Nonpeptide Factor Xa Inhibitors II. Antithrombotic Evaluation in a Rabbit Model of Electrically Induced Carotid Artery Thrombosis

PANCRAS C. WONG, EARL J. CRAIN, ROBERT M. KNABB, RAYMOND P. MEADE, MIMI L. QUAN, CAROL A. WATSON, RUTH R. WEXLER, MATTHEW R. WRIGHT, and ANDREW M. SLEE

Cardiovascular Diseases Research (P.C.W., E.J.C., R.M.K., R.P.M., C.A.W., A.M.S.), Chemical and Physical Sciences (M.L.Q., R.R.W.), Drug Metabolism and Pharmacokinetics (M.R.W.), DuPont Pharmaceuticals Company, Wilmington, Delaware

Accepted for publication June 30, 2000 This paper is available online at http://www.jspet.org

ABSTRACT

SK549 (mol. wt. 546 Da) is a synthetic, selective inhibitor of human coagulation factor Xa (fXa) ($K_i = 0.52$ nM). This study compared the antithrombotic effects of SK549 and a series of benzamidine isoxazoline fXa inhibitors with aspirin, DuP 714 (a direct thrombin inhibitor), recombinant tick anticoagulant peptide, or heparin in a rabbit model of electrically induced carotid arterial thrombosis. Compounds were infused i.v. continuously from 60 min before electrical stimulation to the end of the experiment. Values of ED$_{50}$ (dose that increases the carotid blood flow to 50% of the control level) for SK549 were 0.12 mol/kg/h for recombinant tick anticoagulant peptide, or heparin in a rabbit model of electrically induced carotid arterial thrombosis. Compounds were infused i.v. continuously from 60 min before electrical stimulation to the end of the experiment. Values of ED$_{50}$ (dose that increases the carotid blood flow to 50% of the control level) for SK549 were 0.12 mol/kg/h for aspirin, 0.14 mol/kg/h for DuP 714, 0.06 mol/kg/h for recombinant tick anticoagulant peptide, and >100 U/kg/h for heparin. The EC$_{50}$ (plasma concentration that increased blood flow to 50% of the control) for SK549 was 97 nM. Unlike aspirin and heparin, SK549 was efficacious and, at 1.5 μmol/kg/h i.v. ($n=9$), maintained carotid blood flow at 67 ± 6% of control level for greater than 90 min. Unlike heparin, SK549 inhibited ex vivo fXa activity but not ex vivo thrombin activity. There was a highly significant correlation between K_i (fXa) and ED$_{50}$ of a series of fXa inhibitors ($r=0.85, P<.001$). Therefore, these results suggest that SK549 is a novel, potent, and effective antithrombotic agent in a rabbit model of arterial thrombosis. It is likely that SK549 exerts its antithrombotic effect through selective inhibition of fXa. Furthermore, SK549 may be clinically useful for the prevention of arterial thrombosis.

The clinical usefulness of anticoagulants such as warfarin (Coumadin) and the successful development of low-molecular-weight heparin for the treatment and prevention of thromboembolic diseases have generated great interest in designing new inhibitors of blood coagulation (Turpie, 1998). The most promising new inhibitors of blood coagulation are inhibitors of thrombin or factor Xa (fXa) (Fevig and Wexler, 1999; Hauptmann and Stürzebecher, 1999). Both naturally occurring and synthetic thrombin inhibitors have been well studied for the past two decades (Hauptmann and Stürzebecher, 1999). However, it is still not clear whether the desired antithrombotic effects of these inhibitors can be achieved without undesirable bleeding complications (Turpie, 1998). Thus, there is an increasing interest in developing synthetic and selective fXa inhibitors (Fevig and Wexler, 1999; Sinha, 1999).

