Ethanol-Like Discriminative Stimulus Effects of Endogenous Neuroactive Steroids: Effect of Ethanol Training Dose and Dosing Procedure

CARRIE A. BOWEN, ROBERT H. PURDY, and KATHLEEN A. GRANT

Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (C.A.B., K.A.G.); and Department of Neuropharmacology, Scripps Research Institute, La Jolla, California (R.H.P.)

Accepted for publication November 10, 1998 This paper is available online at http://www.jpet.org

ABSTRACT

A number of endogenous steroids exhibit rapid, nongenomic effects on the central nervous system and are called neuroactive steroids. The rapid mechanisms of action include modulation of γ-aminobutyric acid type A (GABAγ) and N-methyl-D-aspartate (NMDA) receptors, which are two receptors implicated in the behavioral effects of ethanol. It was hypothesized that neuroactive steroids that positively modulate GABAγ receptors or negatively modulate NMDA receptors, analogous to the actions of ethanol, would produce discriminative stimulus effects similar to ethanol. Two groups of male Long-Evans rats (n = 6–8/group) were trained to discriminate between 1.0 or 2.0 g/kg ethanol (i.g.) and water (i.g.). The neuroactive steroids allotetrahydrodeoxycorticosterone, pregnanolone sulfate, epipregnanolone sulfate, dehydroepiandrosterone, dehydroepiandrosterone sulfate, pregnenolone, and pregnenolone sulfate (PS), all administered i.p., were tested for substitution with acute and cumulative dosing procedures (n = 4–8/steroid). The GABAγ-positive modulatory steroids allo- pregnan-20-one sulfate, pregnanolone, and allotetrahydrodeoxycorticosterone substituted for ethanol, as did the low-efficacy steroid 3β,5β-P. GABAγ-negative modulators, such as dehydroepiandrosterone sulfate and PS, and all of the NMDA modulators tested, including PS, pregnanolone sulfate, and epipregn- nanolone sulfate, did not substitute for ethanol. These results show that certain endogenously occurring neuroactive steroids produce discriminative stimulus effects similar to those of ethanol.

A number of endogenous steroids and their metabolites exhibit rapid, nongenomic central nervous system (CNS) actions and, thus, are called neuroactive steroids (Paul and Purdy, 1992). Some of these steroids are synthesized in the brain de novo or secreted from the gonads and/or adrenals (Paul and Purdy, 1992). γ-Aminobutyric acid type A (GABAγ)-positive modulatory steroids include the progesterone metabolites 3α-hydroxy-5α-pregnan-20-one (allopregnanolone, or 3α,5α-P) and 3α-hydroxy-5β-pregnan-20-one (pregnanolone, or 3α,5β-P), and the deoxycorticosterone metabolite 3α,21-dihydroxy-5α-pregnan-20-one (allotetrahydrodeoxycorticosterone, or 3α,5α-THDOC; see Majewska, 1992; Lambert et al., 1995). Another progesterone metabolite, 3β-hydroxy-5β-pregnan-20-one (epipregnanolone, or 3β,5β-P), is characterized as a GABAγ receptor antagonist or partial agonist (Pignataro and Fiszer de Plazas, 1997). GABAγ-positive modulatory steroids exhibit hypnotic, anesthetic, anxiolytic, and anticonvulsant activities, consistent with enhancement of GABAγ receptor function (Majewska, 1992; Lambert et al., 1995). Similarly, potentiation of GABAγ-mediated activity is implicated in the behavioral effects of ethanol (Grant, 1994).

