Unique Regulation Profile of Prostaglandin E₁ on Adhesion Molecule Expression and Cytokine Production in Human Peripheral Blood Mononuclear Cells

HIDEO KOHKA TAKAHASHI, HIROMI IWAGAKI, RYUJI TAMURA, DONG XUE, MASAHIRO SANO, SHUJI MORI, TADASHI YOSHINO, NORIAKI TANAKA, and MASAHIRO NISHIBORI

Departments of Pharmacology (H.K.T., S.M., M.N.), Tumour Biology (H.K.T., H.I., R.T., D.X., N.T.), and Pathology (M.S., T.Y.), Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

Received July 2, 2003; accepted September 15, 2003

ABSTRACT

In the present study, we examined the effects of prostaglandin E₁ (PGE₁) on the expression of intercellular adhesion molecule (ICAM)-1, B7.1, B7.2, CD40, and CD40 ligand (CD40L) on peripheral blood mononuclear cells (PBMC) using fluorescence-activated cell sorting analysis as well as its effects on cytokine production using enzyme-linked immunosorbent assay. Whereas no inhibitor of spontaneous expression of adhesion molecules was reported, we found that PGE₁ inhibited spontaneous ICAM-1, B7.2, and CD40 expression on monocytes in a concentration-dependent manner but had no effect on the expression of B7.1 and CD40L. Although interleukin (IL)-18 induced the expression of ICAM-1, B7.2, CD40, and CD40L, PGE₁ prevented IL-18-induced expression of ICAM-1, B7.2, and CD40. We examined the involvement of five subtypes of PGE₁ receptors (IP, EP1, EP2, EP3, and EP4) in the effect of PGE₁ on the expression of these adhesion molecules using subtype-specific agonists. Among EP receptor agonists, EP2 and EP4 receptor agonists inhibited IL-18-elicited ICAM-1, B7.2, and CD40 expression. ONO-1301 (IP receptor agonist) prevented the expression of ICAM-1, B7.2, and CD40 regardless of the presence of IL-18 with the same potency as PGE₁. The effect of a combination of ONO-1301 and 11-deoxy (D)-PGE₁ (EP2/EP4 receptor agonist) on ICAM-1, B7.2, and CD40 expression mimicked that of PGE₁. Moreover, PGE₁ inhibited the production of IL-12 and interferon-γ in PBMC in the presence and absence of IL-18, whereas PGE₁ induced IL-10 production. In conclusion, IP receptor and EP2/EP4 receptor play an important role in the action of PGE₁ on the expression of adhesion molecules on monocytes and cytokine production.

The induction of an immune response requires a coordinated collective cell-cell interaction, including ICAM-1/lymphocyte function-associated antigen-1, B7/CD28, and CD40/CD40L (Durie et al., 1994; Ranger et al., 1996; Camacho et al., 2001). IL-18, a Th1 cytokine, plays a key role in regulating IFN-γ production (Okamura et al., 1995). IL-18 augments T-cell activation in conjunction with cell-cell interaction through adhesion molecules (Takahashi et al., 2002a, b) and therefore is capable of influencing the development of innate immune responses. It has been reported that IL-18-induced adhesion molecule expression was mediated through nuclear factor-κB (NF-κB) and phosphatidylinositol (PI) 3-kinase in monocytes and T-cells (Matsumoto et al., 1997; Kojima et al., 1999).

PGE₁ is one of the prostanoids synthesized from linoleic acid in vivo and differs from the products of the arachidonate cascade. The major function of PGE₁ has been known as vasodilatation and antiplatelet aggregation. The prostaglandin family plays important roles in the regulation of immune responses through various receptors. Receptor binding experiments to determine the affinity of prostaglandins for eight types of receptors (DP, IP, TP, FP, EP1, EP2, EP3, EP4) expressed in cultured Chinese hamster ovary (CHO) cells

