Modulation of Hippocampal Glutamatergic Transmission by ATP Is Dependent on Adenosine A1 Receptors

SUSAN A. MASINO, LIHONG DIAO, PETER ILLES, NANCY R. ZAHNISER, GAYNOR A. LARSON, BJÖRN JOHANSSON, BERTIL B. FREDHOLM, and THOMAS V. DUNWIDDIE

Department of Pharmacology and Program in Neuroscience, University of Colorado Health Sciences Center, Denver, Colorado

Received April 4, 2002; accepted July 8, 2002

ABSTRACT

Excitatory glutamatergic synapses in the hippocampal CA1 region of rats are potently inhibited by purines, including adenosine, ATP, and ATP analogs. Adenosine A1 receptors are known to mediate at least part of the response to adenosine nucleotides, either because adenine nucleotides activate A1 receptors directly, or activate them secondarily upon the nucleotides’ conversion to adenosine. In the present studies, the inhibitory effects of adenosine, ATP, the purportedly stable ATP analog adenosine-5’-O-(3-thio)triphosphate (ATPγS), and cyclic AMP were examined in mice with a null mutation in the adenosine A1 receptor gene. ATPγS displaced the binding of A1-selective ligands to intact brain sections and brain homogenates from adenosine A1 receptor wild-type animals. In homogenates, but not in intact brain sections, this displacement was abolished by adenosine deaminase. In hippocampal slices from wild-type mice, purines abolished synaptic responses, but slices from mice lacking functional A1 receptors showed no synaptic modulation by adenosine, ATP, cAMP, or ATPγS. In slices from heterozygous mice the dose-response curve for both adenosine and ATP was shifted to the right. In all cases, inhibition of synaptic responses by purines could be blocked by prior treatment with the competitive adenosine A1 receptor antagonist 8-cyclopentyltheophylline. Taken together, these results show that even supposedly stable adenine nucleotides are rapidly converted to adenosine at sites close to the A1 receptor, and that inhibition of synaptic transmission by purine nucleotides is mediated exclusively by A1 receptors.

ATP released during nerve activity can regulate transmitter release (for review, see Cunha and Ribeiro, 2000). Both excitatory and inhibitory effects have been suggested in peripheral nerves, in ganglia, and in the brain (von Kugelgen et al., 1993, 1994; Boehm, 1999; O’Kane and Stone, 2000; Smith et al., 2001). For example, hippocampal synaptic transmission is inhibited not only by adenosine but also by ATP, cAMP, and numerous cAMP and ATP analogs (Dunwiddie and Hoffer, 1980; Lee et al., 1981). The inhibitory effects of adenosine are mediated via the adenosine A1 receptor (A1R) (Johansson et al., 2001), but the identity of the receptor(s) by which nucleotides exert their effects on transmission is more difficult to ascertain. It is clear that ATP and other adenine nucleotides are very rapidly broken down in hippocampus, and that adenosine is one of the products formed (Dunwiddie et al., 1997). Hence, a major question is whether ATP and other adenine nucleotides act at receptors other than presynaptic A1Rs to inhibit transmitter release.

Several lines of evidence suggest that nucleotides per se can inhibit transmission and that conversion to adenosine is not required. First, many ATP analogs, generally considered metabolically stable, are at least as potent as ATP in terms of inhibiting synaptic potentials (Lee et al., 1981; von Kugelgen et al., 1992; Cunha et al., 1998; Mendoza-Fernandez et al., 2000; Smith et al., 2001). Second, incubation of brain slices with adenosine deaminase (ADA), which is expected to convert adenosine formed from the metabolic conversion of nucleotides into inosine (relatively inactive at A1Rs) (Fredholm et al., 2001), does not completely inhibit responses to ATP and ATP analogs, suggesting that there may be a component of the ATP response that is not mediated via adenosine (Cunha et al., 1998; Mendoza-Fernandez et al., 2000). Similar inhibitory effects of 5'-nucleotidase, the extracellular enzyme required to convert 5'-AMP to adenosine, have limited effectiveness in blocking nucleotide responses. Because of these observations and additional experimental evidence, the hypothesis has been advanced that there may be a nucleotide

