Effect of Chronic Treatment with Vitamin E on Endothelial Dysfunction in a Type I in Vivo Diabetes Mellitus Model and in Vitro

S. DHEIN, A. KABAT, A. OLBRICH, P. RÖSEN, H. SCHRÖDER, and F.-W. MOHR
University of Leipzig, Heart Centre Leipzig, Clinic for Cardiac Surgery, Leipzig, Germany

Received October 17, 2002; accepted December 11, 2002

ABSTRACT
Diabetes mellitus often leads to generalized vasculopathy. Because of the pathophysiological role of free radicals we investigated the effects of vitamin E. Twenty-eight rats were rendered diabetic by streptozotocin injection and were fed either with a diet low (10 mg/kg of chow), medium (75 mg/kg of chow) or high amounts of vitamin E (1300 mg/kg of chow). Nine age-matched nondiabetic rats receiving 75 mg of vitamin E/kg chow served as controls. After 7 months, mesenteric microcirculation was investigated. Smooth muscle contractile function was not altered in diabetic versus nondiabetic vessels. Endothelial function was significantly reduced in diabetics; relaxation upon 1 μM acetylcholine was reduced by 50% in diabetics with a medium and high vitamin E diet. In vitamin E-deprived rats, a complete loss of endothelium-dependent relaxation was observed. Instead, acetylcholine elicited vasoconstriction. L-N^G-Nitro-arginine-induced vasoconstriction was reduced in small arteries in diabetics, which was not prevented by vitamin E, but was aggravated by vitamin E deprivation. In a subchronic endothelial cell culture model, cells were cultivated with 5 or 20 mM D-glucose for an entire cell culture passage (4 days) with or without vitamin E (20 mg/l versus 0.01 mg/l). Hyperglycemia led to significant reduction in basal and ATP-stimulated nitric oxide (NO)-production. Hyperglycemia-induced reduction in basal NO-release was significantly prevented by vitamin E, whereas reduction in stimulated NO-release was not influenced. NADPH-diaphorase activity was reduced by 40% by hyperglycemia, which was completely prevented by vitamin E. We conclude that 1) vitamin E has a potential to prevent partially hyperglycemia-induced endothelial dysfunction, 2) under in vivo conditions vitamin E deficiency enhanced diabetic endothelial dysfunction dramatically, and 3) positive effects of vitamin E may be attenuated with a longer disease duration.

An interesting problem in internal medicine is the development of generalized angiopathy in the course of diabetes mellitus. This is associated with the occurrence of endothelial dysfunction (Oyama et al., 1986; Cameron and Cotter, 1992; Pieper and Peltier, 1995; Olbrich et al., 1996; Pieper et al., 1997). It is known that hyperglycemia can lead to changes in endothelial nitric-oxide production or release; short-term or subacute exposition to high D-glucose was shown to result in enhanced NO release (Graier et al., 1993, 1996), whereas chronic exposure during an entire cell culture passage leads to reduced NO-release (Olbrich et al., 1999) and diminished calcium signals (Salmeh and Dhein, 1998). It was hypothesized by these authors and by others (Pieper et al., 1997; Du et al., 2000; Nishikawa et al., 2000) that free radicals may be involved in the pathophysiology of endothelial dysfunction. Meanwhile, there is broad evidence supporting an important pathophysiological role for free radicals in diabetic vasculopathy (Spitaler and Graier, 2002). Thus, a central role for superoxide overproduction in the pathobiochemistry of the main pathways of hyperglycemia-related changes, i.e., activation of protein kinase C, accumulation of advanced glycation end products, and increased flux of glucose through the aldose reductase pathway, has been shown (Nishikawa et al., 2000). Recently, Rösen and colleagues (1998) showed that vitamin E can prevent reduction in endothelial NO release in diabetic rat heart. They postulated that during hyperglycemia the endothelium may be deprived with L-arginine or that an increased NO level may be inactivated by increased levels of free radicals (Rösen et al., 1998). In addition, Cinar and colleagues (2001) showed in a 3-month model of diabetes a protective effect of 1000 mg of vitamin E/kg of chow against endothelial dysfunction. Similarly, a protective effect was shown in a mouse model (Göcmen et al., 2000) or in a...
2-month rat model (Keegan et al., 1995). In support of these studies, Kunisaki and colleagues (1995) showed in a rat model that diabetes led to enhanced protein kinase C translocation and increased diacylglycerol formation, which both could be prevented by a 2-week vitamin E treatment in retinal vascular endothelial cells. In another diabetes rat model, vitamin E attenuated, but did not completely prevent, diabetes-induced endothelial dysfunction (Karassu et al., 1997a). Two-month, dietary, vitamin E supplementation in the diabetic rat reduced lipid peroxide levels (Karassu et al., 1997b). It remained unclear, however, whether such positive effects of vitamin E might be attenuated in models with longer duration of the disease.