ABBREVIATIONS: ICAM, intercellular adhesion molecule; CD40L, CD40 ligand; IL, interleukin; IFN, interferon; NF-κB, nuclear factor-κB; PI, phosphatidylinositol; PGE₁, prostaglandin E₁; ONO-1301, 7,8-dihydro-5-{[E]-[(3-pyridyl)benzylidene]aminooxy}ethyl-1-naphthoxy)acetic acid; ONO-DI-004, 17S,2,5-ethano-6-oxo-17,20-dimethyl prostaglandin E₁; ONO-AE1-259-01, 11,15-O-dimethyl prostaglandin E₂; ONO-AE-248, 16S,9-deoxy-9β-chloro-15-deoxy-16-hydroxy-17,17-trimethylene-19,20-didehydro prostaglandin F₂; ONO-AE1-329, 16-(3-methoxymethyl)phe- nyl-ω-tetranor-3,7-dithia prostaglandin E₁; CHO, Chinese hamster ovary; TNF, tumor necrosis factor; PBMC, peripheral blood mononuclear cells; 11-D-PGE₁, 11-deoxy-PGE₁; FITC, fluorescein isothiocyanate; mAb, monoclonal antibody; PE, phycoerythrin; CMC, class-matched control; Ab, antibody; fr., fraction; ELISA, enzyme-linked immunosorbent assay; LPS, lipopolysaccharide.

DOI: 10.1124/jpet.103.056432. 1188
clearly showed that PGE₁ had high affinity for IP receptor in addition to EP₁, EP₂, EP₃, and EP₄ receptors, whereas PGE₂ had a high affinity for FP, EP₁, EP₂, EP₃, and EP₄ receptors (Narumiya et al., 1999). The EP₂ and EP₄ receptors are coupled to Gₛ and mediate the increase in cAMP (Namba et al., 1994). In fact, PGI₂, an IP receptor agonist, has been demonstrated to induce the elevation of free Ca²⁺ concentration in several cultured cell lines (Watanabe et al., 1991). Despite the clear difference in the receptor activation profile of PGE₁ and PGE₂, there is little information about the action characteristics of PGE₁ on particular immune responses. Previously, we reported that PGE₂ inhibited IL-18-induced expression of ICAM-1 and B7.2 on human monocytes through the stimulation of EP₂ and EP₄ receptors (Takahashi et al., 2002a). These effects of PGE₂ on adhesion molecules in turn stimulation of ICAM-1 and B7.2 on human monocytes through the presence of IL-12, tumor necrosis factor (TNF)-α, and IFN-γ in PBMC (Takahashi et al., 2002a); however, little is known about the pharmacological action of PGE₀ on adhesion molecule expression on monocytes and the differences between the effects of PGE₁ and PGE₂ on the cell-cell interaction and cytokine production profiles.

In the present study, we examined the effect of PGE₁ on the expression of ICAM-1, B7.1, B7.2, CD40, and CD40L as well as the production of IL-12, IFN-γ, and IL-10 in human PBMC in the presence or absence of IL-18 to clarify a functional role of PGE₁ and the differences between PGE₁ and PGE₂ using prostaglandin receptor subtype-selective agonists. Interestingly, we found that PGE₁ had a distinct action profile compared with that of PGE₂. We also found that the stimulation of IP receptor had a unique effect on adhesion molecule expression and cytokine production.

Materials and Methods

Reagents and Drugs. Recombinant human IL-18 was purchased from Medical & Biological Laboratories, Inc (Nagoya, Japan). PGE₁, ONO-1301, ONO-DI-004, ONO-AE1-259-01, ONO-AE-248, ONO-AE1-329, and 11-deoxy (D)-PGE₁ were kindly provided by Ono Pharmaceutical Co. Ltd. (Tokyo, Japan). For flow cytometric analysis, FITC-conjugated mouse IgG₁ mAb against ICAM-1/CD54 (6.5B5) and PE-conjugated anti-CD14 mAb were purchased from DAKO (Glostrup, Denmark). FITC-conjugated mouse IgG₁ mAb against B7.1 (MAB104) was purchased from Immunotech (Marseille, France). FITC-conjugated mouse IgG₁ mAb against B7.2 (2331FUN-1) and CD40 (5C3) were purchased from BD PharMingen (San Diego, CA). FITC-conjugated mouse IgG₁ mAb against CD40L/ CD154 was purchased from Ancel (Bayport, MN). FITC-conjugated AE1-329, and 11-deoxy (D)-PGE₁ were kindly provided by Ono Pharmaceutical Co. Ltd. (Tokyo, Japan). PGE₁, PGI₂, an IP receptor agonist, has been demonstrated to induce the elevation of free Ca²⁺ concentration in several cultured cell lines (Watanabe et al., 1991). Despite the clear difference in the receptor activation profile of PGE₁ and PGE₂, there is little information about the action characteristics of PGE₁ on particular immune responses. Previously, we reported that PGE₂ inhibited IL-18-induced expression of ICAM-1 and B7.2 on human monocytes through the stimulation of EP₂ and EP₄ receptors (Takahashi et al., 2002a). These effects of PGE₂ on adhesion molecules in turn stimulation of ICAM-1 and B7.2 on human monocytes through the presence of IL-12, tumor necrosis factor (TNF)-α, and IFN-γ in PBMC (Takahashi et al., 2002a); however, little is known about the pharmacological action of PGE₀ on adhesion molecule expression on monocytes and the differences between the effects of PGE₁ and PGE₂ on the cell-cell interaction and cytokine production profiles.

