Unique Regulation Profile of Prostaglandin E₁ on Adhesion Molecule Expression and Cytokine Production in Human Peripheral Blood Mononuclear Cells

HIDEO KOHKA TAKAHASHI, HIROMI IWAGAKI, RYUJI TAMURA, DONG XUE, MASAHIRO SANO, SHUJI MORI, TADASHI YOSHINO, NORIAKI TANAKA, and MASAHIRO NISHIBORI

Departments of Pharmacology (H.K.T., S.M., M.N.), Tumour Biology (H.K.T., H.I., R.T., D.X., N.T.), and Pathology (M.S., T.Y.), Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

ABSTRACT

In the present study, we examined the effects of prostaglandin E₁ (PGE₁) on the expression of intercellular adhesion molecule (ICAM)-1, B7.1, B7.2, CD40, and CD40 ligand (CD40L) on peripheral blood mononuclear cells (PBMC) using fluorescence-activated cell sorting analysis as well as its effects on cytokine production using enzyme-linked immunosorbent assay. Whereas no inhibitor of spontaneous expression of adhesion molecules was reported, we found that PGE₁ inhibited spontaneous ICAM-1, B7.2, and CD40 expression on monocytes in a concentration-dependent manner but had no effect on the expression of B7.1 and CD40L. Although interleukin (IL)-18 induced the expression of ICAM-1, B7.2, CD40, and CD40L, PGE₁ prevented IL-18-induced expression of ICAM-1, B7.2, and CD40. We examined the involvement of five subtypes of PGE₁ receptors (IP, EP1, EP2, EP3, and EP4) in the effect of PGE₁ on the expression of these adhesion molecules using subtype-specific agonists. Among EP receptor agonists, EP2 and EP4 receptor agonists inhibited IL-18-elicited ICAM-1, B7.2, and CD40 expression. ONO-1301 (IP receptor agonist) prevented the expression of ICAM-1, B7.2, and CD40 regardless of the presence of IL-18 with the same potency as PGE₁. The effect of a combination of ONO-1301 and 11-deoxy (D)-PGE₁ (EP2/EP4 receptor agonist) on ICAM-1, B7.2, and CD40 expression mimicked that of PGE₁. Moreover, PGE₁ inhibited the production of IL-12 and interferon-γ in PBMC in the presence and absence of IL-18, whereas PGE₁ induced IL-10 production. In conclusion, IP receptor and EP2/EP4 receptor play an important role in the action of PGE₁ on the expression of adhesion molecules on monocytes and cytokine production.

The induction of an immune response requires a coordinated collective cell-cell interaction, including ICAM-1/lymphocyte function-associated antigen-1, B7/CD28, and CD40/CD40L. The major function of PGE₁ has been known as vasodilatation and antiplatelet aggregation. The prostaglandin family plays important roles in the regulation of immune responses. It has been reported that IL-18-induced adhesion molecule expression was mediated through nuclear factor-κB and phosphatidylinositol (PI) 3-kinase in monocytes and T-cells (Matsumoto et al., 1997; Kojima et al., 1999).