ABBRIVATIONS: A1R, adenosine A1 receptor; ADA, adenosine deaminase; CPT, 8-cyclopentyl-theophylline; ATPγS, adenosine-5’-O-(3-thio)triphosphate; CHA, N6-cyclohexyladenosine; 2-CADO, 2-chloroadenosine; DPCPX, 1,3-dipropyl-8-cyclopentyl xanthine; R-PIA, R-N6-phenylisopropyl adenosine; fEPSP, field excitatory postsynaptic potential; EPSP, excitatory postsynaptic potential.
receptor that inhibits neurotransmitter release, is activated directly by ATP and ATP analogs, and is insensitive to most ATP receptor (P2) antagonists, but is sensitive to purportedly selective A1R antagonists such as 8-cyclopentyl-theophylline (CPT) (Shinozuka et al., 1988; Smith et al., 1997; Mendoza-Fernandez et al., 2000).

We have examined the actions of adenosine and adenine nucleotides in mice with a null mutation in the A1R gene, which results in a complete loss of functional A1Rs in the central nervous system (Johansson et al., 2001). Our experiments demonstrate that in mice lacking the A1R, the inhibitory effects of adenosine, cAMP, ATP, and adenosine-5′-O-(3-thio)triphosphate (ATP$_3$S) on synaptic transmission are completely absent, suggesting that all of these actions are mediated via conventional A1Rs.

Materials and Methods

Null Mutant Mice. Mice with a null mutation in the A1R were derived as described previously (Johansson et al., 2001). Mice that were heterozygous for the null mutation were bred, and littermates with the A1R$^{+/−}$, A1R$^{−/−}$, and A1R$^{+/−}$ genotypes were used for the following experiments. Mice were genotyped either by Southern blotting (Johansson et al., 2001) or by a polymerase chain reaction-based assay that amplified products of different sizes from the wild-type and null mutant genes. Phenotypes were confirmed by ligand binding assays conducted on cortical tissue obtained from the mice used in the electrophysiological studies.

Membrane Receptor Binding Studies. The assay method using $[^{3}H]$8-cyclohexyladenosine ($[^{3}H]$CHA; PerkinElmer Life Sciences, Boston, MA) to measure A1R was similar to that published previously (Mayfield et al., 1996). Crude membrane preparations were preincubated in 50 mM Tris buffer, pH 7.4, and ADA (2 U/ml; Roche Applied Science, Indianapolis, IN) for 30 min at 37°C. After washing, membranes were incubated in 50 mM Tris buffer containing 10 mM MgCl$_2$ and $[^{3}H]$CHA (0.14–25 nM for saturation curves, 30 nM for single point saturation analysis, and 10 nM for competition curves) for 2 h at 25°C. Nonspecific binding was measured in the presence of 2-chloroadenosine (2-CADO; 20 μM; Sigma/RBI, Natick, MA). Competition curves with 2-CADO and ATP$_3$S (Sigma-Aldrich, St. Louis, MO) were generated in the absence and presence of ADA (2 U/ml) during the incubation. Incubations were terminated by dilution with ice-cold buffer and rapid filtration through glass fiber filters. Radioactivity was quantitated by liquid scintillation counting. Saturation and competition data were analyzed by nonlinear curve fitting using the one-site hyperbola and sigmoid dose-response (variable slope) equations, respectively (GraphPad Software, San Diego, CA). Protein was measured using the method of Bradford (1976).

Receptor Autoradiography. Sagittal sections of brains from A1R$^{+/−}$ mice (14 μm in thickness) were cut 1.2 to 1.8 mm from the midline and put on collagen-coated microscope slides. $[^{3}H]$1,3-dipropyl-8-cyclopentyl xanthine (DPCPX; 103 Ci/mmol; PerkinElmer Life Sciences) was used as the radioligand. Slides were preincubated in 170 mM Tris-HCl, pH 7.4, containing 1 mM EDTA and 4 U/ml ADA at room temperature for 30 min. Thereafter, the slides were prewashed twice for 10 min in Tris-HCl buffer containing 1 mM MgCl$_2$ at room temperature. Then they were incubated in the same buffer with 0.5 nM $[^{3}H]$DPCPX and 4 U/ml ADA and varying concentrations of ATP analogs for 2 h at room temperature. Nonspecific binding was studied in the presence of 20 μM R-N6-phenylisopropyl adenosine (R-PIA; Sigma/RBI). The incubation was stopped by washing twice in ice-cold Tris-HCl buffer for 5 min followed by three quick dips in ice-cold distilled water. After the incubation all slides were dried with a stream of air in a refrigerator overnight, and together with calibrated standards, exposed to film for the indicated times. Exposure time was 2 to 3 weeks. The autoradiograms were analyzed with an M5 Imaging Device (Imaging Research, St. Catharine’s, ON, Canada). Optical densities were converted to binding density (femtomoles per milligram of gray matter) using the plastic standards and the specific activity of the radioligands. Results and dose-response curves were analyzed with GraphPad Prism.