Although vitamin E treatment was shown to prevent from thrombomodulin overproduction in diabetic patients (Gislinger et al., 1988), which has been suggested to indicate a possible vasoprotective effect, and although improvement of endothelial function in diabetic patients by vitamin E has been found (Skyrme-Jones et al., 2000), others failed to demonstrate a positive preventive effect of additional vitamin E in diabetes mellitus (Nickander et al., 1994; Dagenais et al., 2001; Lonn, 2001; Lonn et al., 2001).

Since diabetes is a chronic disease and most animal studies investigated a considerably short duration of diabetes (from 1 to 3 months), we wanted to know whether vitamin E influences vascular function in a long-term diabetes rat model of a 7-month duration, which is approximately a quarter of the normal life span of the rat. Furthermore, we wanted to elucidate the effects of vitamin E in a subchronic cell culture model of hyperglycemia, previously established by our group (Salameh and Dhein, 1998), with a duration of an entire cell culture passage (and not only 24 h as often used). Thus, the aims of our study were to test whether, in an in vivo type I diabetes mellitus rat model, vitamin E deprivation might worsen the development of endothelial dysfunction and whether vitamin E supplementation (medium and high) might prevent it. Furthermore, it should be investigated whether in a subchronic cell culture model chronic hyperglycemia leads to reduced endothelial NO production and whether this can be prevented by vitamin E.

Materials and Methods

In Vivo Study

All experiments were performed according to the ethical rules of the Council for International Organization of Medical Science and the German laws for animal welfare. We used a streptozotocin rat model of type I diabetes with a duration of diabetes of 7 months, as described (Dhein et al., 2000). Four experimental groups were investigated: 1) control animals without treatment (normal vitamin E alimentation, 75 mg/kg of chow) (n = 9), 2) diabetic animals without treatment (normal vitamin E alimentation, 75 mg/kg of chow) (n = 6), 3) diabetic animals receiving a vitamin E-enriched diet (1300 mg/kg of chow) (n = 8), and 4) diabetic animals receiving a vitamin E-deprived diet (0.55 mg/kg of chow) (n = 6). Vitamin E was supplied as α-tocopherol. Vitamin E plasma levels were 10 ± 1 mg/l in animals receiving medium vitamin E alimentation, 19 ± 2 mg/l in animals receiving a vitamin E-enriched diet, and 2.2 ± 1 mg/l in rats receiving a vitamin E-deprived diet. For comparison normal rat diets are supplemented with vitamin E ranging from 30 to 200 mg/kg of chow (so that 75 mg/kg of chow resembles a normal rat diet) (Lehr et al., 1999).

For induction of diabetes mellitus, six-week-old male Wistar Kyoto rats (140 ± 20 g) were rendered diabetic with an i.p. injection of streptozotocin (60 mg/kg b.w.), as described (Dhein et al., 2000). Two weeks after the induction of diabetes mellitus, animals were randomized to the treatments, i.e., no treatment, a vitamin E-enriched diet, or vitamin E-deprived diet. The animals did not receive an antioxidant treatment.

Vascular Function.

For functional measurements of smooth muscle and endothelial function, a mesenteric loop was isolated with the appertaining intestine (8 cm in length) according to the technique described earlier (Dhein et al., 1992, 2000; Olbrich et al., 1996). The mesenteric artery was cannulated and perfused with oxygenated Tyrode’s solution (161.02 mM Na+, 5.36 mM K+, 1.8 mM Ca2+, 1.05 mM Mg2+, 146.86 mM Cl−, 23.80 mM HCO3−, 0.42 mM H2PO4−, and 10.00 mM glucose, pH adjusted to 7.4; gassed with 95% O2 and 5% CO2). An 8-cm loop of the small intestine was ligated, and all side branches of the mesenteric vessels were sealed by ligation so that an isolated mesenteric fold with the appertaining intestine, and the perfusing arterial network was prepared. This preparation was fixed to a perfusion system with a constant perfusion pressure of 70 cm of H2O, which corresponds to the actual physiological perfusion pressure in the mesenteric artery in this model. Ten cannulas were inserted into the intestine to provide drainage. With the help of a microscope (Carl Zeiss GmbH, Jena, Germany) and a video camera (Sony, Tokyo, Japan), which was mounted behind the ocular of the microscope, the mesenteric vessels were displayed on a monitor (Sony). The total magnification was 240-fold. In the course of the experiments, pictures of the arteries were recorded. Vessel diameters were determined during the experiment directly on the screen and, after the experiments, re-evaluated in the digitalized pictures using a frame grabber board (Data Translation, Inc., Marlboro, MA) with JAVA software (Jandel Scientific, Erkrath, Germany). The vessel diameter was assessed by analyzing the first derivative of the gray level along a cross sectional line (orthogonal to the vessels longitudinal axis). The distance between the extremata corresponds to the vascular diameter. We classified microvessels according to the generation theory of Ley and colleagues (1986) as G1 vessels, which are the branch perfusing the isolated loop. The subsequent branches were classified as G2, G3, and G4 vessels, the latter being those vessels at the border between the mesenterium and gut. More details of the method are given by Olbrich et al. (1999).

