and Dylon Industries, Inc. (Cleveland, OH), respectively. Carbon fibers (30–μm diameter) were purchased from Textron, Inc. (Lowell, MA), and 28-gauge lacquer-coated copper wire was purchased from Radio Shack (Lexington, KY).

Animals. Male Sprague-Dawley rats (200–250 g) were obtained from Harlan (Indianapolis, IN) and were housed two per cage with free access to food and water in the Division of Lab Animal Resources at the College of Pharmacy, University of Kentucky. Experimental protocols involving the animals were in strict concordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee at the University of Kentucky.

In Vivo Electrochemical Measurements. Rats were anesthetized with urethane (1.25–1.5 g/kg, i.p.) and placed into a Kopf stereotaxic frame (David Kopf Instruments, Tujunga, CA). Body temperature was maintained at 37°C with a heating pad coupled to a rectal thermometer (Harvard Apparatus Inc., Holliston, MA). The scalp was reflected, and a section of the skull and dura overlying the frontal cortex was removed. At a location remote from the recording site, a small hole was drilled in the skull above the posterior cortex for placement of two Ag/AgCl reference electrodes, which were cemented into place with dental acrylic.
Electrochemical electrodes were prepared and electrochemical experiments were conducted using previously described methods (Gratton et al., 1989; Cass et al., 1992). Electrochemical recording electrodes were pulled glass capillaries (4-μm outer diameter, 0.80-mm wall diameter) sealed with Epoxylite. Graphite epoxy resin and a 28-gauge lacquer-coated copper wire were inserted into the glass capillary to establish electrical contact with the carbon fiber. The exposed carbon fiber extended 50 to 150 μm beyond the tip of the glass capillary. Electrodes for some experiments were purchased from Quanteon (Lexington, KY). To enhance selectivity for DA, the carbon fiber electrode was coated with Nafion polymer (5% solution, 6–8 coats) and cured by heating at 250°C for 5 min. Electrodes were calibrated in vitro to determine the sensitivity and selectivity for DA. Calibration curves were generated using a range of DA concentrations (1.0–10 μM, at 22°C in 0.1 M phosphate-buffered saline solution, pH 4.0). Electrodes showed good sensitivity to DA and were relatively insensitive to ascorbic acid, such that the mean selectivity ratio of DA/ascorbic acid was 594 ± 75:1 (n = 108). Subsequently, each carbon fiber electrode was attached to a single barrel micropipette (10- to 15-μm tip diameter) with dental wax. The tips of the electrode and micropipette were positioned 250 to 300 μm apart. Micropipettes were prepared from monofilament glass (1.0 mm o.d., 0.58 mm i.d.) using a vertical pipette puller (model 720, David Kopf Instruments). Single-barreled micropipettes were filled with DA (200 μM, in 154 mM NaCl and 100 μM ascorbic acid, pH 7.4) immediately prior to conducting the experiment.

The electrode/micropipette assembly was lowered into the dorsal striatum (1.5-mm anterior to bregma, 2.3-mm lateral from midline, and 4.0- to 5.5-mm below the surface of the cortex) or mPFC (cingulate cortex: 2.9-mm anterior to bregma, 1.0-mm lateral from midline, and 2.5- to 5.0-mm below the surface of the cortex), according to the rat brain atlas of Paxinos and Watson (1986). Exogenous DA was pressure-ejected (30–50 psi, 0.05 ms–2.5 s) at 5-min intervals using a Picospritzer II (General Valve, Fairfield, NJ), until reproducible baseline signals (variation in signal amplitude <±10%) were obtained. Using a stereomicroscope fitted with a reticle in one eye-piece, ejection volume (250 nl/mm) was monitored by measurement of the fluid displaced from the micropipette.

