The Human and Rat Recombinant Receptors for Advanced Glycation End Products Have a High Degree of Homology but Different Pharmacokinetic Properties in Rats¹

C. RENARD, O. CHAPPEY, M. P. WAUTIER, M. NAGASHIMA, J. MORSER, J. M. SCHERRMANN, and J. L. WAUTIER

Laboratoire de Recherche en Biologie Vasculaire et Cellulaire, EA 1557, Hôpital Lariboisière, Paris Cedex, France (C.R., O.C., M.P.W., J.L.W.); Institut National de Transfusion Sanguine, Paris Cedex, France (J.L.W.); Institut National de la Santé et de la Recherche Médicale Unité 26, Hôpital Fernand Widal, Paris Cedex, France (C.R., J.M.S.); and Berlex Biosciences, Richmond, California (M.N., J.M.)

Accepted for publication May 24, 1999 This paper is available online at http://www.jpethorn.org

ABSTRACT

The accelerated formation of advanced glycation end products (AGEs) is implicated in diabetic microvascular and macrovascular complications. The binding of AGEs to their cellular surface receptor (RAGE) induces vascular dysfunction and in particular an increase in vascular permeability. We previously demonstrated that rat recombinant RAGE (rR-RAGE) produced in insect cells corrected the hyperpermeability due to RAGE-AGE interaction and that pharmacokinetic properties of rR-RAGE after i.v. administration in rats were compatible with a potential therapeutic use. In the present study, we showed that recombinant human RAGE (rhRAGE) had a similar efficacy in inhibiting AGE-induced endothelial alteration and in reducing the hyperpermeability observed in streptozotocin-induced diabetic rats. ¹²⁵I-rH-RAGE elimination half-life after i.v. administration was similar in diabetic and normal rats (53.7 ± 7.6 and 45.3 ± 4.0 h, respectively). The presence of AGEs is responsible for a higher distribution volume in diabetic rats compared with normal rats (15.3 ± 2.7 and 7.7 ± 0.7 l/kg, respectively). Immunoreactive ¹²⁵I-rR-RAGE decreased more rapidly than did immunoreactive ¹²⁵I-r-RAGE. The differences between ¹²⁵I-rH-RAGE and ¹²⁵I-rR-RAGE pharmacokinetics in rat may be related to differences in potential O-glycosylation and protease cleavage sites between the two RAGE molecules.

Advanced glycation endproducts (AGEs) are a heterogeneous class of molecules found in plasma, cells, and tissues. They accumulate in the vessel wall and the kidney during aging and at an accelerated rate in diabetes (Brownlee, 1995). AGEs are formed by nonenzymatic glycation of primary amino groups on proteins or lipids. The best-characterized AGE receptor (RAGE) (Schmidt et al., 1999) has been purified and cloned in insect cells. RAGE is a member of the Ig superfamily. It is composed of an extracellular region with one V-type domain and two C-type domains, a single transmembrane domain, and a highly charged intracellular domain (Neep et al., 1992; Schmidt et al., 1994). RAGE is present in various species, and the molecules have a high degree of homology (Neep et al., 1992; Schmidt et al., 1992). It is expressed on several cell types: endothelial cells (ECs), smooth muscle cells, monocytes/macrophages, cardiac myocytes, neural tissue, and hepatocytes (Brett et al., 1993; Schmidt et al., 1993).

RAGE-AGE interactions are thought to contribute to the development of diabetic complications, including vascular dysfunction (Wautier et al., 1996; Bierhaus et al., 1997). Our previous studies demonstrated that antibodies directed against RAGE and soluble RAGE purified from bovine lung, a truncated form of the receptor, inhibited the binding of diabetic erythrocytes bearing AGEs to ECs (Wautier et al., 1994). Rat-soluble RAGE or recombinant rat RAGE (rR-RAGE) produced in insect cells reduced the early vascular hyperpermeability observed in diabetic rats (Wautier et al., 1996; Renard et al., 1997). After i.v. administration, RAGE elimination half-life indicated that daily administration was possible (Renard et al., 1997). In fact, in diabetic apolipoprotein E-null mice, i.p. administration of murine-soluble RAGE (40 µg/day for 6 weeks) suppressed accelerated atherosclerosis (Park et al., 1998).