After an equilibration period of 60 min to achieve a constant resting tone, vessels were preconstricted by infusion of 70 mM KCl (200 μM) followed by treatment with KCl (70 mM) or 1 μM gliceryl trinitrate (GTN) (20 min). After washout and reaching the preconstriction tone with 70 mM KCl alone, vessels were perfused with 70 mM KCl and 1 μM acetylcholine (20 min). After washout, the vessels were exposed to 3 μM 1-N6-nitro-arginine (20 min) for inhibition of NO synthase. KCl was used as constrictor since this was also used by others in diabetic rat mesenterial vessels (Ralevic et al., 1995; Van Buren et al., 1998; Misurkski et al., 2001) and was reported by these authors to be only weakly affected by diabetes.

We wanted to use a constrictor that is not or only weakly affected by diabetes. In accordance with the above-mentioned literature, KCl seems to be suitable. The response to methoxamine or other constrictors acting via receptors might be altered in diabetes if the signal transduction pathways or the receptors themselves are be affected (e.g., by advanced glycation end products). Thus, Van Buren et al. (1998) describe that the sensitivity for norepinephrine is altered in diabetes, whereas the sensitivity for KCl is not (or only weakly). Similarly, methoxamine-induced contraction is attenuated (Misurkski et al., 2001). It should be mentioned, however, that endothelium-derived hyperpolarizing factor-dependent relaxations might be affected by KCl.

Cell Culture Study

Cell Isolation and Cultivation.

In previous investigations, we established a subchronic cell culture model of hyperglycemia-induced endothelial dysfunction (Salameh and Dhein, 1998) using porcine aortic endothelial cells exposed to hyperglycemia for an entire cul-
ture cell passage (4 days). Therefore, porcine aortic endothelial cells were isolated and cultured according to Rosenthal and Gotlieb (1990), as previously described (Salameh et al., 1997). Briefly, the endothelial cells were harvested from porcine thoracic aorta using 1 mg/ml dispase, seeded (100,000 cells/cm²) in plastic 9.6-cm² Petri dishes (Nalge Nunc International, Wiesbaden, Germany), and cultured with M199 at 37°C, saturated humidity and 5% CO₂. After reaching confluence, the cells were passaged and seeded again. Purity of the cell culture was tested by uptake of 1,1'-diota
decy-1,3,3',3'-tetramethyldi-carbocyanine-acetylated low-density lipoprotein (DiI-Ac-FLD) (Voyta et al., 1984) and, for detecting contaminating smooth muscle cells, by staining of α-smooth muscle actin. At the start of the third passage, the cells were submitted to the various treatments. The different experimental protocols were carried out with cells of the same cell line for intracellular and extracellular experiments (i.e., all cells were derived from the same aorta) at the moment when they were seeded for third passage.

Thus, we used the following experimental groups: 5 mM d-glucose alone (n = 9), 5 mM glucose plus 15 mM l-glucose (for osmotic control) (n = 6), 5 mM d-glucose plus 20 mg/l vitamin E (α-tocopherol) (n = 6), 20 mM d-glucose (high d-glucose, "hyperglycemia") (n = 6), and 20 mM d-glucose plus 20 mg/l vitamin E (α-tocopherol) (n = 6). The specific treatment of the different control or experimental groups started at the third passage and lasted until the cells had reached confluence (3–4 days). As before, the medium was changed three times a week.

Histological Studies. For H&E staining, endothelial cell monolayers were washed three times with phosphate-buffered saline (PBS) (containing 137 mM NaCl, 2.68 mM KCl, 8.1 mM Na₂HPO₄, 1.47 mM KH₂PO₄, buffered at pH 7.4) and fixed in paraformaldehyde solution (4% paraformaldehyde in PBS) for 30 min at room temperature and incubated in the staining solution, containing 0.5 mM nitro blue tetrazolium, 1 mM β-NADPH, 0.5% Triton X-100, 50 mM Tris, and 75 mM NaCl, buffered at pH 8.0, for 20 h at 37°C. Thereafter, the preparations were washed three times in PBS and embedded in Karion F.