Other endogenously occurring neuroactive steroids negatively modulate N-methyl-D-aspartate (NMDA) receptors. Smith (1991) reported that systemic progesterone attenuated NMDA receptor responses to glutamate and suggested that...
this may result from CNS conversion of progesterone to its metabolites. Indeed, the progesterone metabolites 3α-hydroxy-5β-pregn-20-one sulfate (pregnenolone sulfate, or 3α,5β-PS) and 3β-hydroxy-5β-pregnan-20-one sulfate (epipregnanolone sulfate, or 3β,5β-PS) were found to inhibit NMDA-mediated calcium responses (Irwin et al., 1994; Park-Chung et al., 1994). Although the behavioral profiles of these naturally occurring steroids have yet to be investigated, 3α,5β-P hemisuccinate, a synthetic analog of 3α,5β-PS, inhibits NMDA receptor function and exhibits sedative, anti-convulsant, and analgesic properties (Weaver et al., 1997). Attenuation of NMDA-mediated activity also is implicated in the behavioral effects of ethanol (see Grant, 1994).

Some endogenous neuroactive steroids modulate GABA_A and/or NMDA receptors in a manner opposite to that of ethanol. 3β-Hydroxypregn-5-en-20-one sulfate (pregnenolone sulfate, or PS) and 3β-hydroxyandrost-5-en-17-one sulfate (dehydroepiandrosterone sulfate, or DHEAS) inhibit GABA_A receptor function (Carette and Poulain, 1984; Majewska, 1992). Furthermore, PS positively modulates NMDA receptors, although somewhat less potently than it inhibits GABA_A receptor function (Wu et al., 1991). The behavioral effects of PS and DHEAS are consistent with inhibition of GABA_A receptor function (Majewska et al., 1996). In addition, 3β-hydroxypregn-5-en-20-one (pregnenolone) alters sleep-EEG patterns in humans in a manner consistent with GABA_A receptor inverse agonism (Steiger et al., 1993).

Discriminative stimulus effects of drugs reflect specific, receptor-mediated CNS activity (see Colpaert, 1986; Holtzman, 1990). Drug discrimination procedures examine whether the interoceptive effects produced by a test drug are similar to the training drug, indicating common pharmacological mechanisms (Overton, 1974). Steroids, including progesterone and 3α,5β-P, have been trained as discriminative stimuli (Stewart et al., 1967; Vanover, 1997). GABA_A-positive modulatory steroids produce interoceptive effects similar to other GABA_A-positive modulators, showing cross-substitution with benzodiazepines (Ator et al., 1993; Deutsch and Mastropaolo, 1991; Vanover, 1997). barbiturates (Heinsbroek et al., 1987; Ator et al., 1993; Bowen et al., 1997; Vanover, 1997; Bowen and Grant, 1998a), and ethanol (Ator et al., 1993; Grant et al., 1996, 1997; Bienkowski and Kostowski, 1997, 1998). In contrast, the GABA_A-negative modulator DHEAS did not substitute for ethanol (Bienkowski and Kostowski, 1997).

In an effort to replicate and extend these findings, the present experiment examined whether endogenously occurring neuroactive steroids that modulate GABA_A and/or NMDA receptors in a manner similar to that of ethanol (e.g., 3α,5α-P, 3α,5β-P, 3α,5α-THDOC, 3α,5β-PS, and 3β,5β-PS) would produce ethanol-like discriminative stimulus effects. It was hypothesized that endogenous neuroactive steroids modulating GABA_A and/or NMDA receptors in a manner opposite to that of ethanol (e.g., DHEAS and PS) would not substitute. Because the training dose of ethanol appears to alter the potency of GABA_A and NMDA receptor modulators to substitute for ethanol (Grant and Colombo, 1992, 1993; Green and Grant, 1998), the present experiment investigated two ethanol training doses (1.0 and 2.0 g/kg).
Ethanol and neuroactive steroids were tested for substitution with an acute dosing procedure in the 1.0 and 2.0 g/kg ethanol training groups. Using this dosing regimen, one dose of a drug was examined during each test session. For each animal, stimulus substitution testing started with the administration of an intermediate drug dose. The lowest dose tested was that which resulted in $\geq80\%$ water-appropriate responding without a concurrent decrease in response rate. The maximum dose tested in each animal was predetermined based on drug solubility (i.e., 56 mg/kg for steroids), or that which resulted in $\geq80\%$ ethanol-appropriate responding or a response rate at least 50% below the control value obtained from the preceding ethanol or water training session, whichever was observed first.