In the first series of experiments, dose-response curves for nicotine modulation of DAT function in striatum and mPFC were generated, with nicotine dose and brain region as the between groups factors. Rats were randomly assigned to five treatment groups to assess the effect of nicotine (0.1–0.8 mg/kg, s.c.) or vehicle (saline) on DAT function in striatum. Rats were assigned to six treatment groups to assess the effect of nicotine (0.1–0.8 mg/kg, s.c.) or vehicle (saline) on DAT function in mPFC. In an attempt to generate the full dose-response relationship in mPFC, the effect of an additional nicotine dose (0.3 mg/kg) was determined based on the dose-response curve obtained.

For each experiment, nicotine was administered once reproducible baseline signals were obtained. Pressure ejection of DA continued at 5-min intervals for 60 min following nicotine or vehicle injection. In the majority of mPFC experiments, rats were pretreated with desipramine (25 mg/kg, s.c.) to assure that DAT function was measured. The noxious effects of nicotine (0.3 mg/kg) was previously shown to inhibit nicotine-induced locomotor stimulation (Clarke and Kumar, 1983). The dose of mecamylamine was chosen to be within the range of that inhibiting nicotine self-administration in rats (Rauhut et al., 2002; Rezvani et al., 2002). Mecamylamine (1.0 mg/kg) was also shown to inhibit the effect of nicotine to enhance DA clearance in nucleus accumbens using in vivo voltmmetry (Hart and Ksir, 1996). Based on the results of the current nicotine dose-response curves, the first series of experiments, nicotine doses (0.8 and 0.4 mg/kg) that produced a maximal effect in striatum and mPFC, respectively, were chosen. DA was pressure-ejected every 5 min during the 40-min period following the first s.c. injection and for 60 min following the second s.c. injection. For all experiments, drug dose represents the salt weight, and the injection volume was 1 ml/kg body weight.

High-speed chronoamperometric electrochemical measurements were made continuously (five times per second, 5 Hz and averaged to 1 Hz), using an electrochemical recording system (IVEC 10; Medical Systems Corporation, Greenvale, NY). The oxidation potential was a square wave of +0.55 V applied for 100 ms (versus the Ag/AgCl reference electrode), and the resting potential was 0.0 V for 100 ms. Oxidation currents were digitally integrated during the last 80 ms of each 100-ms pulse.

Data and Statistical Analysis. Data are represented as mean values ± S.E.M., and n represents the number of animals in a treatment group. Three parameters were determined from the DA oxidation currents: maximal signal amplitude, which is defined by the maximal change in extracellular DA concentration; T<sub>80</sub>, the time for the signal to decay by 80% minus the rise time of the signal; and DA clearance rate, the slope of the initial pseudolinear portion of the decaying signal (between the T<sub>10</sub> and T<sub>90</sub> time points; Fig. 1), integrating signal amplitude and time course of decay.

For first series of experiments generating nicotine dose-response curves in striatum and mPFC, time courses for the nicotine dose effect were analyzed by two-way mixed factor ANOVA, with dose as a between groups factor and time as the within-subjects factor. A separate ANOVA was performed to analyze the time course for each of the three parameters assessed, maximal signal amplitude, T<sub>80</sub> and clearance rate for each brain region. To determine the dose-related effect of nicotine, one-way ANOVAs were conducted on the signal amplitude data from striatum at each 5-min time point during the 30–60 min period following nicotine injection. One-way ANOVAs were also conducted on the dose response for signal amplitude and clearance rate data from mPFC at each time point during the 30–60 min period following nicotine injection. The time period chosen for the latter analyses was based on previous results in rat nucleus
were calculated based on calibration curves generated in vitro. As a function of time (sec) after DA pressure ejection. DA concentrations following pressure ejection of DA (200 μM) resulted in stable baseline signals, with a maximal signal amplitude of 4.21 μM (±0.22 μM; mean ± S.E.M.; range, 1.51–9.90 μM), T80 value of 32.6 s (±3.1 s), and clearance rate of 0.307 μM/s (±0.056 μM/s; n = 32 independent experiments). Maximal signal amplitude during measurement of basal DA clearance varied with the placement of the electrode/micropipette assembly in the striatum. Figure 1 illustrates the reproducible pattern of a representative series of baseline signals obtained prior to systemic injection of nicotine (0.8 mg/kg) or saline (Hart and Ksir, 1996). Dunnett’s post hoc analysis was performed to determine differences from control. Additionally, specific within-subject contrasts determined the time point at which nicotine significantly decreased signal amplitude compared with baseline (prior to drug injection). Furthermore, for both striatum and mPFC, signal amplitude data were summed across the 60-min recording period to assess nicotine dose-response relationships, and these data were analyzed by one-way ANOVA and Tukey test to determine the nicotine dose that significantly decreased signal amplitude.