Purine Metabolism. Cerebral cortical and hippocampal tissue from A1R$^{+/−}$ and A1R$^{−/−}$ mice was homogenized in 5 ml of Tris-buffered sucrose. After removal of nuclei and debris by centrifugation, ATP was added to a final concentration of 30 μM. Using high-performance liquid chromatography, the levels of ATP, ADP, AMP, adenosine, and inosine were determined at 5-min intervals during a 30-min incubation at 30°C.

Electrophysiology. Hippocampal slices (400 μm) were prepared from 4- to 24-week-old mice and studied using conventional extracellular and whole-cell recording techniques (Dunwiddie and Diao, 1994; Poelchen et al., 2000). Brain slices were maintained at a constant temperature of 31–33°C in a submersion chamber and constantly superfused (2 ml/min) with gassed (95% O$_2$, 5% CO$_2$) artificial cerebrospinal fluid containing 126 mM NaCl, 3 mM KCl, 1.5 mM MgCl$_2$, 2.4 mM CaCl$_2$, 1.2 mM NaH$_2$PO$_4$, 11 mM glucose, and 26 mM NaHCO$_3$ (Sigma-Aldrich). For recordings of field excitatory postsynaptic potential (EPSP) responses, the recording electrode was placed in stratum radiatum of the CA1 region and the stimulation electrode in stratum radiatum near the border of the CA1 and CA2 regions; stimuli were delivered at 15-s intervals. EPSPs were recorded from CA1 neurons using the whole-cell patch-clamp technique. Patch recording electrodes were filled with a solution containing 125 mM potassium-glucosamine, 5 mM KCl, 10 mM HEPES, 0.1 mM CaCl$_2$, 1 mM potassium-EGTA, 2 mM MgCl$_2$, 2 mM magnesium-ATP, and 0.2 mM Tris-GTP (Sigma-Aldrich). Series resistances ranged from 10 to 41 MΩ (average 30 ± 1.5 MΩ).

**For delivery of drug solutions, stock solutions of adenosine, ATP, cAMP, ATP$_3$S (Sigma-Aldrich), or 8-cyclopentyltheophylline (CPT; Sigma/RBI) were prepared at 50 to 200 times the desired final concentration of drug, and a calibrated syringe pump (Razel, Stamford, CT) was used to add the drugs directly to the superfusion system. Concentration-response curves were made by superfusing slices with incrementally higher concentrations of drugs until a near-maximal inhibition of the EPSP was observed, because in no case was there any evidence of desensitization of the response. EC$_{50}$ values and Hill slopes for the concentration-response curves were determined using the InPlot program (GraphPad Software), with the E$_{min}$ constrained to 0 and the E$_{max}$ to 100%.

Results

ATP and ATP Analogs Displace Binding of Selective A1R Ligands. In the present experiments, agonist ($[^{3}H]$CHA) binding was measured in the cerebral cortices of the same mice used in the electrophysiological experiments. As with an antagonist radioligand ($[^{3}H]$DPCPX; Johansson et al., 2001), the B$_{max}$ in the A1R$^{−/−}$ mice was half of that in the A1R$^{+/−}$ mice (52%), and there was virtually no specific binding in the A1R$^{−/−}$ animals (4.5% of A1R$^{+/−}$ mice; Table 1). Thus, these experiments confirm that the null mutation results in a complete loss of A1Rs and that neither $[^{3}H]$DPCPX nor $[^{3}H]$CHA bind with high-affinity binding to other non-A1R-related binding sites in brain.