In the present study, we show that recombinant human.

ABBREVIATIONS: AGE, advanced glycation end products; RAGE, receptor for AGEs; rh-RAGE, recombinant human RAGE; EC, endothelial cell; rR-RAGE, recombinant rat RAGE; VCAM-1, vascular cell adhesion molecule 1; PAGE, polyacrylamide gel electrophoresis; TCA, trichloroacetic acid; Fab, fragment having antigen-binding site; RBC, red blood cell; TBIR, tissue-blood isotope ratio; \(\lambda_z \), terminal disposition rate constant; \(T_{1/2} \), elimination half-life; AUC, area under the curve; CL, total clearance; \(V_z \), volume of distribution of the elimination phase; \(V_c \), volume of central compartment; \(V_{e_{x_{z}}} \), extrapolated volume; \(V_{ss} \), distribution volume at steady state; MRT, mean residence time; \(C_{max} \), maximal concentration; \(t_{max} \), time of \(C_{max} \).
Materials and Methods

Cloning, Expression, and Purification of rH-RAGE and Vascular Cell Adhesion Molecule 1 (VCAM-1)

Human full-length RAGE cDNA was cloned by screening a lung cDNA library (Neper et al., 1992). Baculovirus expression of rH-RAGE in Spodoptera frugiperda (SF9) cells was obtained as described for rH-RAGE (Renard et al., 1997). The resulting protein obtained corresponded to that expected for the extracellular domain (Schmidt et al., 1992) and migrated as a homogenous sample of ~35 kDa on SDS-polyacrylamide gel electrophoresis (PAGE).

A DNA fragment coding for the first three Ig-like domains of rat VCAM-1 was obtained from a lung cDNA library (Clontech, Palo Alto, CA) by using a polymerase chain reaction technique. The primers used were 5'-GAAAAGCCTTGAAGACTTC-3' and 5'-CTCATTGAAATACTACTCTC-3', based on the known sequence of mouse VCAM-1. A polymerase chain reaction fragment was subcloned into a pCRII vector (Invitrogen, San Diego, CA) for DNA sequencing by the dideoxynucleotide chain-termination method. The deduced amino acid sequence of rat-soluble VCAM-1 has 85% identity with that of murine-soluble VCAM-1. An EcoRI fragment of the resultant plasmid was then cloned into a pBacPAK8 vector (Clontech) for the baculovirus expression. The expression and the purification of recombinant-soluble VCAM-1 were essentially the same as described (Hansen et al., 1997, 1998).

Database Search

Amino acid sequences of human, rat, and bovine RAGE are available on the World Wide Web (www.expasy.ch). Alignments of the amino acid sequences of human, rat, and bovine RAGE were performed with the SIM program and comparison matrix BLOSUM 62 (Swiss-Prot database). O-glycosylation sites were predicted by using the NetOGlyc server (www.cbs.dtu.dk/services/NetOGlyc) (Hansen et al., 1997, 1998).

Radiolabeling of Proteins

rH-RAGE, albumin, and murine Fab Ig fragment were labeled with Na125I by the Iodo-Gen method (Fraker and Speck, 1978; Renard et al., 1997). Precipitation of the iodinated protein by trichloroacetic acid (TCA; 10%) at +4°C was used to determine protein concentrations. Specific activities were in the range of 1 μCi/μg for rH-RAGE, 2.5 μCi/μg for albumin, and 1.15 μCi/μg for murine Fab. Analysis of 125I-rH-RAGE, 125I-albumin, and 125I-Fab preparations by SDS-PAGE and autoradiography indicated no major contamination by label or degradation products for any of the proteins.