For quantitative analysis, the histologic specimens were viewed through a zoom microscope (Leica, Wetzlar, Germany) and a Sony video camera (Video 8, CCD-V90E sensitivity 7 lux; Sony), which communicated with a video frame-grabber board (QuickCapture Board DT 2855; Data Translation, Inc.) and a common PC system. The pictures were converted digitally and could be analyzed by means of the picture-analyzing system JAVA (Jandel video analysis software; Jandel Scientific). This software allowed the determination of NADPH-diaphorase activity by evaluating the intensity of the blue color staining for NADPH-diaphorase (reduced nitro blue tetrazolium; 50 μM in all diabetic conditions) of approximately 100 cells within an area of interest in each cell line. The number of giant cells (cells 3–4 times larger than normal endothelial cells) was counted under the microscope at 1,000× magnification within a visual field of 40 mm², arbitrary marked [visual fields per experimental series (i.e., y visual fields per cell line)].

Measurement of Nitric Oxide Release. To characterize endothelial function, we measured the NO release spectrophotometrically (UV-DU-7500; Beckmann Coulter, Inc., Munich, Germany) under basal conditions and after stimulation with ATP (1 mM) using the methemoglobin assay (Feelisch and Noack, 1987), based on the rapid oxidation of reduced methemoglobin (oxy-Hb, oxyhemoglobin, Fe²⁺) to methemoglobin (Met-Hb; Fe³⁺) by nitric oxide. The suitability and specificity of this assay has been demonstrated previously (Kelm et al., 1997). We monitored increase in the NO release spectrophotometrically as the difference spectrum (Feelisch and Noack, 1987). The bioassay was calibrated as described previously (Feelisch and Noack, 1987; Kelm et al., 1988). We found an extinction coefficient of 39 mM⁻¹ cm⁻¹, which is nearly identical to that described by Feelisch and Noack (1987). After reaching confluence, the porcine aortic endothelial cell were washed three times with HEPES buffer (composed of 145.0 mM NaCl, 5.0 mM KCl, 2.5 mM CaCl₂, 1.0 mM MgCl₂, 10.0 mM HEPES, and 5.0 mM d-glucose), at pH 7.4 and 37°C, preincubated with 4 ml of HEPES buffer for 20 min at 37°C, and supplemented with oxy-Hb-solution (4 μM). After an equilibration period of 50 min, 1 mM ATP was added, and subsequently, NO release was recorded for 40 min; the cycling time was 10 min, at 37°C, for each cell culture condition intraindividually. To obtain the actual formation of methemoglobin, representing the NO release by PAEC, we subtracted the spontaneously occurring formation of methemoglobin, determined from a cell-free incubation solution from the measurements.

Chemicals. All chemicals were obtained from Sigma-Aldrich (Deisenhofen, Germany) except for Dil-Ac-LDL, which was obtained from Paesel & Lorei (Frankfurt, Germany); dispase was obtained from Roche Molecular Biochemicals (Mannheim, Germany); nitro blue tetrazolium was purchased from Biomol (Hamburg, Germany). KCl were obtained from Merck, and ACh and heparin were supplied by Serva (Heidelberg, Germany). All cell culture media and fetal calf serum were obtained from Sigma-Aldrich (St. Louis, MO); the cell culture material was obtained from Nalge Nunc International. All chemicals were of analytic grade and were dissolved in bidistilled water if not stated otherwise.

Statistical Analysis

For statistical analysis, a two-factorial analysis of variance was performed. If analysis of variance indicated significant differences or significant interactions between disease and treatment, the data were further analyzed with a post hoc Tukey-high standard deviation test. For the statistical analysis, we used Systat for Windows software, version 5.02 (Systat, Evanston, IL). Differences were considered significant if p < 0.05.

Results

In Vivo Study

Streptozotocin injection caused diabetes mellitus within 2 weeks and blood glucose levels of >18 mM in all diabetic groups (no differences between the three diabetic groups). In nondiabetic age-matched control animals, we found blood glucose levels ranging from 3.5 to 5.6 mM. Body weight was reduced in diabetic animals [228 ± 10 (d.m.), 237 ± 3 (d.m. + vitamin E), 199 ± 7 g (d.m. – vitamin E)] compared with nondiabetic age-matched controls (418 ± 8 g). Plasma vitamin E levels were 10 ± 1 mg/l (animals receiving 75 mg/kg of chow), 19 ± 2 mg/l (animals receiving a vitamin E-enriched diet), and 2.2 ± 1 mg/l (rats on a vitamin E-deprived diet) (see Table 1).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Bodyweight, blood glucose levels, and vitamin E plasma levels of the four experimental groups given as the means ± S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bodyweight (g)</td>
</tr>
<tr>
<td>Nondiabetic</td>
<td>d.m.</td>
</tr>
<tr>
<td>(n = 9)</td>
<td>(n = 6)</td>
</tr>
<tr>
<td>h.wt. (g)</td>
<td>418 ± 8</td>
</tr>
<tr>
<td>Blood glucose (mM)</td>
<td>4.5 ± 0.5</td>
</tr>
<tr>
<td>Vitamin E Plasma level (mg/l)</td>
<td>10 ± 1</td>
</tr>
</tbody>
</table>

Vit E, vitamin E.