PGE₁ is one of the prostanoids synthesized from linoleic acid in vivo and differs from the products of the arachidonate cascade. The major function of PGE₁ has been known as vasodilatation and antiplatelet aggregation. The prostaglandin family plays important roles in the regulation of immune responses through various receptors. Receptor binding experiments to determine the affinity of prostaglandins for eight types of receptors (DP, IP, TP, FP, EP1, EP2, EP3, EP4) expressed in cultured Chinese hamster ovary (CHO) cells therefore is capable of influencing the development of innate immune responses. It has been reported that IL-18-induced adhesion molecule expression was mediated through nuclear factor-κB (NF-κB) and phosphatidylinositol (PI) 3-kinase in monocytes and T-cells (Matsumoto et al., 1997; Kojima et al., 1999).
clearly showed that PGE$_1$ had high affinity for IP receptor in addition to EP1, EP2, EP3, and EP4 receptors, whereas PGE$_2$ had a high affinity for FP, EP1, EP2, EP3, and EP4 receptors (Narumiya et al., 1999). The EP2 and EP4 receptors are coupled to G$_i$ and mediate the increase in cAMP (Narumiya et al., 1999). The IP receptor has also been found to stimulate adenylate cyclase; however, expression studies revealed that it may couple with multiple signaling pathways including PI response and Ca$^{2+}$ mobilization (Namba et al., 1994). In fact, PGI$_2$, an IP receptor agonist, has been demonstrated to induce the elevation of free Ca$^{2+}$ concentration in several cultured cell lines (Watanabe et al., 1991). Despite the clear difference in the receptor activation profile of PGE$_1$ and PGE$_2$, there is little information about the action characteristics of PGE$_1$ on particular immune responses. Previously, we reported that PGE$_2$ inhibited IL-18-induced expression of ICAM-1 and B7.2 on human monocytes through the stimulation of EP2 and EP4 receptors (Takahashi et al., 2002a). These effects of PGE$_2$ on adhesion molecules in turn modulated the production of IL-12, tumor necrosis factor (TNF)-α, and IFN-γ in PBMC (Takahashi et al., 2002a); however, little is known about the pharmacological action of PGE$_1$ on adhesion molecule expression on monocytes and the differences between the effects of PGE$_1$ and PGE$_2$ on the cell-cell interaction and cytokine production profiles.

In the present study, we examined the effect of PGE$_1$ on the expression of ICAM-1, B7.1, B7.2, CD40, and CD40L as well as the production of IL-12, IFN-γ, and IL-10 in human PBMC in the presence or absence of IL-18 to clarify a functional role of PGE$_1$ and the differences between PGE$_1$ and PGE$_2$ using prostaglandin receptor subtype-selective agonists. Interestingly, we found that PGE$_1$ had a distinct action profile compared with that of PGE$_2$. We also found that the stimulation of IP receptor had a unique effect on adhesion molecule expression and cytokine production.

Materials and Methods

Reagents and Drugs. Recombinant human IL-18 was purchased from Medical & Biological Laboratories, Inc. (Nagoya, Japan). PGE$_1$, ONO-1301, ONO-D1-004, ONO-AE1-259-01, ONO-AE-248, ONO-AE1-329, and 11-deoxy (D)-PGE1 were kindly provided by Ono Pharmaceutical Co. Ltd. (Tokyo, Japan). For flow cytometric analysis, FITC-conjugated mouse IgG1 mAb against CD40L (BD Biosciences). The data are expressed as the relative fluorescence intensity values.

Preparation of Isolated Monocytes. PBMC were prepared as described under Isolation of PBMC. Separation of monocytes from PBMC was conducted by counterflow centrifugal elutriation using the SRR6Y elutriation system and a rotor equipped with a 4.5-ml chamber (Hitachi Koki Co., Ltd, Tokyo, Japan). PBMC resuspended at 5 to 10 x 107 cells in 10 ml of PBS supplemented with 1% (v/v) fetal calf serum were injected at an initial flow rate of 10 ml/min at 4°C with a rotor speed of 2000 rpm. The flow rate was gradually increased, and the cell fractions were collected serially as follows: fraction 1 (fr. 1), 200 ml at 10 ml/min; fr. 2, 200 ml at 12 ml/min; fr. 3, 200 ml at 14 ml/min; fr. 4, 200 ml at 16 ml/min; and fr. 5, 200 ml at 18 ml/min. The cell population of each fraction was determined by flow cytometry with FITC-conjugated anti-CD14 Ab (monocytes), PE-conjugated anti-CD3 Ab (T-cells) and PE-conjugated anti-CD19 Ab (B-cells). Fraction 2 contained 65% T-cells and 20% B-cells but less than 5% monocytes. Both fr. 3 and 4 contained 85% monocytes but less than 5% T- and B-cells. These two fractions were used as the monocyte-rich fractions. The other fractions contained less than 5% monocytes and T- and B-cells.