In Vitro Permeability Assay

In accordance with provisions of the Declaration of Helsinki and with the rules of our institution, human red blood cells (RBCs) used in our experiments came from normal volunteers and diabetic patients. In vitro permeability assays were performed as previously described (Wautier et al., 1996). ECs were incubated with medium alone or with normal or diabetic RBCs (2.5 × 10⁸ cells/ml) for 24 h.

Pharmacokinetics of 125I-rH-RAGE and Murine 125I-Fab

Plasma kinetics of 125I-rH-RAGE (250 μg/kg, volume ≤ 4 ml/kg) were studied in normal and streptozotocin-induced diabetic male Wistar rats (200–250 g; CERJ, Laval, France) after i.v. and s.c. administration. Plasma concentrations of 125I-rH-RAGE were determined after precipitation with TCA and also after immunoprecipitation with a specific monoclonal antibody (antibody 9D9). Animals had free access to food and water before the experiments. They were anesthetized with ether before i.v. injection, whereas s.c. injections were given to conscious animals. After the injection, rats were placed in metabolic cages for urine and feces collection. 125I-rH-RAGE was administered by i.v. bolus via the femoral vein. Blood samples (50 μl) were collected in heparin-containing tubes from the tail vein in 2, 5, 10, 30, and 45 min and 1, 1.5, 2, 3, 6, 8, 24, 30, 48, 54, 72, and 96 h and centrifuged for 10 min at 3000g, and plasma was isolated. After s.c. administration, blood samples were collected at the same times except that the first sample was taken at 10 min and additional blood samples were collected at 144, 168, 192, and 216 h. The blood hematocrit measured at 24, 54, and 96 h after 125I-rH-RAGE injection did not differ from physiological values (46%; Davies and Morris, 1993).

After i.v. administration of 125I-rH-RAGE, rats were decapitated at 96 h and radioactivity in organs (intestine, skin, kidney, vena cava, aorta, liver, spleen, lung, heart, and thyroid) was determined. Furthermore, tissue distribution of 125I-rH-RAGE was studied in normal and diabetic rats at the time corresponding to 87.5% of the 125I-rH-RAGE distribution (i.e., 2 and 7.5 h for normal and diabetic rats, respectively). The amount of 125I-rH-RAGE determined in organs was corrected for the presence of radioactivity in the residual blood remaining in the tissue (Ebbling et al., 1994). The pharmacokinetics of a molecule belonging to the Ig superfamily, a monoclonal murine 125I-Fab (250 μg/kg), were also studied in normal rats (n = 4) to verify whether the pharmacokinetic profile determined after s.c. injection was influenced by the rH-RAGE characteristics or by the route of injection. The experimental protocol was the same as that for 125I-rH-RAGE.

Identification of 125I-rH-RAGE

Immunoprecipitation of 125I-rH-RAGE. A monoclonal anti-rH-RAGE antibody (antibody 9D9) (Brett et al., 1993) was used in an immunoprecipitation assay to determine the immunoreactive fraction of 125I-rH-RAGE. Samples consisting of 125I-rH-RAGE before
injection diluted in RAGE-free plasma and rat plasma samples taken after injection of 125I-rH-RAGE were analyzed. Samples (50 μl) were incubated with the anti-RAGE antibodies (100 μl), PBS (300 μl), and RAGE-free rat plasma (50 μl) for 1 h at 37°C and overnight at +4°C. A solution of 14% polyethylene glycol 8000 in borate buffer (500 μl; Sigma-Aldrich Chimie) was added, and the mix was incubated overnight. The precipitate obtained by centrifugation (15 min at +4°C and 1800g) was counted in a gamma counter (Packard Instruments).