Similar to thrombin inhibitors, both naturally occurring and synthetic fXa inhibitors are available and have been shown to be potent antithrombotic agents in animal models of thrombosis (Wong et al., 1996; Kaiser, 1998; Hauptmann and Stürzebecher, 1999). However, in contrast to thrombin inhibitors, it is believed that inhibition of fXa may reduce the production of thrombin by either the extrinsic or intrinsic pathways without interfering with a basal level of thrombin activity necessary for normal hemostasis (Harker et al., 1997). Recently, DuPont Pharmaceuticals has discovered an interesting novel series of potent and selective nonpeptide fXa inhibitors, exemplified by (−)-5-isoxazolcarboxamide, 3-[3-(aminoiminomethyl)phenyl]-N-5-[2′-(aminosulfonl)-[1,1′-biphenyl]-4-yl]-4,5-dihydro-5-(1H-tetrazol-1-ylmethyl)-trifluoroeacetic acid salt (SK549) (Fig. 1) (Quan et al., 1999a,b; Wong et al., 2000). SK549 is a potent and selective fXa inhibitor (K_i: fXa, 0.52 nM; thrombin, 400 nM; trypsin, 45 nM; tissue plasminogen activator, >33,000 nM; plasmin, 890 nM) (Wong et al., 2000). It has a low plasma clearance of 0.3
The following drugs and chemicals were used in this study: chromogenic substrates S-2222 and S-2238 (Chromogenix AB products distributed by DiaPharma Group, Inc., West Chester, OH); human α-thrombin and FXa (Enzyme Research Laboratories, Inc., South Bend, IN); protease inhibitor cocktail (Complete; Boehringer Mannheim GmbH, Indianapolis, IN); human γ-thrombin (ICN Biomedicals, Inc., Costa Mesa, CA); activated partial thromboplastin time (APTT) reagent, ADP, aspirin, and thromboplastin with calcium (Sigma Chemical Co., St. Louis, MO); and heparin (Upjohn, Kalamazoo, MI). Nonpeptide FXa inhibitors were synthesized at DuPont Pharmaceuticals Company. Purified rTAP was prepared from culture medium of Saccharomyces cerevisiae as described by Neep er et al. (1990) with modifications.

Electrically Induced Arterial Thrombosis Model in Rabbits. Experiments, using a modification of the methods of Hladovec (1971) and Guarini (1996), were conducted on male New Zealand White rabbits (2.7–3.1 kg). The rabbits were anesthetized with ketamine (50 mg/kg + 50 mg/kg i.m.) and xylazine (10 mg/kg + 10 mg/kg i.m.). The left femoral vein and artery were isolated and catheterized. Both common carotid arteries were carefully isolated. Carotid blood flow was measured with a calibrated flow probe (3.5-mm circumference) that was linked to an electromagnetic flowmeter (FM501D; Carolina Medical Electronics, Inc., King, NC). A stainless steel bipolar hook electrode was placed on the carotid artery and positioned caudally in relationship to the flow probe. A piece of Parafilm (7 × 30 mm) was placed under the electrode to protect the surrounding tissue. Thrombosis was induced by applying a direct electrical current of 4 mA for 3 min to the external arterial surface, using a constant current unit and a d.c. stimulator (SS88D; Grass Instruments Co., Quincy, MA). We chose to stimulate the carotid artery at 4 mA because we found that in a preliminary study, electrical stimulation at 1 mA for 3 min did not produce occlusive thrombus within 40 min. However, increasing the current to 4 mA produced a more reproducible occlusion of the injured carotid artery within 40 min. In this study, carotid blood flow was monitored continuously before and after electrical stimulation. The left carotid artery served as a control artery. If the left carotid artery did not occlude within 5 to 40 min after electrical stimulation, these rabbits were not included in the study. Rabbits that were excluded from the study represented about 5% of rabbits used.

After the determination of the control time to occlusion, the compound or saline was given as continuous i.v. infusion via the femoral vein, starting 1 h before the electrical stimulation and continuing to the end of the test. Thrombosis was electrically induced in the right common carotid artery, using the same method mentioned above. When carotid blood flow was decreased to zero, the time to occlusion in minutes was noted. If the arteries were still patent at 90 min after electrical stimulation, a value of 90 min was used as the time to occlusion for the purpose of statistical analysis. In addition, total carotid blood flow over 90 min was calculated by trapezoidal rule. Average carotid flow over 90 min was monitored continuously for the purpose of statistical analysis. In addition, total carotid blood flow over 90 min was calculated by trapezoidal rule. Average carotid flow over 90 min was then determined by converting total carotid blood flow over 90 min to percentage of total control carotid blood flow, which would result if control blood flow had been maintained continuously for 90 min (Schumacher et al., 1993). The ED_{50} (dose that increased blood flow to 50% of the control) value for each compound was estimated by a nonlinear least square regression program (DeltaGraph, Delta Point, Monterey, CA) using the Hill sigmoid E_{max} equation.