In addition, ethanol and neuroactive steroid dose-response functions were determined in the 2.0 g/kg ethanol training group in single test sessions with a cumulative dosing procedure. A cumulative testing session was comprised of up to eight trials, each starting after an injection of vehicle or a dose of the test drug. At any time point, the dose of drug injected was such that when added to preceding doses, it yielded the desired cumulative dose of the drug. Specifically, after i.p. injection of vehicle, the rat was placed into the operant chamber. The first trial began after a 5-min pretreatment period and terminated after five pellet presentations or 5 min. Then the rat was removed from the operant chamber briefly to administer the first dose of drug 10 min after the preceding injection. The second trial began after another 5-min pretreatment period (i.e., 10 min after the beginning of the previous trial) and terminated after five pellet presentations or 5 min. A cumulative dosing testing session was completed after administration of a predetermined cumulative dose (i.e., 56 mg/kg for steroids) or after a trial in which $\geq80\%$ ethanol-appropriate responding occurred or the response rate was at least 50% below the vehicle rate obtained during the initial vehicle trial, whichever was observed first.

Under acute and/or cumulative test conditions, the effects of selected i.p. doses of ethanol (0.25–2.0 g/kg), DHEA (3.0–56.0 mg/kg), Δ^{5}-PS (3.0–56.0 mg/kg), Δ^{5}-THDOC (3.0–56.0 mg/kg), Δ^{5}-PS (3.0–56.0 mg/kg), Δ^{5}-PS (10–56 mg/kg); PS (3.0–56 mg/kg); Δ^{5}-hydroxyandrost-5-en-17-one (DHEA; 5.6–56.0 mg/kg), and DHEAS (10–56 mg/kg) were tested. Doses were calculated as the base, typically varied by quarter- or eighth-log units, and were tested once per test. Neuroactive steroids were examined in a minimum of four rats under 1.0 and 2.0 g/kg ethanol acute dosing and 2.0 g/kg ethanol cumulative dosing test conditions. The rats tested were randomized across steroids and across test conditions.

Drugs. Ethanol (95%; The Warner-Graham Company, Cockeysville, MD) was diluted with tap water to a concentration of 15% (w/v). Neuroactive steroids synthesized by the procedure of Purdy et al. (1996) included Δ^{5}-PS, Δ^{5}-PS, Δ^{5}-THDOC, Δ^{5}-PS, and Δ^{5}-PS. Other steroids were obtained from Sigma Chemical Co., St. Louis, MO (3β,5β-P, pregnenolone, DHEA, and DHEAS) and Research Biochemicals International, Natick, MA (PS). Δ^{5}-PS, Δ^{5}-PS, Δ^{5}-PS, Δ^{5}-PS, and Δ^{5}-PS were suspended in sterile Intralipid emulsion (20%; Kabi Pharmacia, Clayton, NC). Δ^{5}-PS, pregnenolone and DHEA were suspended in 45% (w/v) 2-hydroxypropyl-γ-cyclodextrin (Research Biochemicals International in sterile water. PS was suspended in 1% (w/v) Tween 80 in saline. DHEAS was dissolved in saline.

Data Analysis. The percentage of total responses occurring on the ethanol-appropriate lever and the response rate was determined for each rat during each test session or test trial. Complete substitution of a test drug for the discriminative stimulus effects of 1.0 or 2.0 g/kg ethanol was defined as $\geq80\%$ total session or trial responding on the ethanol-appropriate lever. Substitution and rate suppression ED$_{50}$ values were determined for animals responding $\geq80\%$ on the ethanol-appropriate lever and exhibiting $\geq50\%$ reduction in response rates compared with control values, respectively. Individual substitution and rate suppression ED$_{50}$ values were calculated by regression analysis of the linear portion of the dose-effect curve with log-transformed data. If only two points comprised the linear portion of the dose-effect curve, ED$_{50}$ values were estimated (Sigmaplot 4.16; Abacus Concepts, Inc., Berkeley, CA).

