Action Potentials, Contraction, and Membrane Currents in Guinea Pig Ventricular Preparations Treated with the Antispasmodic Agent Terodiline

LESYA M. SHUBA, YUJI KASAMAKI, STEPHEN E. JONES, TOSHITSUGU OGURA, JOHN R. MCCULLOUGH, and TERENCE F. MCDONALD

Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada (L.M.S., S.E.J., T.O., T.F.M.); Nihon University School of Medicine, 2nd Department of Internal Medicine, Itabashi-ku, Tokyo, Japan (Y.K.); and Sepracor Inc., Marlborough, Massachusetts (J.R.M.)

Accepted for publication April 21, 1999

ABSTRACT

Terodiline was widely prescribed for urinary incontinence before reports of adverse cardiac effects that included bradycardia, QT lengthening, and ventricular tachyarrhythmia. The present study on guinea pig papillary muscles and ventricular myocytes was undertaken to gain insight into the cardioactive properties of the drug. Clinically relevant concentrations (10 μM) of terodiline lengthened the action potential duration by up to 12%; higher concentrations shortened the duration in a concentration-dependent manner. The drug depressed maximal upstroke velocity in a use-dependent manner; the IC50 value was near 150 μM at 1 Hz, 60 μM at 3 Hz, 38 μM at 5 Hz, and 3 μM at 1 Hz in muscles depolarized with 14 mM K⁺. Submicromolar terodiline frequently had a small positive inotropic effect, whereas micromolar concentrations depressed force in a frequency-dependent manner. Voltage-clamp results on myocytes indicate that terodiline inhibits three membrane currents that govern repolarization: 1) E4031-sensitive, rapidly activating K⁺ current with an IC50 value near 0.7 μM as previously reported; 2) slowly activating, delayed-rectifier K⁺ current with an IC50 value of 26 μM; and 3) L-type Ca²⁺ current with an IC50 value of 12 μM. These findings are correlated with the changes in action potential configuration and developed tension and discussed in relation to the cardioactive effects of the drug.

Terodiline, a drug with structural similarities to pencyline and fendiline, was originally marketed in Sweden in the mid-1960s as a prophylactic agent in angina pectoris. The results of studies on isolated bronchial muscle (Iravani and Melville, 1975) and patients with obstructive pulmonary disease (Castenfors et al., 1975) suggested that terodiline had anticholinergic properties. Anticholinergic activity, as well as Ca²⁺ antagonism, was documented in subsequent investigations on isolated bladder (Husted et al., 1980). Based on this spectrum of activity, terodiline was investigated for the treatment of urinary incontinence in adults and of nocturnal enuresis in children (Elmér, 1984; Peters, 1984). The outcome of these trials was withdrawal of the drug as an antianginal agent in 1985 and reintroduction in more than 20 countries in 1986 as an effective treatment for urinary incontinence. It quickly became the drug of choice for this condition in Europe (Langtry and McTavish, 1990) but was withdrawn in 1991 after reports of serious cardiac side effects, including bradycardia, atrioventricular block, prolongation of the Q-T interval of the electrocardiogram, and ventricular tachyarrhythmia (torsades de pointes) (Connolly et al., 1991; Stewart et al., 1992). The drug is currently available for clinical investigation and is a prototype structure for the development of newer drugs for the treatment of unstable bladder (Take et al., 1996).

Although the specific electrophysiological mechanism or mechanisms that trigger drug-induced torsades are uncertain (Roden et al., 1996; Woosley, 1996), knowledge of the mechanisms of cardiac action of various torsades-inducing drugs contributes to improved understanding of the arrhythmia. In this regard, there have been investigations into the

ABBREVIATIONS: V, upstroke velocity; APA, action potential amplitude; APD, action potential duration; APD20, action potential duration at 20% repolarization level; APD90, action potential duration at 90% repolarization level; DMSO, dimethyl sulfoxide; Ica, L, L-type Ca²⁺ current; Ik, delayed-rectifier K⁺ current; Iki, inward-rectifying K⁺ current; Vmax, maximal upstroke velocity.
alterations of electrophysiological parameters, contraction, and membrane ionic currents caused by class Ia antiarrhythmic quinidine (Nawrath, 1981; Imaizumi and Giles, 1987), class III antiarrhythmic sotalol (Campbell, 1987), the antidepressant imipramine (Valenzuela et al., 1994), antihista-
mines terfenadine and astemizole (Berul and Morad, 1995; Salata et al., 1995), and the antibiotic erythromycin (Nattel et al., 1990; Daleau et al., 1995).