Antithrombotic Studies in Arterial Thrombosis. Rabbits were dosed i.v. with saline vehicle (6 ml/kg/h), heparin (64 and 100 l/h/kg in rabbits and 0.7 l/h/kg in dogs (Quan et al., 1999a). Given i.v. or intracranially, SK549 is a potent antithrombotic agent in a rabbit model of arteriovenous shunt thrombosis (Wong et al., 2000). Although the model of arteriovenous shunt thrombosis is useful in predicting antithrombotic efficacy of FXa inhibitors, it may not be a very physiologically relevant model. Furthermore, the effectiveness of SK549 for the prevention of arterial thrombosis has not been studied. Therefore, we evaluated in this study the antithrombotic effect of SK549 and its chemical analogs in a rabbit model of arterial thrombosis. Thrombosis in this model was produced by electrically induced injury of the carotid artery. Because arterial thrombosis in humans usually occurs in areas of medium-to-high blood flow and shear stress with a triggering factor of vascular injury (Badimon, 1997), the model of electrical current-induced arterial thrombosis (ECAT) in rabbits may have some pathophysiological relevance to the human disease. In this study, we also included heparin, aspirin, DuP 714 (a direct thrombin inhibitor) (Kettner et al., 1990; Knabb et al., 1992), and recombinant tick anticoagulant peptide (rTAP, a potent and selective FXa inhibitor) (Neep er et al., 1990) for comparison.

Materials and Methods

All experiments were conducted in accordance with the regulations of the Animal Care and Use Committee of the DuPont Pharmaceuticals Company.

Reagents. The following drugs and chemicals were used in this study: human α-thrombin and FXa (Enzyme Research Laboratories, Inc., South Bend, IN); protease inhibitor cocktail (Complete; Boehringer Mannheim GmbH, Indianapolis, IN); human γ-thrombin (ICN Biomedicals, Inc., Costa Mesa, CA); activated partial thromboplastin time (APTT) reagent, ADP, aspirin, and thromboplastin with calcium (Sigma Chemical Co., St. Louis, MO); and heparin (Upjohn, Kalamazoo, MI). Nonpeptide FXa inhibitors were synthesized at DuPont Pharmaceuticals Company. Purified rTAP was prepared from culture medium of Saccharomyces cerevisiae as described by Neep er et al. (1990) with modifications.

![Structural formulae and biological activities of a series of nonpeptide FXa inhibitors where R, X, and Y are functional groups of the molecules. FXa K_i is the inhibitory constant for human FXa. ID_{50} is the dose that produces 50% inhibition of thrombus formation in the arteriovenous shunt thrombosis rabbits. K_i and ID_{50} data for the compounds listed in the table were reported in Wong et al. (2000). ED_{50} is the in vivo antithrombotic potency obtained in ECAT rabbits.](image-url)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>X, Y</th>
<th>FXa K_i (nM)</th>
<th>ID_{50} (pmol/kg/h)</th>
<th>ED_{50} (μmol/kg/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (+)</td>
<td>CO_2CH_3</td>
<td>CH, CH</td>
<td>7</td>
<td>2</td>
<td>1.1</td>
</tr>
<tr>
<td>2 (-)</td>
<td>CO_2CH_3</td>
<td>CH, CH</td>
<td>4</td>
<td>0.2</td>
<td>0.37</td>
</tr>
<tr>
<td>3 (a)</td>
<td>CO_2CH_3</td>
<td>N, N</td>
<td>4.3</td>
<td>0.4</td>
<td>0.41</td>
</tr>
<tr>
<td>4 (+)</td>
<td>CO_2CH_3</td>
<td>CH, N</td>
<td>7</td>
<td>0.6</td>
<td>0.52</td>
</tr>
<tr>
<td>5 (a)</td>
<td>CO_2NH_2</td>
<td>CH, CH_3</td>
<td>7.4</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>6 (+)</td>
<td>OCH_2CH_3</td>
<td>CH, CH</td>
<td>3</td>
<td>4.4</td>
<td>1.3</td>
</tr>
<tr>
<td>7 (-)</td>
<td>OCH_2CH_3</td>
<td>CH, CH</td>
<td>3.3</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>8 (-)</td>
<td>OCH_2CH_3</td>
<td>CH, N</td>
<td>0.8</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>9 (a)</td>
<td>SO_2CH_2CH_3</td>
<td>N, N</td>
<td>5.3</td>
<td>0.8</td>
<td>0.77</td>
</tr>
<tr>
<td>10 (+)</td>
<td>SCH_3CH_2</td>
<td>N, N</td>
<td>2.4</td>
<td>1</td>
<td>0.39</td>
</tr>
<tr>
<td>SK549 (−)</td>
<td>(tetrazol-1-yl)</td>
<td>CH, CH</td>
<td>0.52</td>
<td>0.035</td>
<td>0.12</td>
</tr>
<tr>
<td>rTAP</td>
<td></td>
<td></td>
<td>0.5</td>
<td>0.01</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Fig. 1. Structural formulae and biological activities of a series of nonpeptide FXa inhibitors where R, X, and Y are functional groups of the molecules. FXa K_i is the inhibitory constant for human FXa. ID_{50} is the dose that produces 50% inhibition of thrombus formation in the arteriovenous shunt thrombosis rabbits. K_i and ID_{50} data for the compounds listed in the table were reported in Wong et al. (2000). ED_{50} is the in vivo antithrombotic potency obtained in ECAT rabbits.
addition of 50. The EC50 (plasma concentration that increased blood flow to 50% of the control) value for SK549 was estimated by a nonlinear least square regression program as described above.