Flow Cytometric Analysis. PBMC and isolated monocytes (1 x 106 cells/ml) were incubated with IL-18, PGE$_1$, and IP and EP receptor agonists for 24 h at 37°C in a 5% CO$_2$/air mixture under different conditions. The cells (5 x 105 cells/sample) were washed once with washing buffer (PBS supplemented with 2.5% normal horse serum, 0.1% NaN$_3$, and 0.01 M HEPES, pH 7.3). The changes in expression of human leukocyte antigens (ICAM-1, B7.1, B7.2, CD40, and CD40L) on monocytes were examined by double-labeling flow cytometry using a combination of anti-CD14 Ab with anti-ICAM-1 Ab, anti-B7.1 Ab, anti-B7.2 Ab, anti-CD40 Ab, or anti-CD40L Ab. Then, the cells were incubated with 1 µg of FITC-conjugated anti-ICAM-1 Ab, anti-B7.1 Ab, anti-B7.2 Ab, anti-CD40 Ab or anti-CD40L Ab or CMC, and PE-conjugated anti-CD14 Ab for 20 min at 4°C. After washing, the cells were fixed with 2% paraformaldehyde and analyzed with FACS Calibur (BD Biosciences, San Jose, CA), and data were processed using the CELL QUEST program (BD Biosciences). The data are expressed as the relative fluorescence intensities against CMC. The results are the means ± S.E.M. of five donors.

Cytokine Assay. PBMC (1 x 106 cells/ml) were incubated with PGE$_1$, PGE$_2$, and IP and EP receptor agonists in the presence or absence of IL-18 for 24 h at 37°C in a humidified atmosphere of 5% CO$_2$/air. After culture, the cell-free supernatant fractions were assayed for IL-12 (p70), IFN-γ, and IL-10 protein as described previously (Takahashi et al., 2002a).

Statistical Analysis. The statistical significance of differences was evaluated by analysis of variance followed by Tukey’s test. P < 0.05 was considered statistically significant.

Results

Dose-Response Relationship of the Effects of PGE$_1$ on ICAM-1, B7.2, CD40, and CD40L Expression on Human Monocytes. The effects of PGE$_1$ (0–10$^{-6}$ M) on the changes in expression of ICAM-1, B7.1, B7.2, CD40, and CD40L on monocytes in the presence and absence of IL-18 (100 ng/ml) were determined by double-staining flow cytometry 24 h after the incubation of PBMC (Fig. 1A). PGE$_1$ concentration-dependently inhibited the spontaneous expression of ICAM-1, B7.2, and CD40 on monocytes (Fig. 1A) but had no effect on the expression of B7.1 and CD40L (data not shown). IC$_{50}$ values for the inhibitory effect of PGE$_1$ on the expression of ICAM-1, B7.2, and CD40 were estimated to be 10, 3, and 7 nM, respectively. IL-18 (100 ng/ml) up-regulated the expression of ICAM-1, B7.2, and CD40 on monocytes. PGE$_2$, IL-18-induced ICAM-1, B7.2, and CD40 expression in a concentration-dependent manner (Fig. 1B).
B7.2, and CD40 expression on human monocytes. A, PBMC (1 × 10^6/ml) were incubated with different concentrations (0, 10^{-9}, 10^{-8}, 10^{-7}, and 10^{-6} M) of PGE_1 for 24 h. At the end of the culture, PBMC (5 × 10^6/ml) were double-stained with antibodies (CD14, ICAM-1, B7.2, CD40, or CMC) as described under Materials and Methods. B, PBMC were incubated with IL-18 (100 ng/ml) and PGE_1 for 24 h. The results are the means ± S.E.M. of five donors.

1B) but had no effect on the expression of B7.1 and CD40L (data not shown). IC_{50} values for the inhibitory effect of PGE_1 on the expression of ICAM-1, B7.2, and CD40 induced by IL-18 were estimated to be 5, 3, and 3 nM, respectively.