* Significant differences to the nondiabetic control series are indicated, p < 0.05.
tions were somewhat enlarged in diabetic animals (see Table 2). This was not influenced by the treatment.

Regarding smooth muscle vascular function, we found a reduction in vessel diameter by 70 mM KCl between 44 and 29% in nondiabetics. In G1, G2, and G3 vessels, this was not significantly altered in diabetics. In G4 vessels, KCl-induced constriction was slightly attenuated in diabetics. Additional vitamin E treatment or vitamin E deficiency did not influence KCl contraction (see Fig. 1A).

GTN application in all vessels lead to significant vasodilation, which was diminished in diabetics. Additional treatment with vitamin E did not influence GTN-induced vasorelaxation. In vitamin E-deprived rats, however, we found significantly decreased GTN-induced relaxation compared with untreated diabetics (see Fig. 1B).

Acetylcholine induced vasorelaxation in all vessels in nondiabetic rats. In diabetic rats, this ACh-induced relaxation was significantly decreased, which was not influenced by vitamin E treatment. With vitamin E deficiency, however, we found complete abolition of ACh-induced relaxation. In contrast, ACh in these rats induced slight vasoconstriction (Fig. 2). This was not influenced by the treatment.

Finally, we applied L-N\(^{G}\)-nitro-arginine (LNNA), which resulted in a significant vasoconstriction of all vessels. The LNNA-induced vasoconstriction reached 8 to 14% of the KCl-constriction. In diabetic rats, this LNNA-induced constriction was significantly reduced in G3 and G4 vessels. This was not influenced by vitamin E treatment. In rats with vitamin E deficiency, however, we found significant attenuation of LNNA-induced vasoconstriction in all vessels (Fig. 1D).

Cell Culture Study

NO Release. Cells reached confluence after 3.5 ± 0.5 days without differences between the groups. We found the typical difference spectrogram for Met-Hb versus oxy-Hb with an isobest at 412 ± 1 nm and maximum extinction at 402 ± 1 nm, as described by Feelisch and Noack (1987). Under basal condition using normal cells, there was a slow increase in extinction, as can be seen in Fig. 2A during the first 50 min, indicating increasing formation of Met-Hb and release of NO. Stimulation with 1 mM ATP led to a further increase in extinction. In cells that were grown under hyperglycemic conditions, however, basal formation of Met-Hb was significantly reduced (Figs. 2B and 3). ATP-stimulated formation of Met-Hb was also clearly diminished (Fig. 3). Quantitatively we found basal release of 80 ± 20 pMol · 1 Mio cell\(^{-1} \cdot 10\) min\(^{-1}\), which was significantly diminished to 40 ± 10 pMol · 1 Mio cell\(^{-1} \cdot 10\) min\(^{-1}\) (p < 0.05) (Fig. 3). ATP-stimulated NO-release was significantly reduced from 130 ± 20 (normal cells) to 92 ± 10 pMol · 1 Mio cell\(^{-1} \cdot 10\) min\(^{-1}\) in hyperglycemic cells (p < 0.05).

The reduction in basal NO-release in hyperglycemic cells was significantly antagonized by vitamin E (Fig. 3). Stimulated NO-release, however, was not affected by vitamin E treatment; in vitamin E-treated cells, stimulation with 1 mM ATP resulted in 155 ± 20 pMol · 1 Mio cell\(^{-1} \cdot 10\) min\(^{-1}\) in normoglycemic and 98 ± 40 pMol · 1 Mio cell\(^{-1} \cdot 10\) min\(^{-1}\) in hyperglycemic cells. Thus, there was no antagonization of the glucose effect by vitamin E regarding stimulated NO-release (Fig. 3). The osmotic control using additional 15 mM L-glucose revealed that there was no alteration by 15 mM L-glucose compared with normoglycemia (Fig. 4).