Mean blood pressure and heart rate were determined in some rabbits treated with the saline vehicle and SK549 at 1.5 μmol/kg/h. Mean blood pressure was measured by connecting a femoral arterial catheter to a pressure transducer (Gould Inc., Oxnard, CA) coupled to a polygraph (Grass Instruments Co.). Heart rate was recorded by the polygraph.

Scanning Electron Microscopy of Rabbit Carotid Artery. Segments of carotid artery, collected from both the sham and electrically induced injury rabbits, were fixed in a solution of 4% paraformaldehyde with 1% glutaraldehyde overnight at 4°C. Subsequent post-fixation was in 1% osmium tetroxide containing 1.5% potassium ferricyanide for 1 h at room temperature. After several buffer washes, they were dehydrated in a graded ethanol series. Final drying was accomplished by passing the samples through several changes of hexamethyldisilazane followed by air drying. Samples were mounted and coated with gold/palladium before examination in a JEOL JSM 840 scanning electron microscope.

Coagulation Assays. Arterial blood samples for the determination of ex vivo APTT, prothrombin time (PT), thrombin time (TT), anti-FXa, and antithrombin activity were collected in tubes containing one-tenth the volume of 0.109 M sodium citrate before and at the end of the test. APTT, PT, and TT were measured with a fibrometer (BBL Fibro-system; Becton Dickinson, Cockeysville, MD) (Kettner et al., 1990). APTT was measured by incubating 100 μl of platelet-poor plasma with 100 μl of APTT reagent for 3 min, followed by addition of 100 μl of 125 mM CaCl2. PT was measured by incubating 100 μl of plasma for 2 min at 37°C, followed by addition of 200 μl of prewarmed thromboplastin with calcium. TT was measured by incubating 200 μl of plasma and 50 μl of fibrinometer buffer for 2 min at 37°C, followed by addition of 50 μl of thrombin (24 U/ml). Data points were the mean of duplicate measurements and were expressed as a ratio of treated versus baseline control.

Ex vivo anti-FXa and antithrombin activities were measured using a modification of the method of Sato et al. (1998). Anti-FXa and antithrombin activities were determined using the chromogenic substrates S-2222 and S-2238, respectively. Assays were performed in a Spectramax Plus spectrophotometer (Molecular Devices, Sunnyvale, CA). All assays were performed in 96-well plates (no. 3606; Corning Inc., Corning, NY). Thirty microliters of S-2222 (500 μM) or S-2238 (500 μM) was added to a mixture of 30 μl of buffer (0.1 M Tris, pH 7.5; 0.2 M NaCl), 30 μl of platelet-poor plasma, and 30 μl of human FXa (0.625 μg/ml) or human thrombin (0.2 U/ml). This resulted in a final volume of 120 μl. The incubation period for the anti-FXa assay was 15 min at 37°C, and for the antithrombin assay was 45 min at 37°C. At the end of the incubation period, the enzyme reaction was quenched with the addition of 12 μl of 12% Complete protease inhibitor cocktail. The hydrolysis of the chromogenic substrates was assayed by measuring absorbance at 405 nm at 37°C. Anti-FXa or antithrombin activity was calculated by comparing the values of optical density from samples taken in the post-treatment period to those taken in the pretreatment period.