In the present study, we examined the effect of PGE₁ on the expression of ICAM-1, B7.1, B7.2, CD40, and CD40L as well as the production of IL-12, IFN-γ, and IL-10 in human PBMC in the presence or absence of IL-18 to clarify a functional role of PGE₁ and the differences between PGE₁ and PGE₂ using prostaglandin receptor subtype-selective agonists. Interestingly, we found that PGE₁ had a distinct action profile compared with that of PGE₂. We also found that the stimulation of IP receptor had a unique effect on adhesion molecule expression and cytokine production.

Isolation of PBMC. Normal human PBMC were obtained from human volunteers with their oral informed consent. Samples of 50 ml of peripheral blood were withdrawn from a forearm vein. PBMC were isolated from the buccal coat of 10 healthy volunteers by centrifugation on Ficoll-Paque (Pharmacia AB, Uppsala, Sweden) then washed three times in RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) supplemented with 10% (v/v) heat-inactivated fetal calf serum, 20 µg/ml kanamycin, and 100 µg/ml streptomycin and penicillin (Sigma-Aldrich). PBMC were suspended at a concentration of 1 × 10⁶ cells/ml in RPMI 1640 medium supplemented with 10% (v/v) heat-inactivated fetal calf serum.

Preparation of Isolated Monocytes. PBMC were prepared as described under Isolation of PBMC. Separation of monocytes from PBMC was conducted by counterflow centrifugal elutriation using the SRR6Y elutriation system and a rotor equipped with a 4.5 ml chamber (Hitachi Koki Co., Ltd., Tokyo, Japan). PBMC resuspended at 5 to 10 × 10⁶ cells in 10 ml of PBS supplemented with 1% (v/v) fetal calf serum were injected at an initial flow rate of 10 ml/min at 4°C with a rotor speed of 2000 rpm. The flow rate was gradually increased, and the cell fractions were collected serially as follows: fraction 1 (fr. 1), 200 ml at 10 ml/min; fr. 2, 200 ml at 12 ml/min; fr. 3, 200 ml at 14 ml/min; fr. 4, 200 ml at 16 ml/min; and fr. 5, 200 ml at 18 ml/min. The cell population of each fraction was determined by flow cytometry with FITC-conjugated anti-CD14 Ab (monocytes), PE-conjugated anti-CD3 Ab (T-cells) and PE-conjugated anti-CD19 Ab (B-cells). Fraction 2 contained 65% T-cells and 20% B-cells but less than 5% monocytes. Both fr. 3 and 4 contained 85% monocytes but less than 5% T- and B-cells. These two fractions were used as the monocyte-rich fractions. The other fractions contained less than 5% monocytes and T- and B-cells.