SDS-PAGE Analysis. After i.v. administration of 125I-rH-RAGE, plasma samples were analyzed by SDS-PAGE. Equal amounts of TCA-precipitable radioactive material (approximately 7000 cpm) from plasma samples were loaded onto a 15% acrylamide gel and analyzed under nonreducing conditions. Radiolabeled proteins and metabolites were autoradiographed with X-ray film (Amersham Pharmacia Biotech) and intensifying screens for 8 weeks. The migration zones of labeled proteins or metabolites were compared with prestained standards (myosin, 202 kDa; β-galactosidase, 137 kDa; BSA, 42.3 kDa; soybean trypsin inhibitor, 31.6 kDa; lysozyme, 18 kDa; aprotinin, 7.6 kDa) (Bio-Rad, Paris, France).

Plasma degradation of RAGE and rH-RAGE was studied in vitro. 125I-rH-RAGE and 125I-rRAGE (0.28 μCi/ml) were incubated at 37°C in normal human or rat plasma. An aliquot was taken before incubation and at 1, 3, 6, and 24 h. Samples were immediately frozen at −20°C until analysis by SDS-PAGE and autoradiography for 1 month.

Pharmacokinetic Analysis

Plasma concentration-time data of 125I-rH-RAGE administered i.v. were analyzed by using the Siphar Software (SIMED, Créteil, France) with a noncompartmental method. The terminal disposition rate constant (λz) was determined by linear regression analysis and the corresponding half-life (T1/2λz) was calculated as 0.693/λz. The area under the plasma 125I-rH-RAGE concentration-time curve from zero to infinity (AUC) was determined by linear trapezoidal estimation from 0 to the last measured time, with extrapolation to infinity by adding the value of the last measured plasma concentration divided by the terminal rate constant (Gibaldi and Perrier, 1982). Total body clearance (CL), distribution volume of the terminal elimination half-life (Vz), extrapolated distribution volume (Vh), and mean residence time (MRT) were calculated by using standard equations (Gibaldi and Perrier, 1982).

Subcutaneous plasma pharmacokinetics of 125I-rH-RAGE and 125I-Fab were also analyzed by a noncompartmental approach to determine T1/2λz and AUC. The maximal concentration (Cmax) and the corresponding experimental time (Tmax) after s.c. administration of 125I-rH-RAGE are the experimental observed values.

Statistical Analysis

Results are presented as mean ± S.E.. One-way ANOVA followed by the parametric Dunnett's test in the event of significant differences was used to compare permeability of ECs in the presence of normal or diabetic RBCs and to analyze the results of in vivo permeability studies. Mean values of pharmacokinetic parameters were compared with the nonparametric Mann-Whitney two-sample test.

In Vivo Permeability

In diabetic rats the vascular permeability to 125I-albumin was increased in diabetic compared with normal rats, especially in skin (∗×2.75), intestine (∗×2.6), kidney (∗×2.36), vena cava (∗×2.2), and heart (∗×2.1). After a bolus injection of rH-RAGE (5.15 mg/kg) in diabetic rats, the hyperpermeability was corrected. This effect was observed 1 h and 40 min after rH-RAGE injection and was more pronounced in skin and intestine (Fig. 2A). Infusion of diabetic RBCs in normal rats increased the permeability to 125I-albumin compared with normal RBCs infused in normal rats (Fig. 2B). The permeability increase was similar to that observed in diabetic and normal rats infused with rH-RAGE. After diabetic RBC infusion, the vascular permeability to 125I-albumin was 2.5, 2.2, 2.2, 2.1, and 2.0-fold higher in heart, skin, kidney, vena cava, and intestine, respectively. Coadministration of rH-RAGE and diabetic RBCs inhibited the hyperpermeability to 125I-albumin in each organ and particularly in skin (Fig. 2B). VCAM-1 did not reduce the hyperpermeability in organs, indicating that the effect of rH-RAGE was specific.