Ex Vivo Platelet Aggregation. In some experiments, arterial blood samples, for the determination of ex vivo platelet aggregation, were collected before and after SK549 at 1.5 μmol/kg/h i.v. Platelet aggregation was measured with a platelet aggregometer (Model PAP-4D; BioData, Horsham, PA). Two hundred microliters of platelet-rich plasma was incubated for 3 min at 37°C. Percentages of platelet aggregation were determined 4 min after the addition of 20 μl of the agonist (ADP at 10 μM and γ-thrombin at 35 nM, final concentration).

Statistical Analysis. Statistical analyses used were correlation, linear regression, ANOVA, and Duncan’s new multiple range test (Cody and Smith, 1991). A value of P < .05 was considered statistically significant. All data are means ± S.E.

Results

Scanning Electron Microscopy of Rabbit Carotid Artery. Longitudinal sections of normal and electrically injured rabbit carotid arteries were examined by scanning electron microscopy. The luminal surface of the normal artery was covered with intact endothelium with some scattered platelets (Fig. 2). In the injured carotid artery, the endothelial surface was disrupted and numerous platelets and networks of fibrin were attached to the injured site (Fig. 2).

Antithrombotic Effect of Heparin. Average control carotid blood flow before electrical stimulation was about 17 ml/min. After electrical stimulation of the carotid artery, thrombus formation was induced and blood flow was gradually decreased to less than 5% in 35 to 40 min in vehicle-treated animals (Fig. 3). Heparin was given as an i.v. infusion starting 60 min before electrical stimulation. Heparin at 100 U/kg/h, but not at 64 U/kg/h, slightly improved the patency of the injured artery. At 40 min after electrical stimulation, animals treated with heparin at 100 U/kg/h i.v. had an
average carotid blood flow of 26 ± 14% of the control level (Fig. 3).

Antithrombotic Effect of Aspirin, DuP 714, and rTAP. Figure 4 shows effects of aspirin (2 to 56 μmol/kg/h i.v.), DuP 714 (0.06 to 0.6 μmol/kg/h i.v.), and rTAP (0.03 and 0.05 μmol/kg/h i.v.) on the average carotid blood flow over 90 min. Control carotid blood flow in these groups averaged 23 ml/min. Average carotid blood flow over 90 min was reduced to less than 20% in vehicle-treated animals after electrical stimulation (Fig. 4). Aspirin, DuP 714, and rTAP caused a dose-dependent increase in average carotid blood flow over 90 min with ED$_{50}$ values of 56, 0.14, and 0.06 μmol/kg/h, respectively (Fig. 4). Values of time to occlusion (in min) for the vehicle and aspirin at 2, 6, 17, and 56 μmol/kg/h were 23 ± 2, 26 ± 4, 28 ± 4, 69 ± 9, and 88 ± 3, respectively; for the vehicle and DuP 714 at 0.06, 0.2, and 0.6 μmol/kg/h were 25 ± 3, 38 ± 8, 90 ± 0, and 90 ± 0, respectively; and for the vehicle and rTAP at 0.03 and 0.05 μmol/kg/h were 25 ± 3, 40 ± 6, and 75 ± 11, respectively. Significant increases in time to occlusion were observed for aspirin at 17 and 56 μmol/kg/h, for DuP 714 at 0.06 to 0.6 μmol/kg/h, and for rTAP at 0.05 μmol/kg/h (P < .05, compared with vehicle).

Figure 5 shows effects of vehicle and SK549 on carotid blood flow after electrical stimulation. Control carotid blood flow in these animals averaged 24 ml/min. After electrical stimulation, blood flow was gradually decreased and the artery was totally occluded in about 35 min in vehicle-treated animals. SK549 (0.04 to 1.5 μmol/kg/h i.v.) caused a dose-dependent increase in duration of the patency of the artery. At 0.45 and 1.5 μmol/kg/h SK549, there was no occlusion in all the animals up to 90 min. Values of time to occlusion (in min) for the vehicle and SK549 at 0.04, 0.09, 0.15, 0.45, and 1.5 μmol/kg/h were 25 ± 3, 34 ± 5, 78 ± 5, 86 ± 4, 90 ± 0, and 90 ± 0, respectively. SK549 caused significant increases in time to occlusion at 0.09 to 1.5 μmol/kg/h (P < .05, compared with vehicle).