Analysis of the data from the control group (saline injected) reveals that DA signal amplitude gradually decreased by ~15% of baseline during the 55-min period after saline injection; however, the decrease (~23%) in signal amplitude was significant only at the 60-min time point (Fig. 2, top panel). T80 did not change across the time course of the experiment in the saline-injected group (Fig. 2, middle panel). Similar to signal amplitude, DA clearance rate also gradually decreased by ~15% of baseline across the time course of the session (Fig. 2, bottom panel). The latter panel illustrates that at the 60-min time point, DA clearance rate decreased by 40%; however, there were no significant main effects or interactions, such that post hoc analyses were not performed. Thus, repeated DA application at 5-min intervals resulted in a small increase in DAT function across the 60-min session after saline injection.

The dose response for nicotine-induced modulation of DAT function in striatum was determined and the results are shown in Fig. 2. The parameters of DAT function (maximal signal amplitude, T80, and clearance rate) were analyzed using separate two-way ANOVAs. With respect to signal amplitude, a significant interaction of dose and time was found (F2,351 = 1.58, p < 0.05). To further analyze the
interaction, separate one-way ANOVAs of signal amplitude were conducted on the data from each 5-min time point during the 30 to 60 min after injection (Fig. 2, top panel). Dose-related decreases in signal amplitude were observed at various time points. Significant main effects of nicotine dose were found at 40- to 45-min ($p < 0.05$) and at the 35-min and 50- to 55-min time points ($p < 0.05$, one-tailed) after injection. Dunnett’s post hoc analysis revealed that DA signal amplitude was decreased 35 to 55 min in the 0.8 mg/kg group compared with the control group. Signal amplitude decreased by a maximum of 48% of control at 45 min after the 0.8 mg/kg dose of nicotine (between groups comparison); however, when signal amplitude at this time point was compared with the baseline response (within-subject comparison), a 60% decrease in signal amplitude was found. To determine the onset of the effect of nicotine, specific within-subjects contrasts were performed comparing DA signal amplitude at each time point following nicotine injection to baseline signal amplitude. A significant decrease in signal amplitude occurred 15 min following nicotine injection (0.8 mg/kg, $p < 0.01$). In contrast to the effect of nicotine on signal amplitude, no significant main effects or interactions were found for T80 or clearance rate when the data were analyzed by two-way ANOVA (Fig. 2, middle and bottom panels, respectively). With respect to clearance rate, the highest dose (0.8 mg/kg) of nicotine tended to increase clearance rate, but did not reach significance. Thus, compared with T80 and clearance rate, DA signal amplitude is the more sensitive parameter for detection of the effect of nicotine on DAT function.

To further evaluate the nicotine dose-response relationship, DA signal amplitude data for each dose were cumulated across the 60-min sampling period to generate a dose-response curve (Fig. 3). The nicotine dose-response curve was monophasic, and nonlinear regression revealed a significant fit to the data ($r^2 = 0.99$). Thus, as the nicotine dose increased, DA signal amplitude decreased, indicating that in a dose-related fashion nicotine enhances DAT function in striatum.