Plasma Pharmacokinetics after i.v. Administration

Pharmacokinetics of 125I-rH-RAGE Proteins Precipitated by TCA. After i.v. bolus (Fig. 3), 125I-rH-RAGE plasma concentrations decreased more rapidly in diabetic rats than in normal rats and resulted in an AUC 1.4-fold higher in normal than in diabetic rats and in a clearance 1.7-fold higher in diabetic than in normal rats. Distribution clearances (CLD1 and CLD2, Table 1) determined by using a three-compartment model (Veng-Pedersen and Gillespie, 1986) for plasma concentration-time curve analysis were not significantly different in normal and diabetic rats, indicating that differences observed in clearance of normal and diabetic...
rats were not due to a different distribution process. The elimination half-life was not significantly different in diabetic and normal rats. The distribution volume was 2-fold higher in diabetic than in normal rats, which is particularly high for a 35-kDa protein, because the total body water of rats is 0.7 l/kg (Davies and Morris, 1993). Because V_d could be influenced by differences in clearance (Jusko and Gibaldi, 1972), distribution volume at steady state (V_ss) and extrapolated volume (V_e) were also determined by using a three-compartment model for plasma concentration-time curve analysis (Table 1). Results confirmed the high distribution volume of 125I-rH-RAGE in rat. Volume of the central compartment (V_c) of 125I-rH-RAGE being similar in normal and diabetic rats (Table 1), the difference in the distribution volume was not due to a different 125I-rH-RAGE central compartment in normal and diabetic rats. V_c was approxi-

Fig. 2.

A, effect of rH-RAGE on vascular permeability. The TBIR was determined in normal (n = 6), diabetic (n = 7), and diabetic rats pre-treated with rH-RAGE (5.15 mg/kg) (n = 6). 125I-albumin and 51Cr-RBCs were injected into rats 40 min after RBCs or RBCs plus rH-RAGE, and TBIR was calculated according to the formula [125I/51Cr (tissue)] / [125I/51Cr (blood)], where 125I/51Cr is the ratio of radioactivity in tissue to that in an arterial blood sample harvested before excising the heart.

B, effect of a transfusion of diabetic RBCs on vascular permeability. Normal RBCs (n = 7), diabetic RBCs (n = 7), or diabetic RBCs plus rH-RAGE (60 μg/ml; n = 6) were injected into normal rats and TBIR was determined 1 h after the injection. The results are presented as mean values. Bars, mean ± S.E. *P < .05, **P < .01, and ***P < .001.

TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>Noncompartmental model</th>
<th>Three-Compartment Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_1/2 (h)</td>
<td>CL (ml/kg/h)</td>
</tr>
<tr>
<td>Diabetic (n = 5)</td>
<td>53.7 ± 7.6</td>
<td>2034 ± 27.6</td>
</tr>
<tr>
<td>Normal (n = 5)</td>
<td>45.3 ± 4.0</td>
<td>1174 ± 25.6</td>
</tr>
</tbody>
</table>

Values are presented as mean ± S.E. T_1/2, elimination half-life.
but in normal rats 125I-rH-RAGE had a higher elimination half-life than did 125I-rR-RAGE (45.27 ± 4.02 and 26.02 ± 2.36 h, respectively, $P = .044$). Distribution volume and total clearance were higher for 125I-rH-RAGE than for 125I-rR-RAGE as shown by a 2.2- and 2.4-fold increase of V_d in diabetic and normal rats and by a 1.9- and 1.3-fold increase of CL in diabetic and normal rats, respectively. AGE concentrations, which are higher in diabetic than in normal rats, might account for the degradation of free 125I-rH-RAGE.