Flow Cytometric Analysis. PBMC and isolated monocytes (1 × 10⁶ cells/ml) were incubated with IL-18, PGE₁, and IP and EP receptor agonists for 24 h at 37°C in a 5% CO₂/air mixture under different conditions. The (5 × 10⁶ cells/sample) were washed once with washing buffer (PBS supplemented with 2.5% normal horse serum, 0.1% NaN₃, and 0.01 M HEPES, pH 7.3). The changes in expression of human leukocyte antigens (ICAM-1, B7.1, B7.2, CD40, and CD40L) on monocytes were examined by double-labeling flow cytometry using a combination of anti-CD14 Ab with anti-ICAM-1 Ab, anti-B7.1 Ab, anti-B7.2 Ab, anti-CD40 Ab, or anti-CD40L Ab. Then, the cells were incubated with 1 µg of FITC-conjugated anti-ICAM-1 Ab, anti-B7.1 Ab, anti-B7.2 Ab, anti-CD40 Ab or anti-CD40L Ab or CMC, and PE-conjugated anti-CD14 Ab for 20 min at 4°C. After washing, the cells were fixed with 2% paraformaldehyde and analyzed with FACS Calibur (BD Biosciences, San Jose, CA), and data were processed using the CELL QUEST program (BD Biosciences). The data are expressed as the relative fluorescence intensities against CMC. The results are the means ± S.E.M. of five donors.

Cytokine Assay. PBMC (1 × 10⁶ cells/ml) were incubated with PGE₁, PGE₂, and IP and EP receptor agonists in the presence or absence of IL-18 for 24 h at 37°C in a humidified atmosphere of 5% CO₂ in air. After culture, the cell-free supernatant fractions were assayed for IL-12 (p70), IFN-γ, and IL-10 protein as described previously (Takahashi et al., 2002a,b).

Statistical Analysis. The statistical significance of differences was evaluated by analysis of variance followed by Tukey’s test. *P < 0.05* was considered statistically significant.

Results

Dose-Response Relationship of the Effects of PGE₁ on ICAM-1, B7.2, CD40, and CD40L Expression on Human Monocytes. The effects of PGE₁ (0–10⁻⁶ M) on the changes in expression of ICAM-1, B7.1, B7.2, CD40, and CD40L on monocytes in the presence and absence of IL-18 (100 ng/ml) were determined by double-staining flow cytometry 24 h after the incubation of PBMC (Fig. 1A). PGE₁ concentration-dependently inhibited the spontaneous expression of ICAM-1, B7.2, and CD40 on monocytes (Fig. 1A) but had no effect on the expression of B7.1 and CD40L (data not shown). IC₅₀ values for the inhibitory effect of PGE₁ on the expression of ICAM-1, B7.2, and CD40 were estimated to be 10, 3, and 7 nM, respectively. IL-18 (100 ng/ml) up-regulated the expression of ICAM-1, B7.2, and CD40 were estimated to be 10, 3, and 7 nM, respectively. IL-18 (100 ng/ml) up-regulated the expression of ICAM-1, B7.2, and CD40 on monocytes. PGE₂ inhibited IL-18-induced ICAM-1, B7.2, and CD40 expression in a concentration-dependent manner (Fig.
B7.1, B7.2, and CD40 expression on human monocytes. A, PBMC (1 \times 10^6/ml) were incubated with different concentrations (0, 10^{-9}, 10^{-8}, 10^{-7}, and 10^{-6} M) of PGE_1 for 24 h. At the end of the culture, PBMC (5 \times 10^6/ml) were double-stained with antibodies (CD14, ICAM-1, B7.2, CD40, or CMC) as described under Materials and Methods. B, PBMC were incubated with IL-18 (100 ng/ml) and PGE_1 for 24 h. The results are the means \pm S.E.M. of five donors. * P < 0.05, ** P < 0.01 compared with the value in the absence of PGE_1.

Fig. 1. Dose-response relationships for the effects of PGE_1 on ICAM-1, B7.2, and CD40 expression on human monocytes. A, PBMC (1 \times 10^6/ml) were incubated with different concentrations (0, 10^{-9}, 10^{-8}, 10^{-7}, and 10^{-6} M) of PGE_1, for 24 h. At the end of the culture, PBMC (5 \times 10^6/ml) were double-stained with antibodies (CD14, ICAM-1, B7.2, CD40, or CMC) as described under Materials and Methods. B, PBMC were incubated with IL-18 (100 ng/ml) and PGE_1 for 24 h. The results are the means \pm S.E.M. of five donors. * P < 0.05, ** P < 0.01 compared with the value in the absence of PGE_1.

1B) but had no effect on the expression of B7.1 and CD40L (data not shown). IC_{50} values for the inhibitory effect of PGE_1 on the expression of ICAM-1, B7.2, and CD40 induced by IL-18 were estimated to be 5, 3, and 3 nM, respectively.