**Effect of Nicotine on Exogenous DA Clearance in mPFC.** To assess the effect of nicotine on DAT function in the mesocorticolimbic system, a range of nicotine doses (0.1–0.8 mg/kg) was administered s.c. to separate groups of rats, and exogenous DA clearance in mPFC was determined. Pressure ejection of DA (200 μM) resulted in stable baseline signals with a maximal signal amplitude of 4.54 μM (±0.18 μM; mean ± S.E.M.), T80 value of 76.8 s (±4.62 s), and clearance rate of 0.085 μM/s (±0.011 μM/s; 33 independent experiments). Once baseline signals stabilized, groups of rats were injected with either a dose of nicotine (0.1–0.8 mg/kg, s.c.) or saline, and DA pressure ejection continued at 5-min intervals for 60 min. The effect of nicotine on maximal
signal amplitude, $T_{90}$, and clearance rate was determined at 5-min intervals and compared with the saline-injected control group (Fig. 4).

Analysis of the data from the saline-injected control group revealed that DA signal amplitude gradually decreased by ~13% during the first 55 min of the session (Fig. 4, top panel). At 60 min after the injection of saline, signal amplitude was significantly decreased by 15% ($p < 0.001$). $T_{90}$ was not different from baseline across the duration of the session (Fig. 4, middle panel). The DA clearance rate tended to decrease (~15% of baseline) across the session time course, but did not reach significance (Fig. 4, bottom panel). Thus, under control conditions, repeated DA application at 5-min intervals resulted in a small increase in DAT function across the 60-min session, similar to that observed in striatum.

When the effect of nicotine on both signal amplitude and clearance rate were analyzed by two-way ANOVA, significant interactions of dose and time were found ($F_{65,351} = 1.95$, $p < 0.001$ and $F_{65,351} = 1.74$, $p < 0.01$, respectively). No significant main effects or interactions were observed for $T_{90}$. Signal amplitude data were analyzed further by one-way ANOVAs at individual 5-min time points, revealing dose-related decreases in signal amplitude at 15 to 30 min and 50 to 60 min ($p < 0.05$; at 35 min, $p < 0.05$, one-tailed; Fig. 4, top panel). Dunnett’s post hoc analysis revealed that compared with the control group, DA signal amplitude was decreased in the 0.4 mg/kg group at 15 to 30 min ($p < 0.05$) and at the 35-min and 50- to 55-min time points ($p < 0.05$, one-tailed). Compared with the control group, a maximal decrease of 46% in signal amplitude was observed 30 min after injection of nicotine (0.4 mg/kg); and when the data at this time point were compared with the within-subject baseline, a 53% decrease in signal amplitude was observed. To assess the onset of nicotine effect, specific within-subject contrasts were performed comparing signal amplitude at each time point after injection to that at baseline. A significant ($p < 0.001$) decrease in signal amplitude was observed 10 min following nicotine injection.

With respect to clearance rate, one-way ANOVAs were conducted to assess the nicotine dose-response at each 5-min time point after injection (Fig. 4, bottom panel). Dose-related decreases in clearance rate were observed at 15 to 25 min and 60 min ($p < 0.05$) and at the 30-min and 50- to 55-min time points ($p < 0.05$, one-tailed) post injection. Dunnett’s post hoc analysis revealed that DA clearance rate was decreased in the 0.4 mg/kg group compared with the control group at 15 to 25 min ($p < 0.05$) and at 30 min ($p < 0.05$, one-tailed) after injection. Compared with the control group, clearance rate after 0.4 mg/kg decreased by a maximum of 33% at the 45-min time point; whereas a maximum decrease of 44% was observed when compared with the within-subject baseline response. The onset of the nicotine effect on clearance rate occurred at 10 min following nicotine injection (0.4 mg/kg, $p < 0.01$).