To our knowledge, there have been two previous studies on the direct effects of terodiline on cardiac cell function. Pressler et al. (1995) found that exposure of canine Purkinje fibers to clinically relevant concentrations (1–10 μM) of terodiline shortened the action potential duration (APD; 50% repolarization) by ~40%. More recently, we determined that the rapidly activating component of delayed-rectifier K+ current (IR) in guinea pig ventricular myocytes is inhibited by terodiline with IC50 values near 0.7 μM and that slowly activating IR is inhibited by high concentrations of the drug (Jones et al., 1998). Although the latter actions would have shortening influences on ventricular action potentials and may therefore be important factors in QT lengthening, it is unclear whether other actions of the drug on ventricular cells might not outweigh the lengthening influences and shorten the action potential as reported for Purkinje fibers. To obtain further information on these and other aspects of terodiline action on ventricular muscle, we recorded action potentials and developed tension in guinea pig papillary muscles treated with 0.1 to 100 μM concentrations of the drug, and we measured Ca2+ and K+ membrane currents in guinea pig ventricular myocytes.

Materials and Methods

Papillary Muscles. Papillary muscles were obtained from the right ventricles of adult guinea pig hearts. The guinea pigs (250–350 g) were sacrificed by cervical dislocation, and the hearts were quickly removed and placed in oxygenated (95% O2/5% CO2) Krebs’ solution that contained 113.1 mM NaCl, 4.6 mM KCl, 2.45 mM CaCl2, 1.15 mM MgCl2, 21.9 mM NaHCO3, 3.48 mM NaH2PO4, and 10.0 mM glucose (pH 7.4). Muscles were excised and mounted in a Perspex bath (0.25 ml volume) perfused with solution (36°C). The Tyrode’s solution contained 140 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 1.0 mM MgCl2, 10 mM glucose, and 5 mM HEPES, pH 7.4 with NaOH. In some experiments, this solution was replaced by K+-free Tyrode’s or K+-, Ca2+-free Tyrode’s that included 0.2 mM Ca2+.

Whole-cell membrane currents were recorded using an EPC-7 amplifier (List Electronic, Darmstadt, Germany). Recording pipettes were fabricated from thick-walled borosilicate glass capillaries (H15/ 10/137; Jenco Scientific Ltd., Bedfordshire, UK) and filled with 1)

K+ solution that contained 40 mM KCl, 106 mM potassium-aspar-
tate, 1 mM Mg-ATP, 4 mM K2-ATP, 5 mM EGTA, and 5 mM HEPES, pH 7.2 with KOH, or 2) Ca+2 solution (K+ replaced by Ca+2). The pipettes had resistances of 1.5 to 2.5 MΩ when filled with pipette solution, and liquid junction potentials between external and pipette-filling solution were nulled before patch formation. Series re-
sistance ranged between 3 and 7 MΩ and was compensated by 60 to 80%. Membrane current signals were filtered at 3 kHz and digitized with an A/D converter (Digidata 1200A; Axon Instruments) and pCLAMP software (Axon Instruments) at a sampling rate of 8 kHz before analysis.

Drugs. Terodiline was supplied by Sepracor Inc. (Marlborough, MA) and freshly dissolved in dimethyl sulfoxide (DMSO) (Sigma Chemical Co., St. Louis, MO) immediately before use. The highest final concentration of DMSO in the superfusate was 0.1% (for 100 μM terodiline), a DMSO concentration that has no significant effects on electrical and contractile activity in guinea pig papillary muscles or on Ca2+ and K+ currents in guinea pig ventricular myocytes (Ogura et al., 1995). E4031 was obtained from Eisai (Tokyo, Japan) and handled in the same manner as terodiline.

Statistcs. Results are expressed as mean ± S.E., and single comparisons were made using Student’s t test. Differences were considered to be significant when p < .05.