Effects of IP and EP Receptor Agonists on ICAM-1, B7.1, B7.2, CD40, and CD40L Expression on Human Monocytes. To determine which PGE_1 receptor subtypes (IP, EP1, EP2, EP3, EP4) are involved in the effects of PGE_1 on ICAM-1, B7.1, B7.2, CD40, and CD40L expression, we examined the effects of EP receptor agonists (10^{-6} M) on ICAM-1, B7.1, B7.2, CD40, and CD40L expression on monocytes in the presence and absence of IL-18 (100 ng/ml) after a 24-h incubation of PBMC (Fig. 2). ONO-AE1-329 (EP4 receptor agonist) (Suzawa et al., 2000; Kitagawa et al., 2001) also had no effect on the expression of these adhesion molecules regardless of the presence of IL-18 (data not shown). ONO-AE1-259-01 (EP2 receptor agonist) and ONO-AE1-329 (EP4 receptor agonist) (Suzawa et al., 2000; Kitagawa et al., 2001) also had no effect on the expression of these five adhesion molecules in the absence of IL-18 (Fig. 2, A–C). ONO-AE1-259-01 and ONO-AE1-329 inhibited ICAM-1, B7.2, and CD40 expression on monocytes in the presence of IL-18 (Fig. 2, D–F) but had no effect on the expression of B7.1 and CD40L (data not shown). IC_{50} value for the inhibitory effect of ONO-AE1-259-01 on the expression of ICAM-1 was estimated to be 100 nM (Fig. 2). Moreover, we found that ONO-1301 (IP receptor agonist) (Hayashi et al., 1997; Imawaka and Sugiyama, 1998) strongly prevented the expression of ICAM-1, B7.2, and CD40 in the presence and absence of IL-18 (Fig. 2) but had no effect on the expression of B7.1 and CD40L (data not shown). IC_{50} value for the inhibitory effect of ONO-1301 on the expression of ICAM-1 was estimated to be 3 nM (Fig. 2).

Effect of PGE_1, IP, EP2, and EP4 Agonist on ICAM-1 Expression on Isolated Monocytes. The effects of PGE_1, IP, EP2, and EP4 agonist (10^{-6} M) on the expression of ICAM-1 on isolated monocytes were examined (Fig. 3). ONO-1301 as well as PGE_1 prevented the expression of ICAM-1 in the presence and absence of IL-18 (100 ng/ml). Although EP2 and EP4 agonists inhibited the expression of ICAM-1 in the presence of IL-18, these two agonists did not do so in the absence of IL-18.

Effect of ONO-1301 and 11-Deoxy-PGE_1 on ICAM-1, B7.2, and CD40 Expression on Human Monocytes. We examined the effects of ONO-1301 and 11-D-PGE_1 (IP2/EP4 receptor agonist) on IL-18-induced ICAM-1, B7.2, and CD40 expression (Fig. 4). In the presence (10^{-8} M) and absence of ONO-1301, 11-D-PGE_1 (10^{-6} M) concentration-dependently suppressed the expression of ICAM-1, B7.2, and CD40. At the concentration (10^{-6} M) of ONO-1301, 11-D-PGE_1 had no effect on the expression of these adhesion molecules (Fig. 4A). On the other hand, ONO-1301 (10^{-6} M)}
Unique Effect of PGE$_1$ on ICAM-1, B7.2, and CD40 Expression

Discussion

In vascular endothelial cells, PGE$_1$ suppressed TNF-α-induced ICAM-1 and vascular cell adhesion molecule-1 expression, leading to the inhibition of interaction between leukocytes and endothelial cells (Weias et al., 1995; Natori et al., 1997; Iwata et al., 1999). However, little is known about the effect of PGE$_1$ on the cell-cell interaction between monocytes and natural killer cells. In the present study, we found that PGE$_1$ concentration-dependently inhibited the spontaneous expression of ICAM-1, B7.2, and CD40 in the presence of IL-18 (Fig. 1B). Previously, we found that PGE$_2$ inhibited the IL-18-induced expression of ICAM-1 and B7.2, but had no effect on the expression of ICAM-1, B7.1, and B7.2 in the absence of IL-18 (Takahashi et al., 2002a). The effects of PGE$_1$ on the spontaneous expression of the three adhesion molecules were in contrast to those of PGE$_2$.