Results

Of the 16 rats that began discrimination training, 14 rats successfully acquired the 1.0 g/kg ($n = 8$) and 2.0 g/kg ($n = 6$) ethanol discriminations. Two rats became ill and were removed from the experiment. An average (± S.D.) of 68 (± 28) and 43 (± 11) training sessions were required for acquisition of the 1.0 and 2.0 g/kg ethanol discriminations, respectively. Ethanol administration (tested acutely or cumulatively) resulted in complete substitution for the 1.0 or 2.0 g/kg ethanol cue in all rats. The threshold dose for acute injections of ethanol to completely substitute differed slightly between the 1.0 g/kg ethanol-trained rats (0.75 g/kg) and the 2.0 g/kg ethanol-trained animals (1.0 g/kg; Fig. 1). However, the threshold substitution dose was 1.0 g/kg ethanol for either testing procedure in the 2.0 g/kg ethanol-trained group (Fig. 1). The potency of ethanol to substitute was similar across training groups and test dosing procedures (Table 1). Across the ethanol doses tested under acute conditions (0.5–
TABLE 1
Mean (±S.D.) and range of ED₅₀ values of test compounds that completely substituted for ethanol under different test conditions

<table>
<thead>
<tr>
<th>Test Compounds</th>
<th>1.0 g/kg Ethanol versus H₂O—Acute Test Dosing</th>
<th>2.0 g/kg Ethanol versus H₂O—Acute Test Dosing</th>
<th>2.0 g/kg Ethanol versus H₂O—Cumulative Test Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0 g/kg Ethanol versus H₂O—Acute Test Dosing</td>
<td>2.0 g/kg Ethanol versus H₂O—Acute Test Dosing</td>
<td>2.0 g/kg Ethanol versus H₂O—Cumulative Test Dosing</td>
</tr>
<tr>
<td></td>
<td>Mean (±S.D.)</td>
<td>Mean (±S.D.)</td>
<td>Mean (±S.D.)</td>
</tr>
<tr>
<td></td>
<td>(range of ED₅₀ values)</td>
<td>(range of ED₅₀ values)</td>
<td>(range of ED₅₀ values)</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.53 (±0.20)</td>
<td>0.67 (±0.19)</td>
<td>0.74 (±0.34)</td>
</tr>
<tr>
<td></td>
<td>(0.18–0.71 g/kg)</td>
<td>(0.38–0.88)</td>
<td>(0.38–1.25)</td>
</tr>
<tr>
<td>3α,5α-P</td>
<td>5.6 (±5.7)</td>
<td>N/A</td>
<td>17.7 (±6.6)</td>
</tr>
<tr>
<td></td>
<td>(0.56–13.0 mg/kg)</td>
<td></td>
<td>(7.8–21.0 mg/kg)</td>
</tr>
<tr>
<td>3α,5β-P</td>
<td>3.7 (±3.0)</td>
<td>10.7 (±9.1)</td>
<td>9.2 (±3.3)</td>
</tr>
<tr>
<td></td>
<td>(0.053–7.6 mg/kg)</td>
<td>(0.56–22.0 mg/kg)</td>
<td>(7.2–13.0 mg/kg)</td>
</tr>
<tr>
<td>3α,5α-THDOC</td>
<td>10.1 (±3.4)</td>
<td>11.5 (±10.1)</td>
<td>9.4 (±4.4)</td>
</tr>
<tr>
<td></td>
<td>(7.0–13.0 mg/kg)</td>
<td>(4.1–23.0 mg/kg)</td>
<td>(4.1–13.0 mg/kg)</td>
</tr>
<tr>
<td>3β,5β-P</td>
<td>6.4 (±2.3)</td>
<td>7.5 (±6.4)</td>
<td>31.0 (±11.6)</td>
</tr>
<tr>
<td></td>
<td>(1.7–7.8 mg/kg)</td>
<td>(0.54–13.0 mg/kg)</td>
<td>(21.0–41.0 mg/kg)</td>
</tr>
</tbody>
</table>