DA signal amplitude was also expressed as a cumulative change across the 60-min sampling period to evaluate the nicotine dose-response relationship (Fig. 5). Surprisingly, a U-shaped dose-response relationship was apparent. Only the 0.4 mg/kg dose of nicotine decreased DA signal amplitude in mPFC. Similarly, a U-shaped dose-response relationship was observed for clearance rate (data not shown). Thus, nicotine also modulates DAT function in mPFC; however, the dose-response pattern was different from that observed in striatum, and the time of onset and of maximal response occurred more rapidly after systemic nicotine injection in mPFC than in striatum.

**Effect of Mecamylamine on Nicotine-Induced Modulation of DAT Function in Striatum.** To ascertain whether the effect of nicotine on DAT function is mediated by nAChRs, the ability of mecamylamine to inhibit the nicotine-
induced increase in DA signal amplitude was determined. Pressure ejection of DA (200 μM) resulted in a maximal signal amplitude of 6.75 μM (±0.43 μM; mean ± S.E.M.), T_{50} value of 23.8 s (±4.60 s), and clearance rate of 0.902 μM/s (±0.119 μM/s; n = 26 independent experiments). Once baseline signals stabilized, groups of rats were injected with mecamylamine (1.5 mg/kg, s.c.) or saline and 40 min later with nicotine (0.8 mg/kg, s.c.) or saline. The dose of nicotine was chosen based on the above results from the dose-response analysis. DA pressure ejection continued every 5 min after mecamylamine or saline and every 5 min for 60 min after nicotine or saline. Data for the three parameters of DA clearance are illustrated in Fig. 6.

Since signal amplitude was the only parameter that detected the dose relationship for nicotine to enhance DAT function in striatum, a three-way ANOVA on signal amplitude data was performed to determine whether mecamylamine inhibited the effect of nicotine. A significant three-way interaction of mecamylamine × nicotine × time was found (F_{13,286} = 1.82, p < 0.05). As previously observed, the DA signal amplitude tended to gradually decrease across the 60-min session when compared with the baseline in the saline-saline control group; however, only at the 60-min time point did the decrease (25%) in signal amplitude reach significance. In the saline-nicotine group, the onset of the effect of nicotine to decrease signal amplitude (30%) occurred at 25 min after nicotine injection (within-subject comparisons, p < 0.01). At the 55-min time point, nicotine maximally decreased signal amplitude by 56% compared with baseline. At the latter time point, comparison of the saline-nicotine and saline-saline groups revealed that nicotine decreased signal amplitude by a maximum of 36%. With respect to the mecamylamine-saline group, no within-subject differences were observed across the time course of the session compared with the baseline, indicating that mecamylamine alone had no effect on DAT function. To determine whether mecamylamine inhibited the effect of nicotine, one-way ANOVAs compared the treatment groups at each time point beginning at the onset of nicotine’s effect (i.e., 25–60 min). At the 40-, 45-, 55-, and 60-min time points, signal amplitude in the mecamylamine-nicotine group was significantly greater than that in the saline-nicotine group (p < 0.05, one-tailed) and not different from that in the saline-saline group, indicating that mecamylamine completely inhibited the effect of nicotine on DAT function in striatum.