Despite the demonstrated specificity of $[^{3}H]$DPCPX and $[^{3}H]$CHA binding to A1Rs, we observed that a purportedly stable ATP analog, ATP$_3$S, was able to displace their binding. In sections of hippocampus, cerebellum, and cortex from A1R$^{−/−}$ mice, ATP$_3$S was a potent inhibitor (IC$_{50}$ values of 5 ± 1.4, 3 ± 1.5, and 2 ± 1.4 μM, respectively), even in the presence of 4 U/ml ADA (Fig. 1). Analogous data were obtained using 5′-adenosylmethylphosphosphate (data not shown). These results indicate that these ATP analogs can interact with A1Rs and that this is not due to the ATP analogs being contaminated by adenosine.
TABLE 1

<table>
<thead>
<tr>
<th>Genotype</th>
<th>A1R<sup>+/+</sup></th>
<th>A1R<sup>−/−</sup></th>
<th>A1R<sup>−/−</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>K<sub>d</sub> (nM)</td>
<td>0.56 ± 0.02 (7)</td>
<td>0.60 ± 0.06 (5)</td>
<td>N.D.</td>
</tr>
<tr>
<td>B<sub>max</sub> (fmol/mg protein)</td>
<td>818 ± 25.6 (7)</td>
<td>429 ± 35.5 (5)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Specific binding (fmol/mg protein)</td>
<td>855 ± 27.6 (18)</td>
<td>453 ± 28.2 (13)</td>
<td>38.7 ± 5.19 (11)</td>
</tr>
</tbody>
</table>

N.D., not determined.

Fig. 1. Displacement of [3H]DPCPX by ATP_γS in intact brain sections. Binding experiments were carried out in the presence of 4 U/ml adenosine deaminase. Despite this, ATP_γS significantly displaced [3H]DPCPX (0.5 nM) from its binding sites. These experiments were conducted in sections from A1R^{+/+} mice; A1R^{−/−} mice show essentially no DPCPX binding (Johansson et al., 2001). The calculated IC₅₀ values were hippocampus, 5 ± 1.4 μM; cerebellum, 3 ± 1.5 μM; and cortex, 2 ± 1.4 μM (mean values ± S.E.M.; n = 6; calculated on nontransformed data). Inset, to illustrate the relative displacement in different brain regions, the same data were normalized by subtracting maximal displacement and setting maximal binding to 1.

Similar experiments were carried out to determine the ability of a stable adenosine analog, 2-CADO, and ATP_γS to displace [3H]CHA from high-affinity binding sites. Because of limited tissue availability, these experiments were conducted in membranes prepared from rat cortex; previous studies have shown that the rat and mouse receptors have very similar pharmacological properties (Maemoto et al., 1997). When A1R^{+/+} mouse and Sprague-Dawley rat cortical membranes were assayed with [3H]CHA in parallel, they showed nearly identical K_d (1.12 ± 0.29 versus 0.97 ± 0.12 nM) and B_{max} (724 ± 28.5 versus 726 ± 7.99 fmol/mg protein) values in mice and in rats, respectively. All membranes were pretreated with ADA to eliminate endogenous adenosine, and subsequently the competition curves were generated either in the presence or absence of ADA. The ability of 2-CADO to displace [3H]CHA binding was unaffected by the presence or absence of ADA in the assay (Fig. 2A). In the absence of ADA, ATP_γS displaced [3H]CHA significantly at concentrations as low as 10 μM, but in the presence of ADA its apparent potency was markedly reduced (Fig. 2B). Interestingly, the potency of ATP_γS to displace [3H]CHA was unaffected by the presence or absence of ADA in the assay (Fig. 2A).

Fig. 2. Displacement of [3H]CHA by 2-CADO and ATP_γS in rat cortical membranes in the absence and presence of ADA. A, presence of ADA had essentially no effect on the ability of 2-CADO to displace [3H]CHA binding (IC₅₀ values were 62.5 ± 7.14 and 80.3 ± 8.88 nM in the absence and presence of 2 U/ml ADA, respectively). B, in the absence of ADA, the IC₅₀ for ATP_γS was 32.0 ± 3.46 μM, whereas in the presence of this enzyme, an IC₅₀ value could not be determined, but was well in excess of 300 μM, the highest concentration tested (mean values ± S.E.M.; n = 3 for each data set).