Figure 6 shows antithrombotic effects of SK549 expressed as average carotid blood flow over 90 min. Average blood flow over 90 min was decreased to 17 ± 2% of control level in vehicle-treated animals. SK549 caused a dose-dependent increase in average blood flow with an ED$_{50}$ of 0.12 μmol/kg/h i.v. At 1.5 μmol/kg/h i.v., SK549 maintained carotid blood flow at 87 ± 6% of control level for greater than 90 min. In addition, we observed a good correlation between the doses and the plasma concentrations reached after i.v. infusion of SK549 (Fig. 7, r = 0.96, P < .0001). The EC$_{50}$ for SK549 was estimated to be 97 nM.

Blood Pressure and Heart Rate Effects of SK549. Effects of the saline vehicle and SK549 on blood pressure and heart rate were evaluated in a separate group of animals. Compared with the vehicle (n = 4), SK549 at 1.5 μmol/kg/h i.v. (n = 4) did not change blood pressure significantly (76 ± 3 mm Hg for SK549 and 86 ± 7 mm Hg for vehicle) and heart rate significantly (182 ± 13 bpm for SK549 and 173 ± 9 bpm for vehicle).

Ex Vivo Effects of SK549 on Platelet Aggregation and Coagulation Parameters. At 1.5 μmol/kg/h i.v. (n = 4), SK549 did not alter the ex vivo platelet aggregation induced by either ADP or γ-thrombin (ADP, 51 ± 3% for the control and 54 ± 4% for SK549; or γ-thrombin, 67 ± 4% for the control and 68 ± 6% for SK549).

Figure 8 shows ex vivo effects of SK549 and heparin on IXa.
SK549 at 0.04 to 1.5 μmol/kg/h i.v. slightly elevated APTT and PT and did not alter TT. Heparin at 100 U/kg h i.v. greatly increased APTT and TT and did not alter PT. DuP 714 at 0.06 (n = 5), 0.2 (n = 6), and 0.6 (n = 4) μmol/kg/h i.v. significantly increased APTT levels to 2.1 ± 0.5, 2.3 ± 0.2, and 4.8 ± 0.8, respectively (P < .05), and TT levels to 7.3 ± 1.5, 7.6 ± 0.7, and 6.3 ± 0.4, respectively (P < .05).

Relationship between K_i (fXa) and In Vivo Potency ED_{50}. A series of benzamidine isoxazoline fXa inhibitors and rTAP were evaluated against purified human fXa for their inhibitory effects on fXa activity and in a rabbit model of ECAT for their antithrombotic activities, expressed as K_i and ED_{50}, respectively (Fig. 1). We observed a highly significant correlation between K_i and ED_{50} ($r = 0.85, P < .001$) as shown in Fig. 10.

Discussion

SK549 is a potent and selective fXa inhibitor with a K_i of 0.52 nM against human fXa (Wong et al., 2000). Compared with other well characterized small-molecule fXa inhibitors, SK549 is 58, 2.5, 13.5, and 2.5 times more potent in terms of K_i than DX-9065a ($K_i = 30$ nM), YM-60828 ($K_i = 1.3$ nM, reported by Taniuchi et al., 1998), RPR120844 ($K_i = 7$ nM, reported by Leadley et al., 1999), and RPR208566 ($K_i = 1.31$ nM, reported by Heran et al., 2000), respectively. In addition, given intraduodenally and i.v. to rabbits, SK549 effectively prevented thrombus formation in a model of arteriovenous shunt thrombosis (Wong et al., 2000). In this study, we demonstrated clearly that SK549 given i.v. to rabbits is also a potent antithrombotic agent in a model of arterial thrombosis.

Our study is the first comparative evaluation of the dose-dependent antithrombotic effects of small-molecule fXa inhibitors such as SK549, the peptide fXa inhibitor rTAP, standard heparin, and the direct thrombin inhibitor DuP 714 in a rabbit model of arterial thrombosis. Although the fXa inhibitor YM-60828 has been evaluated in the rat ECAT model (Kawasaki et al., 1998), the antithrombotic effect of a small-molecule fXa inhibitor has not been previously reported in a similar ECAT model in rabbits. Furthermore, we believe that the rabbit is a better choice of animal model than the rat for
evaluating the antithrombotic effect of small-molecule FXa inhibitors. Studies have reported that rabbit FXa, but not rat FXa, and human FXa have similar binding affinity to enzyme substrate and small-molecule inhibitors of FXa (Hara et al., 1995; Taniuchi et al., 1998).