Effects of IP and EP Receptor Agonists on ICAM-1, B7.1, B7.2, CD40, and CD40L Expression on Human Monocytes. To determine which PGE_1 receptor subtypes (IP, EP1, EP2, EP3, EP4) are involved in the effects of PGE_1 on ICAM-1, B7.1, B7.2, CD40, and CD40L expression, we examined the effects of IP receptor agonists (ON-1301, 11-D-PGE_1, 1301, and EP4 agonists) on ICAM-1, B7.2, and CD40 expression (Fig. 2). ONO-1301 (0–10^{-10}) and 11-D-PGE_1 (0–10^{-10}) strongly prevented the expression of ICAM-1, B7.2, and CD40 in the presence and absence of IL-18 (data not shown). IC_{50} value for the inhibitory effect of ONO-AE1-259-01 on the expression of ICAM-1 was estimated to be 100 nM (Fig. 2). Moreover, we found that ONO-1301 (IP receptor agonist) (Hayashi et al., 1997; Imawaka and Sugiyama, 1998) strongly prevented the expression of ICAM-1, B7.2, and CD40 in the presence and absence of IL-18 (data not shown). IC_{50} value for the inhibitory effect of ONO-AE1-259-01 on the expression of ICAM-1 was estimated to be 3 nM (Fig. 2).

Effect of ONO-1301 and 11-Deoxy-PGE_1 on ICAM-1, B7.2, and CD40 Expression on Human Monocytes. We examined the effects of ONO-1301 and 11-D-PGE_1 (EP2/EP4 receptor agonist) on IL-18-induced ICAM-1, B7.2, and CD40 expression (Fig. 4). In the presence (0–10^{-8}) and absence of ONO-1301, 11-D-PGE_1 (0–10^{-6}) concentration-dependently suppressed the expression of ICAM-1, B7.2, and CD40. At the concentration (0–10^{-6}) of ONO-1301, 11-D-PGE_1 had no effect on the expression of these adhesion molecules (Fig. 4A). On the other hand, ONO-1301 (0–10^{-6})
inhibited the expression of ICAM-1, B7.2, and CD40 in the presence (10^{-8} and 10^{-6} M) and absence of 11-D-PGE_1 (Fig. 4B).

Dose-Response Relationship of the Effects of PGE_1 and PGE_2 on Cytokine Responses in PBMC. The effect of PGE_1 and PGE_2 (0–10^{-6} M) on the production of IL-12, IFN-γ, and IL-10 in PBMC treated with and without IL-18 was determined by ELISA after 24 h of culture (Fig. 5). In the absence of IL-18 stimulus, PGE_1 prevented the spontaneous production of IFN-γ and IL-10 in a concentration-dependent manner, but had no effect on the production of IL-12. PGE_2 induced the production of IFN-γ without IL-12 production but inhibited the production of IL-10. The same concentration of PGE_1 and PGE_2 inhibited IL-12 and IFN-γ production in IL-18-stimulated PBMC, but induced IL-10 production. The IC_{50} value for the inhibitory effect of PGE_1 on the production of IL-12 induced by IL-18 was estimated to be 5 nM.

Inhibition of IL-18-Induced Cytokine Responses in PBMC by IP and EP Receptor Agonists. We examined the effect of IP, EP1, EP2, EP3, and EP4 receptor agonist on the production of IL-12, IFN-γ, and IL-10 in PBMC in the presence and absence of IL-18 (Fig. 6). Whereas ONO-AE1-259-01 and ONO-AE1-329 induced the production of IFN-γ in the absence of IL-18, ONO-1301 inhibited it. ONO-1301, ONO-AE1-259-01, and ONO-AE1-329 inhibited IL-10 production but did not affect IL-12 production. In IL-18-treated PBMC, ONO-1301, ONO-AE1-259-01, and ONO-AE1-329 prevented the production of IL-12 and IFN-γ but induced IL-10 production. ONO-DI-004 and ONO-AE-248 had no effect on the expression of these cytokines regardless of the presence of IL-18 (data not shown).