Histology. For further characterization of the glucose effects, we investigated the cultured cells histologically. In all cell lines investigated, >99% of the tested cells incorporated Dil-Ac-LDL, with no significant differences between the two experimental groups. The content of contaminating smooth muscle cells was <0.1%. The high n-glucose-treated cell lines did not show any promotion of smooth-muscle cell growth in culture. The three control groups (5 mM n-glucose without any treatment or with 20 mg/l vitamin E or with 15 mM l-glucose) exhibited no significant differences concerning their cell morphology. Moreover, the number of giant cells and the NADPH-diaphorase activity per cell were not different between the control groups.

Morphological analysis of the cells revealed that hyperglycemia led to an enhanced number of giant cells, which was significantly increased from 7 ± 2 to 17 ± 3 under treatment with high levels of n-glucose (p < 0.05). In vitamin E-treated cells, this increase in giant cell number was significantly prevented (p < 0.05). Thus, in vitamin E-treated normoglycemic cells, we found 6 ± 3 and in hyperglycemic vitamin E-treated cells 7 ± 3.

Furthermore, the high n-glucose influence on PAEC was characterized by a reduction in histochemical NADPH-diaphorase activity. Considering the intensity of reduced nitro blue tetrazolium in relationship to the total area of interest, we found an intensity of 53.6 ± 2.6 densitometric units in normoglycemic cells versus 30.4 ± 2.5 densitometric units in hyperglycemic cells (p < 0.05) (Fig. 5). Treatment with vitamin E significantly prevented this reduction in NADPH-diaphorase activity: 47.3 ± 3.5 versus 47.6 ± 2.5 densitometric units (n = 8).

Discussion

In Vivo Study. Taken together our data show that smooth muscle contractile function was not altered by diabetes mellitus, as evident from the nearly unchanged KCl-induced contractions. Relaxation to GTN and ACh were significantly attenuated, however. This diabetes-induced deficit in relaxation was not influenced by high vitamin E treatment but was further enhanced by vitamin E deficiency. It is well known that GTN-induced vasorelaxation depends on glutathione-dependent release of NO from S-nitrosothiol-derivatives of GTN. Since diabetes deprivation of glutathion occurs in vascular tissue (Kinalski et al., 2000), it is reasonable that in our study relaxation to GTN was attenuated in diabetic rats. In contrast, ACh-induced relaxation depends on release of NO from functional vascular endothelium. As in previous
ACh-induced vasorelaxation was diminished in diabetics, indicating endothelial dysfunction. Interestingly, although this was not affected by high vitamin E treatment, vitamin E deficiency further diminished vasorelaxant response to GTN and completely abolished relaxation to ACh, with a reversal of the ACh-response so that vasoconstriction occurred. It should be mentioned that vitamin E deprivation for 4 to 12 months itself impairs endothelial relaxation, whereas smooth muscle responses are not affected (Rubino and Burnstock, 1994; Rubino et al., 1995; Ralevic et al., 1995). These investigators, however, observed only reduced vasorelaxation in vitamin E deprivation. Thus, both diabetes mellitus and vitamin E deprivation can lead to an impairment of endothelial function. The combination of diabetes and vitamin E deprivation, however, seems to be even more deleterious, leading to complete loss of endothelial function so that ACh elicits vasoconstriction. This is, to our best knowledge, the first article showing this dramatic change in the response to acetylcholine.
release which was more prominent in G3 and G4 vessels. The results indicate that there was less basal NO production in diabetic animals in G3 and G4 vessels and further attenuation of basal NO release in vitamin E deficiency. As an explanation, it has been argued that in vitamin E deficiency with concomitant hyperglycemia there is enhanced production of free radicals which can interact with NO leading to inactivation of NO (Pieper et al., 1997; Stockklauser-Farber et al., 2000). Moreover, our finding of a diminished GTN-induced relaxation in vitamin E deficient diabetic rats can be explained by the observation that reduction in glutathion levels occurs in vitamin E deficiency and is further enhanced in concomitant diabetes mellitus (Nickander et al., 1994). These results may indicate that with 75 mg of vitamin E/kg of chow there was no deficit in vitamin E and that high vitamin E treatment does not improve vascular function in this long-term model. It should be mentioned, however, that high vitamin E intake may further impair endothelial function, as was shown in a 1-month rat diabetes model (Palmer et al., 1998). Our results would be in accordance with the findings of the HOPE study (Dagenais et al., 2001). Nevertheless, our data clearly indicate that vitamin E deficiency dramatically worsens the situation and aggravates diabetes-induced vascular dysfunction, in accordance with another clinical study (Salonen et al., 1995) or animal studies (Vanucchi et al., 1999; Nickander et al., 1994). Since vitamin E is a well known radical scavenger, this may further support the hypothesis of a pathophysiologic role for free radicals in diabetic vascular dysfunction.