Results

Concentration-Dependent Effects of Terodiline on Action Potential Parameters

Duration and Amplitude. The records in Fig. 1, A–C, illustrate the effects of 0.3, 3, and 15 μM terodiline on the configuration of action potentials in guinea pig papillary muscles. The lower concentrations lengthened the action potential, whereas 15 μM lowered the plateau voltage and slowed phase 3 repolarization.

To quantify the concentration-dependent effects of terodiline, action potential amplitude (APA) and APD at 20 and 90% repolarization levels (APD20 and APD90, respectively) were monitored for 30 min in control and test muscles stimulated at 1 Hz. These parameters were stable in the control muscles and reached quasi-steady state within the observation period when tissues were exposed to terodiline (Fig. 1D). Values at 30 min were expressed as percentages of 0-min values, and the results are shown in Fig. 1E. APD20 was increased by low concentrations of terodiline [peak, 108 ± 2% (n = 14) at 1 μM], slightly reduced by 10 μM, and reduced to 85 ± 1% (n = 11) by 30 μM. The dependence of APD90 on
drug concentration was similar but shifted to the right; it increased to a peak of 112 ± 2% \((n = 19)\) at 3 \(\mu\)M and declined to 95 ± 1% \((n = 11)\) at 30 \(\mu\)M. APA was unaffected by ≤10 \(\mu\)M terodiline and slightly depressed by higher concentrations.

Control and drug-treated muscles were subsequently stimulated at 3 Hz for 5 min and at 5 Hz for an additional 3 min. In the control muscles, APD\(_{20}\) declined to 74 ± 2% (3 Hz) and 57 ± 2% (5 Hz) of the 0-min 1-Hz duration, APD\(_{90}\) declined to 79 ± 1% (3 Hz) and 62 ± 2% (5 Hz), and APA declined by 2 to 4 mV (Fig. 2). APD\(_{20}\) and APD\(_{90}\) also declined when terodiline-treated muscles were driven at 3 and 5 Hz, with the overall outcome that the increases in rate had little effect on the percentage changes induced by the drug (Fig. 2A). APA in drug-treated tissues was also affected by rate; reductions at high concentrations were up to 35 mV larger at 5 Hz than at 1 Hz, due primarily to reductions in overshoot (Fig. 2C).

Maximal Upstroke Velocity. Terodiline reduced maximal upstroke velocity \((V_{\text{max}})\) to 97 ± 1% (3 \(\mu\)M), 78 ± 4% (30 \(\mu\)M), and 57 ± 6% (100 \(\mu\)M) in muscles driven at 1 Hz (Fig. 3A). Depolarization of the resting membrane was not a factor in the reductions caused by <30 \(\mu\)M drug but may have been at 100 \(\mu\)M (depolarization of 2–8 mV, \(n = 6\)). For reference, Pressler et al. (1995) found that ≥25 \(\mu\)M terodiline caused marked depolarization and inexcitability of canine Purkinje fibers.

Increases in stimulation rate had a marked effect on \(V_{\text{max}}\) in terodiline-treated muscles, with estimated IC\(_{50}\) values declining from 150 \(\mu\)M (1 Hz) to 60 and 38 \(\mu\)M at 3 and 5 Hz, respectively (Fig. 3A). Lowering the resting potential by ele-
Effects on Force of Contraction

The stimulation rate to 3 and 5 Hz increased developed tension (Fig. 4C). However, the frequency-dependent inotropy was blunted in muscles treated with 3 to 5 μM terodiline and “reversed” in some muscles treated with 10 to 100 μM drug (Fig. 4C).

Effects on Membrane Currents

Overview. The records and analysis shown in Fig. 5 provide an overview of the concentration-dependent inhibitory effects of terodiline on membrane currents in guinea pig ventricular myocytes superfused with Tyrode’s solution and dialyzed with K+ solution. The myocytes were depolarized for 500 ms from prepulse −40 mV to elicit inward L-type Ca2+ current (I_{Ca,L}) and outward delayed-rectifier K+ current (I_K) and repolarized to −40 mV to elicit outward tail I_K. Exposure to 0.3 μM terodiline for 8 min had little effect on either peak I_{Ca,L} or time-dependent I_K at positive potentials, but it reduced tail I_K at −40 mV (Fig. 5A). However, exposures to higher concentrations of the drug (10 and 100 μM) caused reductions in I_{Ca,L} and time-dependent I_K, as well as further reductions in tail I_K (Fig. 5, B–D).