**Effect of Mecamylamine on Nicotine-Induced Modulation of DAT Function in mPFC.** To ascertain if nAChRs also mediate nicotine-induced modulation of DAT function in mPFC, the ability of mecamylamine to inhibit the nicotine-induced decrease in signal amplitude in striatum. Signal amplitude is shown in the top panel; T_{50} and clearance rate are shown in middle and bottom panels, respectively, for comparison. No significant differences were observed in T_{50} or clearance rate. After stable baseline signals were obtained in response to pressure ejection of DA (200 μM) at 5-min intervals, either mecamylamine (MEC; 1.5 mg/kg) or saline was injected s.c. and 40 min later nicotine (NIC; 0.8 mg/kg) or saline was injected s.c. (second injection indicated by the arrow). DA continued to be pressure-ejected at 5-min intervals for 60 min following the second injection. Data are expressed as mean and S.E.M. as a percentage of the respective baseline values as a function of time (min). Baseline values for each parameter are indicated under Results. Legend indicates treatment group designating first and second injections. (n = 6–7 rats/group). #, difference between mecamylamine/nicotine group and saline/nicotine group at the corresponding time point (p < 0.05; one-tailed); *, first time point at which nicotine decreased signal amplitude compared with the corresponding basal.
induced decrease in signal amplitude in urethane-anesthetized rats was determined. Stable baseline signals, obtained in response to pressure ejection of 200 μM DA, exhibited a maximal signal amplitude of 4.14 μM (±0.27 μM; mean ± S.E.M.), $T_{50}$ value of 80.5 s (±6.02 s), and clearance rate of 0.066 μM/s (±0.008 μM/s; $n = 24$ independent experiments). Once baseline signals stabilized, experiments were performed as described above, except that electrochemical measurements were made in mPFC (Fig. 7). A three-way ANOVA was performed to determine whether mecamylamine inhibited the nicotine-induced decrease in DA signal amplitude in mPFC. A significant interaction of mecamylamine x nicotine x time ($F_{13,260} = 2.08; p < 0.02$) was found. DA signal amplitude decreased to a maximum of 20% compared with baseline at 60 min following the second saline injection in the saline-saline group. Within-subjects comparison in the saline-nicotine group revealed that the onset of the nicotine effect occurred 15 min after nicotine injection, at which time a significant ($p < 0.001$) decrease in signal amplitude was observed compared with baseline response. At the 35-min time point, nicotine produced a maximal decrease in signal amplitude (45%) compared with the baseline; between groups comparison of the response in the saline-nicotine and saline-saline groups revealed a maximum decrease of 25% at this time point. The within-subjects comparisons in the mecamylamine-saline group revealed no differences across the session compared with baseline, indicating that mecamylamine alone had no effect on DAT function in mPFC. One-way ANOVA followed by Dunnett’s test compared data from the mecamylamine-nicot ine and saline-nicot ine groups at each time point from 15 to 60 min, when nicotine decreased signal amplitude compared with baseline. Signal amplitude was greater in the mecamylamine-nicot ine group than that in the saline-nicotine group at 20 to 30, 40, and 50 min ($p < 0.05$) and 35, 45, and 60 min ($p < 0.05$, one-tailed) of the session. Importantly, the response in the mecamylamine-nicot ine group was not different from that in the saline-saline group at these time points, indicating that mecamylamine completely inhibited the effect of nicotine on DAT function in mPFC. Thus, these results suggest that nicotine modulates DAT function via a nAChR-mediated mechanism in mPFC.

**Discussion**

The results from the current in vivo voltammetry study demonstrate that nicotine in a dose-related manner decreases DA signal amplitude in both striatum and mPFC, indicating that nicotine enhances DA clearance in both brain regions. However, across the same nicotine dose range, differential patterns in the nicotine dose-response curve were observed in striatum and mPFC. That is, a monophasic dose-response curve was observed in striatum, whereas a U-shaped curve was found in mPFC, both curves having a maximal 50% effect. Maximal effect occurred at a lower dose in mPFC than in striatum (0.4 and 0.8 mg/kg, respectively). In both brain regions, the onset of a significant effect on DA clearance occurred 10 to 15 min after nicotine injection; however, DA clearance tended to increase by 5 min after nicotine injection. Additionally, the time to maximal response was more rapid in mPFC compared with striatum (30 and 45 min, respectively). The time course of the response to nicotine in both brain regions is in good agreement with pharmacokinetic data showing a maximal nicotine concentration in rat brain at 5 min after peripheral nicotine injection and a brain $t_{1/2}$ of 52 min (Ghosheh et al., 1999). Nevertheless, the pat-
tern of the nicotine dose-response curve in the present study was different between mPFC and striatum, with mPFC showing greater sensitivity to nicotine.