We reasoned that the ECAT model, which mimics clinical arterial thrombosis, may be physiologically more relevant than the arteriovenous shunt thrombosis model. The former but not the latter model involves additional factors that are important for the mechanism of thrombus formation, such as high shear rate and endothelial injury (Badimon, 1997). In this study, we used external electrical stimulation to induce endothelial injury. Scanning electron microscopy confirmed endothelial injury at the site where the electrical stimulation was applied. The injured vessel was covered with platelets and fibrin. The platelet deposition is consistent with the findings of Badimon (1997) showing that the de-endothelialized vessel wall, which is exposed to blood at high shear rate, would induce platelet deposition on the exposed vessel. In addition, the tissue factor in the subendothelial extracellular matrix of the denuded vessel would activate blood coagulation cascade and contribute significantly to thrombin formation and fibrin deposition (Pawashe et al., 1994).

We observed that heparin is a weak antithrombotic agent in the ECAT rabbit model. Previously, we showed that heparin at 64 U/kg/h completely inhibited the thrombus formation in the rabbit arteriovenous shunt model (Wong et al., 2000). However, in this study heparin at a higher dose of 100 U/kg/h, which increased APTT by greater than 6-fold, did not prevent arterial thrombosis in rabbits. Our finding is consistent with previous reports showing that heparin is a weak antithrombotic agent for the treatment of arterial thrombosis in humans and animals (Schumacher et al., 1993; Kawasaki et al., 1998; Lockyer and Kambayashi, 1999; Heran et al., 2000; Hirsh and Bates, 2000). This may be related to the ineffective inhibition of clot-bound FXa and thrombin by the complex of antithrombin III with heparin (Teitel and Rosenberg, 1983; Weitz et al., 1990). Unlike heparin, the potencies of nonpeptide FXa inhibitors tested in the ECAT and arteriovenous shunt model were very similar in both models. A possible explanation is that nonpeptide FXa inhibitors, because of their small size, may penetrate and inhibit the clot-bound FXa better than the complex of antithrombin III with heparin (Hérault et al., 1997).

Our study also shows that aspirin is not a very effective antithrombotic agent in the ECAT rabbit model, which is consistent with other reports showing that aspirin is a poor antithrombotic agent in similar ECAT models in rats (Bernat et al., 1993; Schumacher et al., 1993). It is believed that aspirin at the high dose we studied is effective in blocking the formation of platelet-aggregating prostanoids such as thromboxane A2. However, at the same time aspirin also blocks the production of platelet-inhibitory prostanoids such as prostacyclin, which may account for its poor antithrombotic effect in arterial thrombosis models (Bernat et al., 1993; Schumacher et al., 1993; Lockyer and Kambayashi, 1999). The weak antithrombotic potency of aspirin may also be related to its lack of effects on blood coagulation with thrombin and fibrin formation, which play a role in arterial thrombosis.

We observed that DuP 714 is a potent antithrombotic agent in the ECAT rabbit model. A similar antithrombotic efficacy of DuP 714 has also been reported in a rabbit model of arteriovenous shunt thrombosis (Knabb et al., 1992). In the ECAT rabbit model, the dose of DuP 714 to achieve maximal antithrombotic effect (reflected by an increase in blood flow) resulted in a 4.8-fold prolongation in APTT. In contrast, the maximal antithrombotic dose of SK549 only prolonged APTT by 2.4-fold. It is not known how much systemic anticoagulation can be tolerated without bleeding complications during antithrombotic therapy. However, bleeding complications occurred in clinical trials with hirudin (a naturally occurring direct thrombin inhibitor) for the treatment of myocardial infarction (for references, see Kaiser, 1998). Whether a lower level of anticoagulation induced by FXa inhibitors may account for a reduced incidence of bleeding complications in patients remains to be determined.