Effects on I_K. Guinea pig ventricular I_K is composed of I_{Kr} (a component that is rapidly activated at potentials up to −10 mV and specifically inhibited by E4031) and I_{Ks} (a component that is slowly activated at positive potentials) (Sanguinetti and Jurkiewicz, 1990). Figure 6A, a–c, illustrates that tail I_K measured after 500-ms depolarizations can be resolved into tail I_{Kr} and tail I_{Ks} by the application of 3 μM E4031, that low concentrations of terodiline suppress the E4031-sensitive tail, and that 30 μM terodiline reduces the amplitude of the E4031-insensitive tail by ~50%. A more detailed analysis of terodiline action on tail I_{Ks}, indicates that the IC_{50} value is near 0.7 μM (Jones et al., 1998).

To quantify the effects of terodiline on I_{Ks}, myocytes were bathed in K+-, Ca2+-, free Cd2+ solution (conditions that minimize the amplitude of I_{Kr}, relative to I_{Ks}, as in Sanguinetti and Jurkiewicz, 1992) and depolarized for 2 s to positive potentials for measurement of time-dependent outward currents. Records from representative myocytes exposed to 5 and 100 μM terodiline indicate that the drug had concentration-dependent inhibitory effects on I_{Ks} elicited by depolarizations up to 80 mV (Fig. 6B, a and b). The effects on current amplitude at 40 mV were used to determine the concentration-response relationship, and the data are well described by a Hill equation with an IC_{50} value of 26 μM and a coefficient of 0.85 (Fig. 6B, c).

Effects on Peak I_{Ca,L}. To evaluate the effects of terodiline on peak I_{Ca,L}, myocytes that were superfused and dialyzed with K+/-free solutions (to minimize K+ currents) were pulsed at 0.1 Hz with 200-ms steps from −40 to 0 mV, treated with terodiline, and then exposed to 0.4 mM Cd2+ to establish the zero-I_{Ca,L} background current level. The drug reduced the amplitude of I_{Ca,L} in a concentration-dependent manner (Fig. 7, A and B), and this action was sensitive to pulsing rate: in three myocytes, trains of 25 pulses at 3 Hz depressed I_{Ca,L} (0.1 Hz) to a much larger extent in the presence of the drug than in its absence (Fig. 6C).

The data obtained from myocytes pulsed at 0.1 Hz are summarized in Fig. 7D. They are well described by the Hill equation with an IC_{50} value of 12 μM and a coefficient of 0.9.
Relation to Action Potential and Contraction. The relevance of the voltage-clamp findings to muscle activity was examined by measuring the effects of 3 \(\mu \text{M} \) terodiline on papillary muscles that were pretreated with 5 \(\mu \text{M} \) E4031. E4031 slowed repolarization at potentials below \(-15\) mV (Fig. 7E), and the stable APD\(_{90}\) after 15 min was 127 \(\pm \) 2\% of control duration \((n = 5)\). Subsequent exposure to 3 \(\mu \text{M} \) terodiline for 30 min lowered the plateau voltage and reduced the lengthened APD\(_{90}\) by 9 \(\pm \) 2\% \((n = 5)\). It seems likely that the plateau reduction and APD\(_{90}\) shortening were due to inhibition of I\(_{\text{Ca,L}}\), and that this inhibition was primarily responsible for the accompanying negative inotropy [after 15-min E4031, developed tension was 126 \(\pm \) 3\% of 0-min control \((n = 5)\); after an additional 30-min terodiline, developed tension was 71 \(\pm \) 6\%].