The current results support and extend previous findings, showing that systemically administered nicotine increases DA clearance in several dopaminergic terminal regions, including mPFC and striatum (current study) and nucleus accumbens (Hart and Ksir, 1996). The latter results are surprising since stimulation of nAChRs results in depolarization of the plasma membrane (Calabresi et al., 1989), and depolarization of the membrane generally decreases DA transport velocity (Sonders et al., 1997). However, this was not the case with nicotine. The current results demonstrate a dose-related nicotine-induced enhancement of DAT function in striatum and mPFC and extend the findings of Hart and Ksir (1996) in nucleus accumbens.

The present study also demonstrates that the nicotine-induced enhancement of DA clearance in both mPFC and striatum was inhibited by pretreatment of the rats with mecamylamine, a nonselective nAChR antagonist (Varanda et al., 1985). These results suggest that nicotine stimulates nAChRs to increase DAT function in these brain regions. In the current study, mecamylamine had no effect on its own, but inhibited the effect of nicotine on DA clearance in both striatum and mPFC. The current results are in agreement with the work of Hart and Ksir (1996), who also reported no effect of mecamylamine alone on DAT function in nucleus accumbens. The observation that mecamylamine had no effect alone suggests that nAChRs, which modulate DAT function in these brain regions, are not tonically activated.

The involvement of distinct nAChR subtypes in striatum and mPFC provides a likely explanation for the differential nicotine dose-response pattern observed in the current study. Recent studies have demonstrated the presence of multiple mRNAs for nAChR subunits (α2-α7 and β2-β4) and their respective proteins in DA cell bodies in both substantia nigra and ventral tegmental area; however, differences in the relative abundance of these subunits in substantia nigra and ventral tegmental area have also been reported (Klink et al., 2001; Azam et al., 2002; Zoli et al., 2002; Wooltorton et al., 2003). The nAChRs expressed in the nigrostriatal and mesocorticolimbic DA systems depend on the specific combinations of subunits forming functional nAChRs. Pairwise expression of nAChR subunits in Xenopus oocytes initially revealed characteristic pharmacological profiles, i.e., relative sensitivity and responsiveness to a range of nicotinic ligands (Luetje and Patrick, 1991). Inclusion of a third type of subunit (e.g., α5 with α3 and β2 subunits) in similar expression systems further altered the physiological response, calcium permeability, and desensitization characteristics of the expressed nAChR subtypes (Gerzanich et al., 1998). Characterization of the physiological response of individual neurons in midbrain slices revealed four different patterns of nAChR-mediated currents, revealing the complexity of native nAChRs, which purportedly contained as many as four different subunits (Klink et al., 2001).

Although the specific subunit composition of nAChR modulating DAT function in either striatum or mPFC is not known, the nAChR subtype modulating DAT function in mPFC may be more sensitive to nicotine than the specific nAChR subtype modulating DAT function in striatum, since the nicotine dose producing an enhancement of DA clearance is lower in mPFC than in striatum. The current results show that in both striatum and mPFC, 0.1 and 0.3 mg/kg produce no effect on DAT function; however, 0.4 mg/kg enhances DAT function in mPFC, whereas 0.8 mg/kg enhances DAT function in striatum. Thus, the descending portion of the dose-response in mPFC resembles the dose-response in striatum, but the curve from mPFC is shifted to the left of that from striatum. Doses of nicotine above 0.8 mg/kg were not examined in the current study, since such doses elicit seizures that may have confounded the results. Thus, the differential pattern of response observed in the present study in mPFC and striatum with respect to nAChR-mediated modulation of DAT function is likely the result of stimulation of distinct nAChR subtypes.

An alternative explanation for the differential nicotine dose-response relationships in striatum and mPFC is the lower dopaminergic terminal density in mPFC compared with striatum, and the decreased number of DAT per terminal in mPFC compared with striatum (Sesack et al., 1998). It may be that a higher dose of nicotine is required to observe the modulation of DAT function in striatum simply due to the greater number of DAT protein in striatum compared with mPFC.