Effect of ONO-1301 and 11-Deoxy-PGE_1 on Cytokine Responses in PBMC. The effect of ONO-1301 and 11-D-PGE_1 on IL-18-induced IL-12, IFN-γ, and IL-10 production was investigated (Fig. 7). In the presence (10^{-6} M) and absence of ONO-1301, 11-D-PGE_1 (0–10^{-6} M) concentration-dependently inhibited IL-12 and IFN-γ production but induced IL-10 production. At the concentration (10^{-6} M) of ONO-1301, 11-D-PGE_1 did not affect the production of IL-12, IFN-γ, and IL-10 (Fig. 7A). In the presence (10^{-6} and 10^{-8} M) and absence of 11-D-PGE_1, ONO-1301 (0–10^{-6} M) inhibited IL-12 and IFN-γ production (Fig. 7B).

Discussion.

In vascular endothelial cells, PGE_1 suppressed TNF-α-induced ICAM-1 and vascular cell adhesion molecule-1 expression, leading to the inhibition of interaction between leukocytes and endothelial cells (Wei et al., 1995; Natori et al., 1997; Iwata et al., 1999). However, little is known about the effect of PGE_1 on the cell-cell interaction between monocytes and T/natural killer cells. In the present study, we found that PGE_1 concentration-dependently inhibited the spontaneous expression of ICAM-1, B7.2, and CD40 on monocytes 24 h after the start of incubation (Fig. 1A). PGE_1 also prevented the expression of ICAM-1, B7.2, and CD40 in the presence of IL-18 (Fig. 1B). Previously, we found that PGE_2 inhibited the IL-18-induced expression of ICAM-1 and B7.2, but had no effect on the expression of ICAM-1, B7.1, and B7.2 in the absence of IL-18 (Takahashi et al., 2002a). The effects of PGE_1 on the spontaneous expression of the three adhesion molecules were in contrast to those of PGE_2.

It was reported that PGE_1 binds to EP2 and EP4 receptor (Fan and Chapkin, 1998), whereas earlier studies suggested the existence of distinct receptors for PGE_1 from those for PGE_2 (Datta-Ray et al., 1983; Kanba et al., 1991). The IP receptor-selective agonist ONO-1301, whose affinity for IP receptor was expressed in CHO cells, was reported to be almost the same as that of PGE_1 (Narumiya et al., 1999). In the present study, we found that ONO-1301 (IP receptor agonist) suppressed the expression of ICAM-1, B7.2, and CD40 in the absence of IL-18; however, EP receptor agonists had no effect on these adhesion molecules’ expression (Fig. 2). ONO-1301, ONO-AE1-259-01 (EP2 receptor agonist), and ONO-AE1-329 (EP4 receptor agonist) inhibited IL-18-induced ICAM-1, B7.2, and CD40 expression (Fig. 2), but ONO-DI-004 (EP1 receptor agonist) and ONO-AE-248 (EP3 receptor agonist) had no effect on the expression of adhesion molecules (data not shown). The affinity of PGE_1 for IP receptor is higher than that for EP2 and EP4 receptor (Narumiya et al., 1999). The inhibitory effect of ONO-1301 (10^{-6} M) on the expression of ICAM-1 showed a significant difference from that of ONO-AE1-259-01 (10^{-6} M) and ONO-AE1-329 (10^{-6} M) (Tukey’s test). As shown in Fig. 4, increasing concentrations of 11-D-PGE_1 had no additive inhibitory effect on the expression of adhesion molecules in the presence of ONO-1301 (10^{-6} M), whereas ONO-1301 additively inhibited the expression of ICAM-1, B7.2, and CD40 in the presence of 11-D-PGE_1 (10^{-6} M). Therefore, the stimulation of IP receptor might be involved in the effect of PGE_1 both in the presence and absence of IL-18, and the stimulation of EP2
Fig. 5. The dose-response relationship for the effects of PGE$_1$ and PGE$_2$ on cytokine responses in PBMC. PBMC (1 × 106 cells/ml) were incubated with increasing concentrations (0, 10$^{-6}$, 10$^{-7}$, and 10$^{-8}$ M) of PGE$_1$ (A) or PGE$_2$ (B) in the presence and absence of IL-18 (100 ng/ml) for 24 h. At the end of the culture, the levels of IFN-γ, IL-10, and IL-12 (pg/ml) in the conditioned medium were determined by ELISA. The results are the means ± S.E.M. of five donors. *, $P < 0.05$, **, $P < 0.01$ compared with the corresponding value in the medium. #, $P < 0.05$, ##, $P < 0.01$ compared with the corresponding value in the presence of IL-18 alone. The error bars smaller than the symbols are not shown.