Electrophysiological Actions of Adenosine, ATP, and ATP_γS Are Eliminated in A1R Knockout Mice. The inhibitory effects of adenosine on synaptically evoked IEPSP responses were examined in A1R^{+/+}, A1R^{−/−}, and A1R^{−/−} mice. As we have reported previously (Johansson et al., 2001), adenosine had an inhibitory effect on IEPSPs in hippocampal slices from A1R^{+/+} and A1R^{−/−} mice but had no effect on responses in A1R^{−/−} slices. The time course of inhibition was similar in A1R^{+/+} and A1R^{−/−} slices (Fig. 3A). The hippocampal slice, adenine nucleotides can be hydrolyzed to adenosine in a local compartment that is not in equilibrium with the incubation medium. This is particularly relevant, because such preparations are used routinely in electrophysiological studies of presynaptic regulation and synaptic function.
required slightly more time in the A₁R⁻/⁻ slices (Fig. 3B). Similar to adenosine, the EC₅₀ value for ATP was significantly higher in A₁R⁻/⁻ than A₁R⁺/⁺ slices (Table 2). In addition, the EC₅₀ value for ATP was higher than that for adenosine (Table 2). ATP had no effect on synaptic transmission in A₁R⁻/⁻ slices (Fig. 3B).

Because ectonucleotidases are known to convert ATP to adenosine in brain (Zimmermann, 1996), and rapid conversion has been demonstrated in the rat hippocampus (Dunwiddie et al., 1997), the lack of ATP effects in the A₁R⁻/⁻ slices might be attributable to rapid breakdown of ATP. For this reason, many studies of nucleotide receptors focus on metabolically stable ATP analogs such as ATPγS, which has been shown to be much more stable than ATP when coincubated with hippocampal slices or synaptosomes (Cunha et al., 1998). Therefore, we characterized the actions of ATPγS on fEPSP responses, to determine whether there were nucleotide actions that were not observed with application of ATP because of its rapid conversion to adenosine. When slices from A₁R⁻/⁻ mice were superfused with 100 μM ATPγS, the fEPSP response was inhibited in a manner identical to that observed with ATP or adenosine (Fig. 3C). In the A₁R⁻/⁻ slices, similar to ATP and adenosine, the response to ATPγS was reduced. Most significantly, like ATP and adenosine, 100 μM ATPγS had no detectable effect on fEPSP responses in slices from A₁R⁻/⁻ mice (Fig. 3C). The comparable time course seen with all three compounds (Fig. 3) suggests that if the purine nucleotides are being converted to adenosine within the slice, this must be occurring relatively rapidly with respect to the time required for the adenosine/ATP to diffuse into the slice.

Complete concentration-response curves were obtained for adenosine and ATP. In both the A₁R⁺/⁺ and A₁R⁻/⁻ mouse hippocampal slices, high concentrations of both adenosine (Fig. 4A) and ATP (Fig. 4B) were able to completely inhibit the fEPSP response. However, in the A₁R⁻/⁻ slices, neither adenosine nor ATP had a significant effect on the response waveform at concentrations up to 200 μM (Fig. 4).

Previous studies in hippocampal brain slices from rat have demonstrated that cAMP and ATP both inhibit the fEPSP response in a manner that is similar to adenosine, although ATP is slightly less potent, and cAMP is significantly more potent than adenosine (Dunwiddie and Hoffer, 1980; Lee et al., 1981; Dunwiddie et al., 1997). These effects have generally been ascribed to metabolism of these nucleotides to adenosine by ectophosphodiesterases and ectonucleotidases, because these actions are antagonized by adenosine receptor antagonists (Dunwiddie et al., 1997). However, there is considerable variation between species with respect to some of the nucleotidases, and the mouse in particular shows considerably less 5'-nucleotidase activity in the CA1 region of the hippocampus than does the rat (Lee et al., 1986). Therefore, the effect of cAMP was also determined in hippocampal slices from all three types of mice. As with ATP and ATPγS, superfusion of slices with cAMP inhibited the fEPSP responses. Complete concentration-response curves were not obtained for cAMP, but the magnitude of the inhibition produced by 50 μM cAMP was quite comparable with the inhibition induced by 50 μM adenosine, ATP, or ATPγS in both the A₁R⁺/⁺ and A₁R⁻/⁻ hippocampal slices (Fig. 5A).