Immunoprecipitation of 125I-rH-RAGE. To further demonstrate that the plasma radioactivity corresponded to intact rH-RAGE, we performed immunoprecipitation studies. Before 125I-rH-RAGE administration in rats, more than 95% of the radioactivity was recovered after TCA precipitation, and 66.2 ± 1.5% was recovered after immunoprecipitation with a monoclonal antibody directed against rH-RAGE. One hour after the i.v. administration, immunoprecipitated 125I-rH-RAGE represented only 46.7 ± 4.7 and 73.0 ± 1.7% of the TCA-precipitable radioactivity in normal and diabetic rats, respectively. Two hours after the administration, immunoprecipitated percentages of the TCA-precipitable radioactivity decreased to 20.7 ± 2.9 and 46.7 ± 0.9%, for normal and diabetic rats, respectively. These results suggest that the monoclonal antibody used in our study recognized 125I-rH-RAGE before its administration in rats, and that after its administration 125I-rH-RAGE was extensively metabolized, especially in normal rats.

SDS-PAGE. This extensive metabolism of 125I-rH-RAGE was also observed by SDS-PAGE (Fig. 4). One hour after 125I-rH-RAGE administration in normal and diabetic rats, autoradiography of plasma samples showed one band of approximately 35 kDa and another band of lower molecular mass in normal and diabetic rats. The 35-kDa band could correspond to native 125I-rH-RAGE and the other to 125I-rH-RAGE metabolites. In addition, in plasma samples of diabetic rats, we also observed a third band corresponding to products of higher molecular mass that could correspond to complexes formed with 125I-rH-RAGE. Identification of 125I-rH-RAGE by SDS-PAGE indicated a rapid metabolism of 125I-rH-RAGE, as did the immunoprecipitation studies.

To detect a possible difference in susceptibility of rR-RAGE and rH-RAGE to plasma proteases, we incubated the radiolabeled proteins in rat plasma and human plasma. After a 1-, 3-, 6-, and 24-h incubation in rat plasma, SDS-PAGE and autoradiography showed that the bands corresponding to native rR-RAGE and rH-RAGE (35 kDa) were reduced to a similar extent, as were the bands corresponding to RAGE degradation products. A slower but not significant cleavage of human RAGE was observed in human plasma compared with rat plasma (results not shown).

Plasma Pharmacokinetics after s.c. Administration

Pharmacokinetics of 125I-rH-RAGE Proteins Precipitated by TCA. After s.c. administration, we observed similar elimination half-lives in diabetic and normal rats ($T_{1/2}^{\lambda_z} = 64.9 ± 8.5$ and 57.9 ± 3.9, respectively, $P = .499$). Two C_{max} values characterized the profile of the 125I-rH-RAGE plasma concentration-time curve. The first around 2 h after the injection and the second 40 to 50 h after the injection (Fig. 5).

Immunoprecipitation of 125I-rH-RAGE. To better understand the two absorption peaks that characterized the s.c. pharmacokinetics of 125I-rH-RAGE, we immunoprecipitated plasma samples at the two C_{max} times (1.8 and 50 h) after s.c. administration of 125I-rH-RAGE in normal rats. Only 16.1 ± 0.6 and 2.3 ± 1.3% of the TCA-precipitable radioactivity were...
immunoprecipitated at 1.8 and 50 h, respectively. In normal rats, 125I-Fab, which was used as a control, was characterized by only one absorption peak, indicating that the mode of administration was not responsible for the two observed C_{max} values with 125I-rH-RAGE. These results could indicate that 125I-rH-RAGE was extensively metabolized after s.c. administration and that the second C_{max} could result from the distribution of radiolabeled metabolites not recognized by the monoclonal antibody used. Although this pharmacokinetic profile is surprising, metabolism of proteins after s.c. injection is well known and has been described for other proteins such as platelet-derived growth factor (PDGF; Abdiu et al., 1998), insulin (Okumura et al., 1985), and parathyroid hormone and calcitonin (Parsons et al., 1979).