Fig. 4. The effect of ONO-1301 and 11-deoxy-PGE$_1$ on IL-18-induced ICAM-1, B7.2, and CD40 expression on human monocytes. A, PBMC (1 × 106 cells/ml) were incubated with increasing concentrations (0, 10$^{-8}$, 10$^{-6}$ M) of ONO-1301 (IP receptor agonist) for 24 h in the presence of IL-18 (100 ng/ml) and three different concentrations (0, 10$^{-6}$, 10$^{-8}$ M) of ONO-1301 (IP receptor agonist) and were stained with antibodies (ICAM-1, B7.2, and CD40) or CMC. B, PBMC were incubated with increasing concentrations of ONO-1301 (IP receptor agonist) for 24 h in the presence of IL-18 and three different concentrations (0, 10$^{-6}$, 10$^{-8}$ M) of 11-D-PGE$_1$. The results are the means ± S.E.M. of five donors. *, $P < 0.05$, **, $P < 0.01$ compared with the corresponding value in the presence of IL-18 alone. The error bars smaller than the symbols are not shown.
and EP4 receptor might be involved in the effect of PGE₁ in the presence of IL-18 as in the case of PGE₂ (Takahashi et al., 2002a) (Fig. 2). Although the expression of IP receptor on human monocytes was observed (Li et al., 1997), it remained unclear whether the direct stimulation of IP receptors on monocytes caused the change in adhesion molecules expression on monocytes in PBMC preparation. In the present study, we found for the first time that the stimulation of IP receptor on isolated monocytes suppressed the expression of ICAM-1 (Fig. 3).

The effects of exogenous PGE₁ and PGE₂ on cytokine production in human PBMC stimulated with concanavalin A or LPS were reported (Dooper et al., 2002). The production of TNF-α, IFN-γ, and, to a lesser extent, IL-10 was inhibited by PGE₁ and PGE₂ in concanavalin A-stimulated PBMC concomitant with unaffected IL-2 levels (Dooper et al., 2002). In LPS-stimulated PBMC, TNF-α production was inhibited by PGE₁ and PGE₂, whereas IL-6 remained unaffected and IL-10 production was increased (Dooper et al., 2002). In the previous (Takahashi et al., 2002a) and the present study (Fig. 5), both PGE₂ and PGE₃ inhibited IL-18-induced IL-12 and IFN-γ production but induced IL-10 production. In IL-18-treated PBMC, ONO-1301, ONO-AE1-259-01, and ONO-AE1-329 suppressed the production of IL-12 and IFN-γ (Fig. 6), whereas ONO-DI-004 and ONO-AE-248 did not (data not shown). Therefore, the stimulation of IP, EP2, and EP4 receptor might contribute to the inhibition of IL-18-elicited cytokine production. In the experiment on the effect of ONO-1301 and 11-D-PGE₁ on IL-18-induced cytokine production in human PBMC, A, PBMC (1 × 10⁶/ml) were incubated with increasing concentrations of 11-D-PGE₁ (EP2/EP₄ receptor agonist) for 24 h in the presence of IL-18 (100 ng/ml) at ASPET Journals on July 12, 2017 jpet.aspetjournals.org Downloaded from
production (data not shown), suggesting that PGE₁ might inhibit IL-18-initiated cytokine production through regulating the expression of ICAM-1, B7.2, and CD40 as suggested for PGE₂ action (Takahashi et al., 2002a) (Fig. 5).

It is known that IP receptor shows a high affinity for PGE₁ but not for PGE₂ (Narumiya et al., 1999). The biological effects of IP receptor stimulation include anti-thrombosis (Murata et al., 1997) and vasodilator actions, which have been targeted therapeutically to treat pulmonary hypertension (Tuder et al., 1999; Hoepfer et al., 2000). The expression of IP-receptor mRNA has been shown in various mouse organs, including neurons, megakaryocytes, and the smooth muscles of arteries (Oida et al., 1995). However, the function of IP receptor in monocytes remains unknown. The IP receptor is coupled to G₅ and Gₛ proteins, leading to not only a rise in cAMP levels but also PI responses in CHO cells (Namba et al., H9253).