In Vitro Study. To investigate the results of the in vivo study in more detail, we exposed endothelial cells subchronically to hyperglycemia for an entire culture passage, which resulted in reduced NO release. This could partially be prevented by vitamin E; only the hyperglycemia-induced reduction in basal NO release was prevented by vitamin E, whereas reduction in stimulated NO release was not prevented.

Hyperglycemia-induced reduction in basal and stimulated NO-release could be explained by reduced arginine supply or
reduced access to the intracellular arginine pool (Pieper and Peltier, 1995; Closs et al., 2000; Hardy and May, 2002) or by reduced eNOS activity following mitochondrial superoxide overproduction which can lead to O-linked N-acetylglucosamine modification of eNOS (Du et al., 2001) via activation of hexosamine pathway (Du et al., 2000). Igarashi and Michel (2001) suggested that the production of reactive oxygen species leads to activation of the hexosamine pathway by activation of glutamin-fructose-6-phosphate aminotransferase, finally leading to O-glycosylation of eNOS. The latter has been shown in a cell culture model similar to ours after chronic exposure (2 days) to high \(\nu \)-glucose levels (Du et al., 2001). eNOS expression, however, is not altered in hyperglycemia (Stockklauser-Farber et al., 2000). Rösen and coworkers (1996), however, showed increased eNOS activity that was assumed to compensate for enhanced NO inactivation by free radicals in the heart, although in the recent study these investigators did not find enhanced eNOS activity (Stockklauser-Farber et al., 2000). Another explanation could be a reduction in NADPH supply (a necessary cofactor for eNOS). Yet, others showed that NADPH is not altered in hyperglycemia (Asahina et al., 1995) but is reduced if additional oxidative stress is present. On the other hand, Soriano and colleagues (2001a) demonstrated in a streptozotocin mouse model that vascular NAD(+) levels were decreased. These authors showed that activation of poly-(ADP-ribose)-polymerase (PARP) by oxidant-induced DNA-strand breakage [via glucose-induced free radical generation (Soriano et al., 2001b)] is involved in diabetic endothelial dysfunction. Most interestingly, endothelial (Soriano et al., 2001a) and cardiac (Pacher et al., 2002) dysfunction were prevented by treatment with a PARP inhibitor. Moreover, PARP-inhibition restored NAD(+), NADPH, and ATP levels (Soriano et al., 2001a). Thus, PARP may deplete the intracellular concentration of its substrate NAD(+), thereby reducing the rate of glycolysis and ATP formation (Soriano et al., 2001b). The depletion in intracellular high energy phosphate levels, NAD(+), and NADPH by PARP activation may affect eNOS activity since eNOS is an NADPH-dependent enzyme (Soriano et al., 2001a).

It can be argued that reduced NADPH-diaphorase activity as found in our study may indicate dysfunction of the enzyme or the enzyme complex, possibly by alteration of the enzyme, e.g., by advanced glycation end products, O-linked N-acetylglucosamine modification, or damage by free radicals. Interestingly, activity of NADPH-diaphorase could be preserved by vitamin E treatment. Thus, endothelial dysfunction in hyperglycemia and its partial prevention by vitamin E may be related to enhanced inactivation of NO by free radicals or to alteration in intracellular enzymes as was shown for NADPH-diaphorase. Another factor probably involved may be the intracellular energy crisis induced by oxidant-induced DNA breakage-dependent PARP activation, as discussed above (Soriano et al., 2001a).