As with adenosine and the other ade-
Adenosine and ATP concentration-response curves and synaptic responses. A, adenosine-mediated depression of fEPSP amplitude was examined in hippocampal slices from A1R+/+, A1R−/−, and A1R−/− mice. The curves shown are the best fits to the raw data for each line of mice; E\text{max} was constrained to 100% in each case. As has been reported previously, there was no detectable effect of adenosine in the A1R−/− mice. Recordings of fEPSP responses evoked from hippocampal slices of each genotype are shown on the right. The heavier trace is the control response, the horizontal line denotes the response in the presence of 100 μM adenosine, and the arrow the response in the presence of 200 μM adenosine. B, ATP-mediated depression of fEPSP amplitude was examined in all three genotypes as in A. The curves are the best fits to the raw data with E\text{max} constrained to 100%. As with adenosine, ATP was significantly more potent in the A1R+/+ than in the A1R−/− slices, and there was no effect in the A1R−/− slices. Averaged fEPSP responses are shown on the right. As in A, the heavier trace in each set of records is the control response, the horizontal line denotes the response in the presence of 100 μM ATP, and the arrow the response in the presence of 200 μM ATP. Scale bars apply to synaptic responses.

Inhibition observed in slices obtained from the two species (mouse, −79.4 ± 6.0%; rat, −89.1 ± 1.4%; n = 6 for each; N.S.)

The results obtained with the A1R−/− slices suggest that the responses to ATP\textsubscript{γS} are mediated by A1Rs. This was confirmed pharmacologically by determining the sensitivity of these responses to CPT, a selective A1R antagonist. As has been reported previously in rat, responses in both the A1R+/+ and A1R−/− slices to 50 μM adenosine, ATP, ATP\textsubscript{γS} (Mendoza-Fernandez et al., 2000), and cAMP were completely antagonized by prior superfusion with 100 nM CPT (Fig. 5B).

A previous report suggesting that nucleotide effects on hippocampal synaptic transmission might be mediated via other purine receptors (Mendoza-Fernandez et al., 2000) used intracellular recording of EPSPs to characterize modulation of transmission, rather than measurements of synaptic field potentials. Although fEPSPs and intracellularly recorded EPSPs are generally affected in the same ways by pharmacological agents, this is not always the case (Dunwiddie et al., 1980; Robinson and Deadwyler, 1981; Valentino et al., 1982), so parallel experiments were conducted using whole-cell patch recordings from mouse hippocampal slices to confirm the previous observations. As was observed with extracellular field potentials, in these experiments both ATP and ATP\textsubscript{γS} inhibited the intracellularly recorded EPSPs, although the intracellularly recorded responses seemed to be slightly more sensitive in this regard (Fig. 6). Moreover, as seen in the field potentials, the effects of both nucleotides are essentially lost in A1R−/− slices, clearly implicating the involvement of A1Rs in this response.

In addition to presynaptic A1Rs, CA1 pyramidal neurons also have postsynaptic A1Rs that activate a G protein-coupled inwardly rectifying K+ conductance that hyperpolarizes these cells (Greene and Haas, 1985), and we have previously reported that adenosine induces an outward (i.e., hyperpolarizing) conductance in pyramidal
neurons from A1R−/− mice that is absent in A1R+/− mice (Johansson et al., 2001). In the present studies, we have observed that ATP induced a small but statistically significant hyperpolarizing effect on the resting membrane potential of CA1 neurons in A1R+/− mice (hyperpolarized by 4.2 ± 1.2 mV; p < 0.05, n = 4) that was not observed in A1R−/− mice. In contrast, ATPγS depolarized A1R+/− CA1 neurons (depolarized by 7.5 ± 1.5 mV; p < 0.05, n = 3), and this effect seemed to be present in the A1R−/− mice (depolarized by 8.9 ± 4.8 mV; N.S., n = 3).