IL-18 might depend on the stimulation of IP receptor. PGE₁ might have some beneficial therapeutic effects on IL-18-initiated diseases. In conclusion, PGE₁ is a potent inhibitor of IL-18-initiated diseases. In conclusion, PGE₁ is a potent inhibitor of IL-18 and that the immunomodulatory effects of PGE₁ and PGE₂ might be distinct in cytokine production. We have compared the effect of autacoids such as PGE₂, histamine, and epinephrine (Takahashi et al., 2002a,b, 2003; Nishibori et al., 2003) on the expression of adhesion molecules. PGE₁ was shown to be more powerful than PGE₂ in exerting anti-inflammatory effects in a rat adjuvant arthritis model (Zurier et al., 1977) and mouse lupus model (Zurier, 1982). Taking the present findings along with these results, PGE₁ might have distinct biological activities from PGE₂, as well as histamine and epinephrine. Since the role of endogenous PGE₁ in immune response is not well understood, further effects of PGE₁ on immune response should be examined.

Acknowledgments
We thank Ono Pharmaceutical Co. Ltd. (Tokyo, Japan) for generous gifts of PGE₁, ONO-1301, ONO-DI-004, ONO-AE1-259-01, ONO-AE-248, ONO-AE1-329, and 11-deoxy-PGE₁. We thank Yumiko Shiota and Yuki Onoda for excellent technical assistance.

References

Dibutyryl cAMP, a membrane-permeable cAMP analog, inhibited the expression of ICAM-1 and B7 in the absence of IL-18 (Takahashi et al., 2002a). Thus, there might be IP-receptor signaling other than the regulation of activation of NF-κB by cAMP in the absence of IL-18.

On the other hand, PGE₁ suppressed the production of IFN-γ even in the absence of IL-18, whereas under the same condition PGE₂ stimulated the production of IFN-γ (Fig. 5). ONO-1301 also inhibited the spontaneous production of IFN-γ, whereas ONO-AE1-259-01 and ONO-AE1-329 inhibited the production of IFN-γ (Fig. 6), suggesting that the effect of PGE₁ on the production of IFN-γ in the absence of IL-18 might depend on the stimulation of IP receptor. PGE₁ is reported to stimulate cAMP production more effectively than PGE₂ (Knudson et al., 1986; Salvatori et al., 1992). Dibutyryl cAMP induced the production of IFN-γ in the absence of IL-18 (data not shown). These results suggested that the regulation of production of IFN-γ by PGE₁ might be in a cAMP-independent manner. Because anti-ICAM-1, anti-B7.2, and anti-CD40 antibodies had no effect on production of cytokines in the absence of IL-18 (data not shown), it is unclear whether the inhibitory effect of ONO-1301 or PGE₁ on IFN-γ production in the absence of IL-18 depends on the suppression of ICAM-1, B7.2, and CD40 expression.

IL-18 has been considered a mediator of inflammatory disease such as allogrejection after organ transplantation, rheumatoid arthritis, or hepatitis (Saha et al., 1999; Affleck et al., 2001; Yamoto et al., 2002). Using a mouse model, recent studies reported that PGE₁ reduced ischemia-reperfusion injury following lung transplantation (de Perrot et al., 2001), collagen induced arthritis (Moriuchi-Murakami et al., 2000), and LPS-induced liver injury (Mokuno et al., 1999). In addition to the fact that PGE₁ possesses anti-inflammatory properties and the ability to modulate vascular reactivity, PGE₁ might have some beneficial therapeutic effects on IL-18-initiated diseases. In conclusion, PGE₁ is a potent inhibitor of ICAM-1, B7.2, and CD40 expression as well as IFN-γ production in the presence and absence of IL-18 through the stimulation of IP and EP2/EP4 receptor. These results indicate that the changes by PGE₁ might result in the diminution of IFN-γ-dependent events irrespective of the presence of IL-18 and that the immunomodulatory effects of PGE₁ and PGE₂ might be distinct in cytokine production.