According to the literature, reactive oxygen species overproduction is a key factor in hyperglycemia leading to reduced eNOS activity, advanced glycation end products, enhanced sorbitol formation, activation of protein kinase C, nuclear factor-\(\kappa \)B activation (Nishikawa et al., 2000), and inactivation of NO (Pieper et al., 1997; Stockklauser-Farber et al., 2000). Consequently, treatment with a radical scavenger could be a promising therapy. Accordingly, in our study, vitamin E prevented from reduced basal NO release, which would support a role of reactive oxygen species either in inactivating NO or in alteration of eNOS. Nevertheless, hyperglycemia-induced reduction in stimulated NO release was not influenced by vitamin E. This would contradict a general role of reactive oxygen species for altered eNOS leading to reduced eNOS activity. Accordingly, Stockklauser-Farber et al. (2000) showed that eNOS activity was not altered in vivo in diabetic rat hearts. This supports the hypothesis that, in addition to the above-mentioned mechanisms, the signal transduction process is altered in hyperglycemia. In favor of this theory, we could show that the calcium signal following ATP stimulation of endothelial cells was significantly diminished in hyperglycemia (Salameh and Dhein, 1998).
What Are the Reasons for the Discrepant Findings with Vitamin E? There is some contradiction between the in vivo study and the in vitro results in our study that should be discussed. Although in the in vitro study vitamin E prevented hyperglycemia-induced impairment of NO-release, we did not observe influence of vitamin E on LNN-A-response. On the one hand, there is a radical scavenging effect that might be present in both the in vivo and the in vitro situation. On the other hand, the vasoprotective effect of α-tocopherol in vivo also comprises binding of the vitamin to the vitamin E binding protein, transportation with the lipoproteins, and preservation of unsaturated bonds in essential fatty acids such as α-linolenic acid and eicosapentaenoic acid. Thus, in long-term in vivo situation, this more complex mechanism of action of vitamin E involving essential fatty acids might be affected in diabetes. Accordingly, a reduction in the eicosapentaenoic/α-linolenic acid ratio was found in diabetic rats (Ikeda and Sugano, 1993). The metabolism in long-term diabetes probably is more complex than simple hyperglycemia, as may be indicated by the loss of body weight in these rats. Moreover, this difference between results obtained from cultured cells and in vivo results may indicate that diabetes mellitus means more than simply hyperglycemia. In addition, results from cultured porcine aortic endothelial cells cannot completely simulate the situation in the long-term in vivo mesentery artery of the diabetic rat. Another aspect is the duration of the disease or hyperglycemia. In a rat model, 7 months probably is a long duration. Thus, positive effects seen with vitamin E in a model with only a 2-week or 2- to 3-month duration (Keegan et al., 1995; Kunisaki et al., 1995; Karasu et al., 1997a,b) may be attenuated by the long duration of the disease.

To our surprise, our study partially reflected the inhomogeneity of the literature (Nickander et al., 1994; Skyrme-Jones et al., 2000; Dagenais et al., 2001; Lonn, 2001; Lonn et al., 2001), with the in vitro study demonstrating only a partial protective effect of vitamin E, whereas the in vivo study only showed a negative effect of vitamin E deficiency but no effect of additional vitamin E. One factor jeopardizing the results with vitamin E in the literature is that the “normal” vitamin E supplementation is defined depending on the country; in United States, vitamin E supplementation in a normal rat diet is approximately 30 mg/kg of cow, whereas in the United Kingdom 90 to 120 mg/kg of cow is considered normal. In Germany, the daily intake for a normal rat is 200 mg/kg of cow (Lehr et al., 1999). To circumvent this problem in our study, we investigated three different supplementations (10, 75, and 1300 mg/kg of cow). With regard to the recent findings of a lack of effect of vitamin E in the HOPE (Dagenais et al., 2001) and SECURE (Lonn et al., 2001) clinical studies, this emphasizes the necessity of preclinical in vivo studies.

Regarding the comparison of the in vivo and in vitro studies, a first issue to mention is that endothelial cells grown on plastic or glass dishes are not identical to endothelial cells grown in vivo conditions exposed to flowing blood. A second issue is that cells in culture grow considerably faster than cells in a blood vessel. This could mean additional stress to the cells, and the metabolic activity of these growing cell in culture is probably higher than that of resting cells in a blood vessel. Along these lines is the observation that vitamin E treatment exhibited positive preventive effects on cells additionally stressed by H2O2 (Asahina et al., 1995). Interestingly, in a study similar to ours, a protective effect of vitamin E against coronary endothelial dysfunction in hearts of streptozotocin-diabetic rats has been described (Rösen et al., 1995). It could be argued that due to the higher oxygen consumption and energy metabolism in the heart compared with mesenterium, the formation of free radicals might be enhanced in diabetic high-energy-consuming tissue such as cardiac tissue. In support of this theory, a preventive vitamin E effect was observed in diabetic pregnant rats, which also means a situation of enhanced oxidative stress (Kinalska et al., 2000).

Our in vitro study shows that vitamin E only prevented reduced basal NO release but not reduced stimulated NO release. This might indicate disturbed signal transduction in hyperglycemia, as was shown in a previous study investigating Ca2+ signals in hyperglycemia (Salameh and Dhein, 1998). Moreover, the lack of effect on stimulated NO release might explain the inefficacy of vitamin E in the in vivo model.

Thus, we conclude that high vitamin E treatment does not prevent diabetic vascular dysfunction in this long-term rat model. A deficiency in vitamin E, however, seems deleterious for endothelial function in diabetes mellitus. Positive effects of vitamin E, as seen in the cell culture model or by others in short term diabetic models (2 weeks to 3 months), may be attenuated with the long duration of diabetes.

Acknowledgments

We greatly thank Prof. Dr. Renate Rösen for ideas and fruitful discussions. In addition, we thank Heidi Katzer and Karina Paulus for excellent technical assistance.

References

Graier WF, Simecze S, Kukovetz WR, and Kostner GM (1996) High α-glucose-