Another potential explanation for the difference in regional dose-response is that the local neuronal circuitry is different between these two brain regions, i.e., different afferents impinge on the dopaminergic terminals in striatum and mPFC potentially providing differential regulation of DAT function. In this regard, the U-shaped function in mPFC may be the result of nicotine-induced stimulation of an additional neurotransmitter system in the mPFC. The result of activation of the additional neurotransmitter may have opposed the nAChR-mediated enhancement of DAT function. For example, high concentrations of nicotine have been shown to activate α7 nAChRs, resulting in glutamate release in the frontal cortex (Schilstrom et al., 2000; Marchi et al., 2002). Stimulation of metabotropic glutamate receptors has been reported to decrease DAT function (Page et al., 2001). Thus, activation of α7 receptors indirectly through glutamate neurotransmission could result in the inhibition of DAT function, counteracting activation of the high affinity heteromeric nAChRs, which enhance DAT function.

Alternatively, nAChRs may indirectly modulate DAT function through activation of neural circuitry at the cell body level. Local administration of nicotine into the substantia nigra and ventral tegmental area has been shown to evoke DA release in striatum and nucleus accumbens, respectively, via stimulation of nAChRs in the cell body region (Blaha and Winn, 1993; Sziraki et al., 2002). Additionally, the effect of peripheral administration of nicotine to increase DA release in the nucleus accumbens determined using microdialysis was inhibited by local administration of mecamylamine into the ventral tegmental area (Sziraki et al., 2002). Thus, it seems plausible that in the current study, peripherally administered nicotine may be acting at nAChRs at the level of the cell body to modulate DAT function at the terminal. Furthermore, different nAChR subtypes expressed at the cell body may be responsible for the different dose-response patterns observed in mPFC and striatum with respect to DA clearance.

In both striatum and mPFC, the mechanism by which nicotine modulates DAT function may be via nAChR-induced...
augmentation of DAT trafficking to the presynaptic terminal membrane consistent with an increase in DA clearance. The relatively rapid nicotine-induced increase in DA clearance suggests that new synthesis of DAT protein is not responsible. Rather, the time course of response is consistent with trafficking of intracellular stores of DAT protein to the terminal membrane. Cocaine, another drug of abuse, has been shown to dynamically regulate DAT function by increasing DAT trafficking to the plasma membrane in cells expressing human DAT (Little et al., 2002). In contrast, amphetamines diminished DAT localization at the plasma membrane in human DA expressing cells (Saunders et al., 2000) and in rat striatal dopaminergic terminals (Fleckenstein et al., 1997). Investigation of the effect of nicotine on DAT trafficking is warranted based on the enhanced DA clearance using in vivo voltammetry in the current study.

Due to the lower DAT density and decreased number of DAT per terminal in mPFC compared with striatum, metabolism and diffusion likely play a larger role in clearing DA from the extracellular space in mPFC under physiological conditions. However, following pharmacological treatment with nicotine, enhanced DAT function in mPFC would be predicted to have a large impact on dopaminergic transmission. Nicotine enhancement of DAT function would result in conditions. However, following pharmacological treatment with nicotine, enhanced DAT function in mPFC would be predicted to have a large impact on dopaminergic transmission. Nicotine enhancement of DAT function would result in more efficient DA clearance from the extracellular space, and cortical function would be disinhibited. Thus, the ability of nAChRs to modulate DAT function, and thereby extracellular DA concentration, may have physiological importance with respect to nicotine enhancement of cognitive processes such as attention, learning, and memory, as well as important clinical relevance with respect to schizophrenia and drug abuse.

References


Rezvani AH, Bushnell PJ, and Levin ED (2002) Effects of nicotine and...


Address correspondence to: Dr. Linda P. Dwoskin, College of Pharmacy, University of Kentucky, Rose Street, Lexington, KY 40536. E-mail: ldwoskin@uky.edu