Biodistribution of 125I-rH-RAGE

We studied the distribution of 125I-rH-RAGE at the end of the distribution phase after i.v. administration in diabetic ($n = 3$) and normal rats ($n = 3$) (Fig. 6A). The distribution profile of 125I-rH-RAGE in all organs tested was similar in both types of rat. In normal rats, its distribution was $24.3 \pm 5.9, 22.0 \pm 3.6, 15.3 \pm 1.3$, and $12.0 \pm 3.4\%$ in skin, aorta, kidney, and vena cava, respectively, whereas these percentages were $19.2 \pm 3.4, 15.8 \pm 2.0, 11.72 \pm 3.3, 11.5 \pm 3.0$, and $10.7 \pm 0.8\%$ in aorta, skin, lung, vena cava, and kidney of diabetic rats, respectively. In both types of rat, at the end of the experiment (96 h, Fig. 6B) most of the radioactivity was found in the kidney and aorta at the end of the distribution phase, but it was also elevated in the liver, suggesting hepatic trapping of the protein. It has been reported that the tissue distribution of other proteins such as humanized anti-IgE antibody (Fox et al., 1996) and recombinant human interleukin-11 (Takagi et al., 1995) is higher in the liver and kidney. These findings may reflect residual organ blood and possible metabolism and clearance of the studied protein and its metabolites by these organs (Fox et al., 1996).

Database Search Results

Alignment of the amino acid sequences of human, rat, and bovine RAGE indicated 80.8% identity between human and bovine RAGE, 78% identity between human and rat RAGE, and 73.3% identity between rat and bovine RAGE (Fig. 7). Cysteine residues and potential N-glycosylation sites are conserved in the three molecules. They have several potential O-glycosylation sites (T^{304} and S^{307} in human RAGE, T^{104}, S^{266}, S^{305}, and S^{311} in rat RAGE, and T^{101} and S^{317} in bovine
Discussion

After i.v. injection, pharmacokinetic parameters of 125I-rR-RAGE are different in normal and diabetic rats. This finding is probably related to the presence in diabetic animals of AGEs, which create an additional distribution compartment for 125I-rR-RAGE (Renard et al., 1997). After i.v. injection, 125I-rH-RAGE had a higher distribution volume and a higher clearance in diabetic than in normal rats, but the 125I-rH-RAGE elimination half-life was similar. It is unlikely that differences were due to the alteration of proteins during iodination (Bauer et al., 1996), because rR-RAGE and rH-RAGE were radiolabeled by the same protocol and have no major difference in their phenylalanine and tyrosine contents.

Immunoprecipitation by anti-RAGE antibody is more specific than TCA precipitation, and plasma concentrations determined by TCA precipitation might be overestimated, while those determined by immunoprecipitation might be underestimated, since a small conformational change may result in nonreactivity with the monoclonal antibody used. Despite this discrepancy between the two methods, immunoreactive 125I-rH-RAGE plasma concentrations decrease rapidly after i.v. injection, whereas 93% of 125I-rR-RAGE is immunoprecipitable 2 h after i.v. injection (Renard et al., 1997). The low percentage of immunoprecipitated 125I-rH-RAGE in the present study might be due to several factors: 125I-rH-RAGE may be more catabolized by proteases, a different glycosylation between rH-RAGE and rR-RAGE can lead to a different metabolism, or 125I-rH-RAGE may form complexes with AGEs that modify its conformation.

Pharmacokinetic profiles after s.c. injection of 125I-rH-RAGE also suggested a rapid metabolism of the human protein in rat. Human recombinant 125I-tumor necrosis factor α (TNF-α) is rapidly cleared after s.c. injection, with a half-life of approximately 20 min (Renard et al., 1997).