Discussion

Using brain slices and tissue homogenates from mice bred to be +/+, −/−, or −/− for the A1R, we clarify several issues that have remained difficult to resolve with pharmacologically based experiments. We show that the two commonly used radioligands, the A1R agonist [3H]CHA, and the A1R antagonist [3H]DPCPX, are selective for A1Rs in concentrations commonly used in binding studies. Hence, previous suggestions that there are binding sites for [3H]DPCPX at some as yet poorly defined nucleotide receptor (Smith et al., 1997) were not supported. In addition, we confirmed that ATP and some purportedly stable ATP analogs do compete for A1R ligands at their binding sites and have similar electrophysiological effects as A1R agonists on hippocampal slices from all three types of mice.

Less is known about the effects of adenosine in the mouse compared with the rat. Nevertheless, presynaptic as well as postsynaptic effects of adenosine observed in the rat are recapitated in the mouse (Luscher et al., 1997; Greif et al., 2000; Jarolimek et al., 2000). Herein, we report that iEPSP responses evoked by Schaffer collateral/commisural stimulation are potently inhibited by adenosine, although the EC50 for this response was higher than we observed previously in the rat (Dunwiddie et al., 1986; Brundege et al., 1997). Given the nearly identical Bmax and Kd for A1Rs between the two species (Maemoto et al., 1997), this difference is most likely due to different coupling between the receptor and modulation of transmitter release, although differences in adenosine uptake could also be involved. In A1R−/− mice, which express approximately 50% of the A1Rs seen in the wild-type mice, there was a significant increase in the EC50 for the inhibition of the iEPSP by adenosine, although there was no change in the maximal inhibition. Similar results (i.e., a change in EC50 but not in Emax) have been reported in the rat when the number of A1Rs is reduced (Sebastiao et al., 2000). These data are consistent with the conclusion that there are spare receptors for the inhibition of synaptic potentials and that the reduction in the number of receptors in the A1R−/− animals results in a synapse where the same maximal inhibition can be achieved but requires occupation of a greater fraction of the receptors in the A1R−/− versus the A1R−/− animals. The ligand binding studies clearly suggest no difference in receptor affinity for agonist between the A1R+/− and the A1R−/− animals, so the changes observed are most likely related to changes in the number of receptors.

Insofar as the responses to ATP and ATPγS are concerned, there are three basic possibilities: 1) nucleotides bind to and directly activate A1Rs; 2) ectonucleotidases metabolize extracellular nucleotides to adenosine, which then activates A1Rs; or 3) nucleotides activate novel ATP receptors antagonized by classical A1R antagonists such as CPT. Regarding the first possibility, the present experiments show ATPγS to be a very weak displacer of [3H]CHA binding. This agrees with results from other groups for both the A1R (Schwabe and Trost, 1980; Ragazzi et al., 1991) as well as the A2A receptor (Pirotton and Boeynaems, 1993). In contrast, the second possibility, metabolism of nucleotides by ectonucleotidases, is supported both by our studies as well as those of others. For example, in brain membranes sufficient adenosine can be formed from stable ATP analogs to interfere with the binding of high-affinity ligands (Figs. 1 and 2; Pirotton and Boeynaems, 1993). In homogenates of rat brain the displacement by ATPγS was virtually eliminated by incubation with the enzyme adenosine deaminase. This suggests that these ATP analogs interact with A1 receptors because they are converted to adenosine. It may be argued that the addition of exogenous ATP could in some way alter the breakdown of endogenous adenosine and that this would explain our results. However, this would not explain the complete absence of any response in the A1R−/−. This cannot be addressed readily in the intact slice, but when using brain homogenates the rate of adenosine elimination in the presence of ATP was not different between wild-type and knockout tissues. The rate of ATP hydrolysis was also indistinguishable.

The third possibility, nucleotides activate novel ATP receptors, is disproved by the finding that the inhibition of iEPSP responses by adenosine, ATP, ATPγS, and cAMP was reduced in the A1R−/− and completely lost in the A1R−/− slices. The most straightforward conclusion based upon the present results is that in the hippocampus these nucleotides inhibit excitatory neurotransmission via A1Rs, and most likely following their conversion to adenosine by ectonucleotidases.