Discussion

APD, Contraction, and Membrane Currents. The findings on APD, contraction, and membrane currents are best correlated by considering them under three terodiline concentration ranges: submicromolar (<1 \(\mu \text{M} \)), micromolar (1–5 \(\mu \text{M} \)), and high micromolar (≥10 \(\mu \text{M} \)). Submicromolar concentrations induced small but significant lengthenings of the action potential that were almost certainly due to partial inhibition of I\(_{\text{Kr}}\) (IC\(_{50}\) ~ 0.7 \(\mu \text{M} \)), and micromolar concentrations induced additional lengthening as expected from more complete inhibition of I\(_{\text{Kr}}\). However, the degree of lengthening (e.g., 12\% with 3 \(\mu \text{M} \)) was smaller than the 27\% lengthening in muscles treated with I\(_{\text{Kr}}\)-inhibiting E4031. The most likely explanation for this shortfall is that the lengthening influence related to I\(_{\text{Kr}}\) inhibition was partially offset by the shortening influence related to reduced peak I\(_{\text{Ca,L}}\) (IC\(_{50}\) 12 \(\mu \text{M} \)). In accord with this interpretation, 3 \(\mu \text{M} \) terodiline shortened the APD in muscles pretreated with E4031. High micromolar terodiline depressed V\(_{\text{max}}\) and the plateau, and this was most likely due to inhibition of Na\(^{+}\) current and additional inhibition of I\(_{\text{Ca,L}}\). The plateau-abbreviating influence related to these actions is likely to have been at least partially counteracted by a lengthening influence related to inhibition of I\(_{\text{Ks}}\) (IC\(_{50}\) = 26 \(\mu \text{M} \)). Finally, there were indications (lower resting potential; lower outward holding current at \(-40\) mV) that inhibition of inward-rectifying K\(^{+}\) current may have slowed phase 3 repolarization in muscles treated with high concentrations of the drug. A small positive inotropy was detected in many of the papillary muscles treated with submicromolar terodiline, and it seems likely that this was a consequence of the partial
inhibition of I_{Kr}. Many class III antiarrhythmic agents that inhibit I_{Kr} induce a small positive inotropy (Wallace et al., 1991), and we found that 5 μM E4031 augmented force by 26% in accord with findings on rabbit papillary muscles (Cingolani et al., 1991). The link between inhibition of I_{Kr} and positive inotropy is a lengthening of the action potential that allows a larger influx of Ca^{2+} (compare with Clark et al., 1996). Although action potential lengthening was more pronounced with micromolar than with submicromolar terodiline, this did not result in a larger positive inotropy. On the contrary, 1μM terodiline depressed contraction, and this was almost certainly related to the concentration-dependent reduction in $I_{Ca,L}$ (see Shuba and McDonald, 1994; Grantham and Cannell, 1996). In addition, there may well be a correlation between terodiline-induced abbreviation in time to peak tension (Fig. 4A) and terodiline-induced acceleration of the inactivation of $I_{Ca,L}$ (Fig. 7A). A further link between $I_{Ca,L}$ and contraction in drug-treated preparations was that both processes were inhibited by increases in pulsing rate. Kura et al. (1992) suggested that terodiline block of smooth muscle $I_{Ca,L}$ is rate-dependent.

Frequency- and Voltage-Dependent Inhibition of V_{max}. Significant inhibition of V_{max} occurred with 3 μM terodiline (reduction to 97 ± 1%) when muscles were driven at 1 Hz, and with 1 μM when they were driven at 5 Hz. Drug-induced inhibition of V_{max} was also accentuated when muscles driven at 1 Hz were partially depolarized with elevated K^+; in the 14 mM K^+ trials (resting potential lowered from $-$89 to $-$62 mV), the IC$_{50}$ value for inhibition by terodiline was near 3 μM (or roughly five times lower than the IC$_{50}$ value for tetrodotoxin in normally polarized guinea pig ventricular preparations; Baer et al., 1976).

A number of the V_{max} findings on papillary muscles correlate with those reported by Pressler et al. (1995) in their study on canine cardiac Purkinje fibers. For example, they found that significant (~11%) inhibition required 5 μM terodiline when the mean resting potential was -90 mV (2.7 mM K^+) but only 2 μM when it was -82 mV (5.4 mM K^+) and...
that inhibition by 10 μM drug was 25% larger at 2 Hz than at 0.67 Hz. These investigators also recorded a 10% lengthening of the His-ventricle interval in anesthesized dogs when plasma terodiline was ~4 μM and attributed it to slowed conduction related to Na⁺ channel block by the drug.