Fig. 7. Alignment of the amino acid sequences of human, bovine (Neeeper et al., 1992), and rat (Renard et al., 1997) RAGE. Potential N-glycosylation sites are shown by bold underlining, and tyrosine residues (Y) are shown by light underlining. Cysteine residues involved in Ig domains are marked by asterisks. Boxed amino acids correspond to residues different among the three RAGE molecules. Residues 31–106, 31–105, and 31–105 represent the Ig-like V domain of human, bovine, and rat RAGE, respectively. Residues 137–214, 136–212, and 136–213 represent the first Ig-like C2 domain of human, bovine, and rat RAGE, respectively. Residues 252–308, 262–318, and 250–306 represent the second Ig-like C2 domain of human, bovine, and rat RAGE, respectively.
(TNF-α) has a longer elimination half-life in monkeys than in rabbits (Bocci et al., 1987), which further demonstrates the importance of the experimental model. In our in vitro degradation experiments we did not detect a difference between rR-RAGE and rH-RAGE stability in rat plasma, which might have explained the difference observed in the animal experiments. However, the sensitivity of the technique, even after densitometry analysis, is low. A possible complex mechanism involving cell surface associated proteases or surface components could be responsible for the difference between rR-RAGE and rH-RAGE pharmacokinetics in the rat. In the same rat model, we previously showed that purified bovine 125I-RAGE pharmacokinetics are similar to those of 125I-rR-RAGE (Wautier et al., 1996; Renard et al., 1997), which indicates that differences between human and rat RAGE cannot simply be explained by the heterologous nature of the proteins. To investigate possible explanations, we compared the amino acid sequences of rat, human, and bovine RAGE and found some differences between the three molecules. The arginine-221 in the human protein could be an additional cleavage site for trypsin-like enzymes, resulting in fragments of 24 and 13 kDa that both have tyrosine residues and remain radiolabeled. This could explain the extensive catabolism of 125I-RAGE and the presence of radiolabeled low molecular weight products on SDS-PAGE. Further studies using a mutated rH-RAGE with a substitution of arginine-221 would be useful to test this hypothesis. Prediction of different potential O-glycosylation sites suggests an alternative hypothesis, because human, rat, and bovine RAGE have different potential O-glycosylation sites that could lead to a different glycosylation pattern. Previous studies on protein pharmacokinetics indicate that carbohydrate moieties modulate catabolism of proteins, as observed with tissue plasminogen activator (Lucore et al., 1988) and interferon β (Bocci et al., 1982).

In vitro and in vivo, rR-RAGE (Renard et al., 1997) and rH-RAGE reverse vascular permeability produced by AGEs. Despite the catabolism of 125I-rH-RAGE in rat, the biological efficacy indicates that rH-RAGE fragments are still active or, as observed in genetically modified mice, that recombinant RAGE is active at a low concentration (Park et al., 1998). Delineation of the active peptide of the rH-RAGE molecule might allow better understanding of the discrepancy between the immunoreactive rH-RAGE blood level and its biological activity. Development of rH-RAGE as a treatment for reversing alterations due to AGEs will require further studies to improve stability and bioavailability of the protein. Protection of rH-RAGE from degradation in the bloodstream or the use of injectable depot formulations, in which rH-RAGE would be embedded in a polymeric matrix or vesicles (e.g., liposomes) (Putney and Burke, 1998) and released slowly, could be methods for overcoming degradation after i.v. or s.c. administration.

Acknowledgments

We thank Dr. Lei Zhao (Berlex Biosciences) for his assistance with recombinant RAGE and VCAM-1 purification and Clotilde Zoukourian (Laboratoire de Recherche en Biologie Vasculaire et Cellulaire) for assistance in the in vivo permeability experiments.

References

Fraker PJ and Speck JC (1978) Protein and cell membrane iodination with a sparingly soluble chloramide 1,3,4,6-tetrachloro-3a,6a-diphenylglycouril. Biochem Biophys Res Commun 80:849–857.

of diabetic erythrocytes bind to vessels wall via a specific receptor inducing oxidant stress in the vasculature: A link between surface associated AGEs and diabetic complications. *Proc Natl Acad Sci USA* **91**:8807–8811.

Send reprint requests to: Prof. Jean-Luc Wautier, INTS, 6 rue Alexandre Cabanel, 757 39 Paris Cedex 15, France. E-mail: wautier@ints.fr