Previously, Cunha et al. (1998) suggested that nucleotide hydrolysis may occur at a site quite close to the adenosine receptors themselves. Our data showing that ADA does not prevent nucleotides from interacting with A1 receptors in brain sections (even though ADA prevents binding in homogenates) is entirely compatible with localized genera-
tion of adenosine from adenine nucleotides. The observation that both ectonucleotidases and A_RS are localized to caveolae in non-neural tissues (Kittel and Bacsy, 1994; Lasley et al., 2000) suggests there may be mechanisms by which these proteins associate in similar domains in cellular membranes. Thus, using the terminology of Cunha et al. (1998), adenosine that is produced by the nucleotidases is “channeled” to the adenosine receptors. Such localized adenosine production accounts for the fact that significant adenosine-mediated inhibition can be achieved even when there is very limited conversion of stable nucleotides to adenosine, as determined using biochemical methods (Cunha et al., 1998). Thus, an active nucleotidase might generate substantial local concentrations of adenosine from an adenine nucleotide, whereas converting relatively little of the nucleotide to adenosine in a quantitative sense.

Even though ATP and ATP_S had very similar effects on presynaptic release of transmitter, this was not the case at postsynaptic A_RS where ATP hyperpolarized and ATP_S depolarized the membrane potential. One explanation for this discrepancy between the presynaptic and postsynaptic A_RS could be that ectonucleotidases are located in proximity to the presynaptic but not postsynaptic receptors, and thus the local concentration of adenosine at the postsynaptic site is insufficient to activate the A_RS. Alternatively, the depolarizing response to ATP_S may simply have occluded a hyperpolarizing response to this nucleotide.

The findings of Mendoza-Fernandez et al. (2000) are somewhat difficult to reconcile with the conclusions of the present study. In particular, their observation that ATP responses were substantially more sensitive to pertussis toxin than adenosine responses suggests there may be additional complexities involved in the actions of ATP. Colocalization and communoprecipitation of A_R with P2Y₁ receptors after their coexpression in human embryonic kidney cells was recently reported (Yoshioka et al., 2001). Further experiments are needed to determine whether functional P2Y/Ado₁ receptors exist in hippocampus and whether they are peculiarly sensitive to pertussis toxin. Another possibility is that the nucleotidase is in some way dependent on a G protein pathway to be fully competent, and additional more or less far-fetched explanations can be devised. We favor the view that adenosine in the extracellular buffer reaches a somewhat different population of A_RS than adenosine channeled to the receptors from ATP or its analogs. Given that there are many spare receptors, equivalent responses may be produced via slightly different entities that may differ in their ability to be reached by pertussis toxin.

The apparent Hill slopes for the adenosine and ATP concentration-response curves were significantly different. Although this might be taken as evidence that different receptors mediate the two responses, it is perhaps not surprising because the concentrations quantified are bath, not tissue concentrations of drug. Previous work from our laboratory has demonstrated that upon superfusion with an EC₅₀ concentration of adenosine (approximately 25 µM in rat), approximately 97% of the adenosine in the extracellular buffer is taken up by cells or metabolized before it reaches receptor sites (Dunwiddie and Diao, 1994). If ATP must be converted to adenosine to be effective at A_RS then this concentration additionally depends on its conversion by nucleotidases. Thus, one would not necessarily expect the concentration of adenosine or ATP in the vicinity of the receptors to be linearly related to the bath concentration, because both metabolism and transport are saturable processes.

In summary, the results of the present experiments suggest that bath superfusion with adenine nucleotides, including ATP and ATP_S, leads to the activation of hippocampal adenosine A_RS. Ligand binding studies provide direct evidence that these nucleotides themselves have low affinity for A_RS, so it is most probable that they activate A_RS after conversion to adenosine by ectonucleotidases, although other possibilities (e.g., activation after conversion to AMP) cannot be ruled out. In general, ATP responses have been controversial and difficult to study in the hippocampus, due to some inadequacies of available pharmacological tools and potential contamination with adenosine responses. The A_R mouse avoids a number of these issues, which are difficult to resolve in wild-type animals, and serves as a useful model to study and clarify purinergic receptor function.

Acknowledgments

During the final stages of preparation of this manuscript Tom Dunwiddie suffered a fatal climbing accident. This article is dedicated to his memory.

References

Purine Effects in Hippocampal Slices from A1 Knockout Mice

363

References

Address correspondence to: Susan A. Masino, Neuroscience Program B138, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262. E-mail: susan.masino@uchsc.edu