It was reported that PGE$_1$ binds to EP2 and EP4 receptor (Fan and Chapkin, 1998), whereas earlier studies suggested the existence of distinct receptors for PGE$_1$ from those for PGE$_2$ (Datta-Ray et al., 1983; Kanba et al., 1991). The IP receptor-selective agonist ONO-1301, whose affinity for IP receptor was expressed in CHO cells, was reported to be almost the same as that of PGE$_1$ (Narumiya et al., 1999). In the present study, we found that ONO-1301 (IP receptor agonist) suppressed the expression of ICAM-1, B7.2, and CD40 in the absence of IL-18; however, EP receptor agonists had no effect on these adhesion molecules’ expression (Fig. 2). ONO-1301, ONO-AE1-259-01 (EP2 receptor agonist), and ONO-AE1-329 (EP4 receptor agonist) inhibited IL-18-induced ICAM-1, B7.2, and CD40 expression (Fig. 2), but ONO-DI-004 (EP1 receptor agonist) and ONO-AE-248 (EP3 receptor agonist) had no effect on the expression of adhesion molecules (data not shown). The affinity of PGE$_1$ for IP receptor is higher than that for EP2 and EP4 receptor (Narumiya et al., 1999). The inhibitory effect of ONO-1301 (10$^{-6}$ M) on the expression of ICAM-1 showed a significant difference from that of ONO-AE1-259-01 (10$^{-6}$ M) and ONO-AE1-329 (10$^{-6}$ M) (Tukey’s test). As shown in Fig. 4, increasing concentrations of 11-D-PGE$_1$ had no additive inhibitory effect on the expression of adhesion molecules in the absence of ONO-1301 (10$^{-6}$ M), whereas ONO-1301 additively inhibited the expression of ICAM-1, B7.2, and CD40 in the presence of 11-D-PGE$_1$ (10$^{-6}$ M). Therefore, the stimulation of IP receptor might be involved in the effect of PGE$_1$ both in the presence and absence of IL-18, and the stimulation of EP2.

Fig. 3. The effect of PGE$_1$, IP, EP2, and EP4 agonist on ICAM-1 expression on isolated monocytes. Isolated monocytes (1 × 106/ml) were incubated with PGE$_1$, ONO-AE1-259-01 (EP2 receptor agonist), ONO-AE1-329 (EP4 receptor agonist), and ONO-1301 (IP receptor agonist) (10$^{-6}$ M) in the presence and absence of IL-18 (100 ng/ml) for 24 h. The cells were stained with anti-ICAM-1 antibody or CMC. The results are the means ± S.E.M. of five donors.

Fig. 4. Increasing concentrations of 11-D-PGE$_1$ had no additive inhibitory effect on the expression of adhesion molecules in the absence of ONO-1301 (10$^{-6}$ M), whereas ONO-1301 additively inhibited the expression of ICAM-1, B7.2, and CD40 in the presence of 11-D-PGE$_1$ (10$^{-6}$ M). Therefore, the stimulation of IP receptor might be involved in the effect of PGE$_1$ both in the presence and absence of IL-18, and the stimulation of EP2.
Fig. 5. The dose-response relationship for the effects of PGE1 and PGE2 on cytokine responses in PBMC. PBMC (1 x 10^6 cells/ml) were incubated with increasing concentrations of 11-D-PGE1 (EP2/EP4 receptor agonist) for 24 h in the presence of IL-18 (100 ng/ml) and three different concentrations (0, 10^-8, 10^-7, and 10^-6 M) of ONO-1301 (IP receptor agonist) and were stained with antibodies (ICAM-1, B7.2, and CD40) or CMC. B. PBMC were incubated with increasing concentrations of ONO-1301 (IP receptor agonist) for 24 h in the presence of IL-18 and three different concentrations (0, 10^-8, 10^-6 M) of 11-D-PGE1. The results are the means ± S.E.M. of five donors. *, P < 0.05, **, P < 0.01 compared with the corresponding value in the presence of IL-18 alone. The error bars smaller than the symbols are not shown.