Adverse Reactions to Terodiline. The adverse cardiac effects of terodiline include slowing of heart rate, atrioventricular conduction disturbances, QT prolongation, and malignant ventricular tachycardia (torsades de pointes) (Connolly et al., 1991; Stewart et al., 1992). Because both Na⁺ and Ca²⁺ currents are essential for pacemaking and nodal conduction (Munk et al., 1996; Kodama et al., 1997), it seems likely that inhibition of these currents contributes to the bradycardia and atrioventricular block observed in patients receiving terodiline. In addition, action potential lengthening and more positive diastolic potential related to inhibition of delayed-rectifier K⁺ current may make important contributions to these disturbances (see Ono and Ito, 1995).

The QT lengthening caused by terodiline has been shown to be dependent on the plasma concentration of the drug (Thomas et al., 1995). The therapeutic concentration is ~1.5 μM, and a concentration of 9.3 μM was measured in one elderly patient (Connolly et al., 1991). Action potentials in guinea pig papillary muscles were lengthened in the presence of 0.1 to 10 μM terodiline, and although this lengthening was moderate (peak 12% at 3 μM), it is in good agreement with the degree of lengthening of the monophasic action potential in dogs (Pressler et al., 1995) and rate-corrected Q-T interval in dogs (Natsukawa et al., 1998) and humans (Stewart et al., 1992; Thomas et al., 1995).

Fig. 5. Concentration-dependent effects of terodiline on membrane currents in guinea pig ventricular myocytes. The myocytes were held at −40 mV and depolarized for 500 ms to more positive potentials at 0.1 Hz before and 6 to 8 min after the addition of the drug. A–C, effects of three different concentrations. The vertical bars indicate 1 nA, and the horizontal dashed lines indicate zero current. D, analysis of the data obtained from the myocyte treated with 10 μM terodiline (B). a, superimposed example records. b, current-voltage relationships. c, difference tail currents obtained by subtracting tails during drug treatment (TER) from corresponding controls (Ctrl). d, current-voltage relationship of the difference tail current.
Torsades de pointes is a malignant ventricular arrhythmia associated with a wide variety of drugs administered for their antiarrhythmic properties (e.g., quinidine, sotalol, amiodarone) or for entirely different purposes (e.g., terfenadine, erythromycin, terodiline), with the common outcome that they lengthen the Q-T interval (Roden et al., 1996; Woosley, 1996). The electrophysiological alterations responsible for this arrhythmia are not fully characterized, but it has been postulated that bradycardia, action potential prolongation, and early afterdepolarizations are crucial factors (Jackman et al., 1988; Thomas et al., 1995; Roden et al., 1996). We found no indications of either early or delayed afterdepolarizations in terodiline-treated muscles, most likely because development of these arrhythmogenic events is inhibited when excitatory inward currents are suppressed (compare with Hayashi et al., 1987; January and Shorofsky, 1990; Woosley, 1996). These predicted antiarrhythmic influences of terodiline notwithstanding, concomitant blockade of Na\(^+\) and K\(^+\) channels has proarrhythmic potential related to slowed conduction and increased heterogeneity in repolarization time courses (see Follmer and Colatsky, 1990; Sicouri and Antzelevitch, 1993), especially when the block of the Na\(^+\) channels is use-dependent (Starmer et al., 1991). Unlike guinea pig myocardium, transient outward current contributes to early repolarization in the human myocardium (Beuckelmann et al., 1993), and it is possible that terodiline affects this current in a proarrhythmic manner. Finally, other factors that predispose to acquired ventricular tachy-
arrhythmia (e.g., hypokalemia, myocardial ischemia, antiarhythmic drugs) may be important in the cardiotoxicity of terodiline (Thomas et al., 1995).

Acknowledgments

We thank Dr. An-Chi Guo and Gina Dickie for excellent technical assistance.

References

Salata JJ, Jurkiewicz NK, Wallace AA, Stupienski RF, Guinosso PJ and Lynch JJ (1995) Cardiac electrophysiological actions of the histamine H1-receptor antago-

Send reprint requests to: Dr. T. F. McDonald, Department of Physiology and Biophysics, Dalhousie University, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7. E-mail: terence.mcdonald@dal.ca