SK549 is a potent antithrombotic agent in the ECAT model with an EC50 of 97 nM, which is very close to the potency of 62 nM observed in the arteriovenous shunt thrombosis model (Wong et al., 2000). Although SK549 was as effective as rTAP in the arteriovenous shunt thrombosis rabbits (Wong et al., 2000), it appears that SK549 was more effective than rTAP in the ECAT rabbits. For instance, rTAP at 0.05 μmol/kg/h, which exerted an antithrombotic effect of 91% in the arteriovenous shunt thrombosis rabbits (Wong et al., 2000), produced an antithrombotic effect of 46% (reflected by an increase in blood flow) in the ECAT rabbits. On the other hand, SK549 at 1.5 μmol/kg/h, which exerted an antithrombotic effect of 91% in the arteriovenous shunt thrombosis rabbits (Wong et al., 2000), produced an antithrombotic effect of 65% (reflected by an increase in blood flow) in the ECAT rabbits. The mechanism responsible for the increased effectiveness of SK549 in the ECAT rabbits compared with rTAP is not clear, but could be related to the slow binding kinetics of rTAP to FXa (Eisenberg et al., 1992).

To substantiate that the antithrombotic effect of benzamidine isoxazoline FXa inhibitors is due to the inhibition of FXa, the correlation between the inhibitory constants for the FXa, Ki, and the in vivo antithrombotic potencies, ED50, of a series of benzamidine isoxazoline FXa inhibitors was determined. Our study shows a good correlation between Ki and ED50, supporting that inhibition of FXa is the primary mechanism of the antithrombotic effect of these nonpeptide FXa inhibitors. This is further substantiated by the finding that SK549...
at antithrombotic doses selectively inhibited ex vivo fXa but not thrombin activity.

It should be noted that SK549 at 1.5 μmol/kg does not alter blood pressure and heart rate, suggesting that the involvement of hemodynamic effect in its antithrombotic effect is not likely. In addition, the antithrombotic effect of SK549 may not be due to inhibition of platelet aggregation because SK549 at the maximal antithrombotic dose of 1.5 μmol/kg did not inhibit the ex vivo platelet aggregation induced by ADP or γ-thrombin.

Some studies have used the time to occlusion as an index of antithrombotic effect (Kawasaki et al., 1998; Heran et al., 2000), which, we believe, may overestimate the antithrombotic efficacies of the compounds. For instance, this study shows that aspirin and rTAP could produce high values of time to occlusion, but low-to-moderate levels of blood perfusion (as reflected by the blood flow). Thus, the time to occlusion has important limitations as an index of antithrombotic effect, which must be taken into account in the interpretation of antithrombotic effect of a test agent.

APTPT is universally used to monitor the therapeutic level of heparin-induced anticoagulation (Kher et al., 1997; Bajaj and Joist, 1999). The dose of heparin that doubles the APTPT is often taken as a measure of adequate heparin administration. In this study, although heparin at 100 U/kg i.v. increased APTPT by greater than 6-fold, it had only a minimum antithrombotic effect in the ECAT rabbit model. Heparin at this dose also increased TT by greater than 7-fold and did not change PT. In contrast, the maximal antithrombotic effect of SK549 was associated with a 2.4-fold increase in APTTT and less than 2-fold increase in PT. SK549 did not change TT, supporting that the antithrombotic effect of SK549 is not related to thrombin inhibition. Although APTPT and PT are very useful for monitoring heparin and warfarin therapy, respectively, in the clinic (Kher et al., 1997; Bajaj and Joist, 1999), our study shows that these tests are not sensitive enough to monitor the antithrombotic effect of the fXa inhibitor SK549. It appears that measuring anti-fXa activity is a sensitive method for assessing fXa inhibitors ex vivo.

In summary, our study shows that SK549 is a novel, potent, and effective antithrombotic agent in a rabbit model of arterial thrombosis. It is likely that SK549 exerts its antithrombotic effect through selective inhibition of fXa. Thus, SK549 may be clinically useful for the prevention of arterial thrombosis.

Acknowledgments

We thank Dr. M. Thoelen for helpful comments; Danielle M Timby for plasma level determinations; A. Liaw, C. Ellis, and J. Luettgen for technical assistance; and Drs. J. Duke and S. Rosenfeld for providing rTAP.

References

Send reprint requests to: Dr. Pancras C. Wong, DuPont Pharmaceuticals Company, P.O. Box 5000, Wilmington, DE 19880-0400. E-mail: pancakes.c.wong@dupontpharma.com