Fig. 4. The effect of ONO-1301 and 11-deoxy-PGE1 on IL-18-induced ICAM-1, B7.2, and CD40 expression on human monocytes. A, PBMC (1 x 10^6/ml) were incubated with increasing concentrations of 11-D-PGE1 (EP2/EP4 receptor agonist) for 24 h in the presence of IL-18 (100 ng/ml) and three different concentrations (0, 10^-8, 10^-7, and 10^-6 M) of ONO-1301 (IP receptor agonist) and were stained with antibodies (ICAM-1, B7.2, and CD40) or CMC. B, PBMC were incubated with increasing concentrations of ONO-1301 (IP receptor agonist) for 24 h in the presence of IL-18 and three different concentrations (0, 10^-8, 10^-6 M) of 11-D-PGE1. The results are the means ± S.E.M. of five donors. *, P < 0.05, **, P < 0.01 compared with the corresponding value in the presence of IL-18 alone. The error bars smaller than the symbols are not shown.
and EP4 receptor might be involved in the effect of PGE₁ in the presence of IL-18 as in the case of PGE₂ (Takahashi et al., 2002a) (Fig. 2). Although the expression of IP receptor on human monocytes was observed (Li et al., 1997), it remained unclear whether the direct stimulation of IP receptors on monocytes caused the change in adhesion molecules expression on monocytes in PBMC preparation. In the present study, we found for the first time that the stimulation of IP receptor on isolated monocytes suppressed the expression of ICAM-1 (Fig. 3).

The effects of exogenous PGE₁ and PGE₂ on cytokine production in human PBMC stimulated with concanavalin A or LPS were reported (Dooper et al., 2002). The production of TNF-α, IFN-γ, and, to a lesser extent, IL-10 was inhibited by PGE₁ and PGE₂, whereas IL-6 remained unaffected and IL-10 production was increased (Dooper et al., 2002). In LPS-stimulated PBMC, TNF-α production was inhibited by PGE₁ and PGE₂, whereas IL-6 remained unaffected and IL-10 production was increased (Dooper et al., 2002). In the previous (Takahashi et al., 2002a) and the present study (Fig. 5), both PGE₂ and PGE₄ inhibited IL-18-induced IL-12 and IFN-γ production but induced IL-10 production. In IL-18-treated PBMC, ONO-1301, ONO-AE1-259-01, and ONO-AE1-329 suppressed the production of IL-12 and IFN-γ (Fig. 6), whereas ONO-DI-004 and ONO-AE-248 did not (data not shown). Therefore, the stimulation of IP, EP2, and EP4 receptor might contribute to the inhibition of IL-18-elicited cytokine production. In the experiment on the effect of ONO-1301 and 11-D-PGE₁ on IL-18-induced cytokine production in human PBMC, A, PBMC (1 x 10⁷/ml) were incubated with increasing concentrations of 11-D-PGE₁ (EP2/EP4 receptor agonist) for 24 h in the presence of IL-18 (100 ng/ml) and two different concentrations (0, 10⁻⁸, 10⁻⁶ M) of ONO-1301 (IP receptor agonist). At the end of the culture, the levels of IL-12 (p70), IFN-γ, and IL-10 in the conditioned media were determined by ELISA. The results are the means ± S.E.M. of five donors. *, P < 0.05, **, P < 0.01 compared with the corresponding value in the medium. #, P < 0.05, ##, P < 0.01 compared with the corresponding value in the presence of IL-18 alone. The error bars smaller than the symbols are not shown.

Fig. 6. The effects of EP2, EP4, and IP receptor agonists on cytokine production in human PBMC. PBMC (1 x 10⁷/ml) were incubated with increasing concentrations of ONO-AE1-259-01 (EP2 receptor agonist), ONO-AE1-329 (EP4 receptor agonist), and ONO-1301 (IP receptor agonist) for 24 h in the presence and absence of IL-18 (100 ng/ml). At the end of the culture, the levels of IL-12 (p70), IFN-γ, and IL-10 in the conditioned media were determined by ELISA. The results are the means ± S.E.M. of five donors. *, P < 0.05, **, P < 0.01 compared with the corresponding value in the medium. #, P < 0.05, ##, P < 0.01 compared with the corresponding value in the presence of IL-18 alone. The error bars smaller than the symbols are not shown.

Fig. 7. The effect of ONO-1301 and 11-deoxy-PGE₁ on IL-18-induced cytokine production in human PBMC. A, PBMC (1 x 10⁷/ml) were incubated with increasing concentrations of 11-D-PGE₁ (EP2/EP4 receptor agonist) for 24 h in the presence of IL-18 and three different concentrations (0, 10⁻⁸, 10⁻⁶ M) of ONO-1301 (IP receptor agonist). At the end of the culture, the levels of IL-12 (p70), IFN-γ, and IL-10 in the conditioned media were determined by ELISA. B, PBMC were incubated with increasing concentrations of ONO-1301 for 24 h in the presence of IL-18 and three different concentrations (0, 10⁻⁸, 10⁻⁶ M) of 11-D-PGE₁. The results are the means ± S.E.M. of five donors. *, P < 0.05, **, P < 0.01 compared with the corresponding value in the presence of IL-18 alone. The error bars smaller than the symbols are not shown.
production (data not shown), suggesting that PGE₁ might inhibit IL-18-initiated cytokine production through regulating the expression of ICAM-1, B7.2, and CD40 as suggested for PGE₂ action (Takahashi et al., 2002a) (Fig. 5).

It is known that IP receptor shows a high affinity for PGE₁ but not for PGE₂ (Narumiya et al., 1999). The biological effects of IP receptor stimulation include anti-thrombosis (Murata et al., 1997) and vasodilator actions, which have been targeted therapeutically to treat pulmonary hypertension (Tuder et al., 1999; Hoeper et al., 2000). The expression of IP-receptor mRNA has been shown in various mouse organs, including neurons, megakaryocytes, and the smooth muscles of arteries (Oida et al., 1995). However, the function of IP receptor in monocytes remains unknown. The IP receptor is coupled to Gₛ and G₂₁ proteins, leading to not only a rise in cAMP levels but also PI responses in CHO cells (Namba et al., 1994). The elevation of cAMP inhibits NF-κB activation in the human monocytic cell line THP-1 (Delgado and Ganea, 2001). Dibutyryl cAMP, a membrane-permeable cAMP analog, inhibited the expression of ICAM-1 and B7.2 on IL-18-treated monocytes; however, it had no effect on the expression of ICAM-1 and B7 in the absence of IL-18 (Takahashi et al., 2002a). Thus, there might be an IP receptor signaling other than the regulation of activation of NF-κB by cAMP in the absence of IL-18.

On the other hand, PGE₁ suppressed the production of IFN-γ even in the absence of IL-18, whereas under the same condition PGE₂ stimulated the production of IFN-γ (Fig. 5). ONO-1301 also inhibited the spontaneous production of IFN-γ, whereas ONO-AE1-259-01 and ONO-AE1-329 inhibited the production of IFN-γ (Fig. 6), suggesting that the effect of PGE₁ on the production of IFN-γ in the absence of IL-18 might depend on the stimulation of IP receptor. PGE₁ is reported to stimulate cAMP production more effectively than PGE₂ (Knudson et al., 1986; Salvatorli et al., 1992). Dibutryl cAMP induced the production of IFN-γ in the absence of IL-18 (data not shown). These results suggested that the regulation of production of IFN-γ by PGE₁ might be in a cAMP-independent manner. Because anti-ICAM-1, anti-B7.2, and anti-CD40 antibodies had no effect on production of cytokines in the absence of IL-18 (data not shown), it is unclear whether the inhibitory effect of ONO-1301 or PGE₁ on IFN-γ production in the absence of IL-18 depends on the suppression of ICAM-1, B7.2, and CD40 expression.

IL-18 has been considered a mediator of inflammatory disease such as allograft rejection after organ transplantation, rheumatoid arthritis, or hepatitis (Saha et al., 1999; Affleck et al., 2001; Yamoto et al., 2002). Using a mouse model, recent studies reported that PGE₁ reduced ischemia-reperfusion injury following lung transplantation (de Perrot et al., 2015), whereas ONO-AE1-259-01 and ONO-AE1-329 inhibited IP formation, cyclic GMP formation and intracellular calcium mobilization and the other mediating cyclic AMP formation. Two possibly distinct prostaglandin E₁ receptors in N1E-115 clone: one mediating inositol triphosphate formation, cyclic GMP formation and intracellular calcium mobilization and the other mediating cyclic AMP formation. J Neurochem 107:152–159.

References

Address correspondence to: Dr. Masahiro Nishibori, Department of Pharmacology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan. E-mail: mbori@md.okayama-u.ac.jp.