* Values represent mean ED₅₀ values (±S.D.) and the range of ED₅₀ values from 3 to 8 rats per test compound.
NA indicates that a test compound did not substitute completely for ethanol in at least three of the rats tested. All test compounds were administered i.p.
1.0 g/kg, average response rates were not different from average control rates (range of ethanol versus control rates: 0.40–1.81 versus 0.66–2.07 responses/s). Higher ethanol doses were administered under cumulative dosing test conditions, resulting in reduced response rates (mean ± S.D.) rates of 1.33 (± .46) versus 0.01 (± .01) under control versus cumulative 2.0 g/kg ethanol administration, and an average rate-suppression ED₅₀ value [95% confidence interval (CI)] of 1.49 g/kg (1.23–1.75). Acute and cumulative vehicle injections resulted in less than 5% average ethanol-appropriate responding (range: 0–9%; Fig. 1) and did not alter average response rates compared with control values (range of acute vehicle rates versus control rates, 0.70–1.75 versus 0.67–1.94 responses/s; range of cumulative vehicle rates versus control rates, 0.47–2.33 versus 0.57–1.99 responses/s).
Acutely administered GABAₐ-positive modulatory steroids 3α,5α-P, 3α,5β-P, and 3α,5α-THDOC, as well as the low efficacy steroid 3β,5β-P, substituted for ethanol in rats trained to discriminate 1.0 g/kg ethanol (Fig. 2). Individual steroids completely substituted for 1.0 g/kg ethanol in 80 to 100% of the animals tested (Fig. 2). Substitution ED₅₀ values varied between rats, indicating interanimal differences in sensitivity to the ethanol-like discriminative stimulus effects of these steroids, particularly 3α,5β-P (Table 1). Although orderly dose-effect relationships were prominent, a number of inverted U-shaped dose-response curves indicated that 3α,5β-P and 3α,5α-THDOC, as well as 3β,5β-P, produced ethanol-like effects across narrow dose ranges in some animals (Fig. 2). Across the steroid doses tested, average response rates were not different from average control rates (range of steroid versus control rates, 0.0–2.14 versus 0.72–2.07 responses/s).
Acutely administered 3α,5α-P, 3α,5β-P and 3α,5α-THDOC, as well as the low efficacy GABAergic steroid 3β,5β-P, substituted for ethanol in rats trained to discriminate 2.0 g/kg ethanol (Fig. 3). However, individual steroids completely substituted for 2.0 g/kg ethanol in only 40 to 67% of the animals tested (Fig. 3). Similar to the findings in the 1.0 g/kg ethanol group, sensitivities to the ethanol-like discriminative stimulus effects of these steroids varied between rats (Table 1). The average and rank-order potencies of each steroid did not differ between 1.0 and 2.0 g/kg ethanol training groups. In contrast, the percentage of rats that showed complete substitution of these steroids for ethanol was significantly different between groups (F₁,₁₆ = 16.3; p < .05). Across the acute steroid doses tested, average response rates were not different from average control rates (range of steroid versus control rates: 0.0–1.75 versus 0.52–2.07 responses/s).
Cumulatively administered GABAₐ-positive modulatory steroids 3α,5α-P, 3α,5β-P, and 3α,5α-THDOC, as well as the low-efficacy steroid 3β,5β-P, substituted for ethanol in rats trained to discriminate 2.0 g/kg ethanol (Fig. 4). Individual steroids completely substituted for 2.0 g/kg ethanol in 75 to 80% of the animals tested (Fig. 4). The differences in indi-
individual substitution ED$_{50}$ values were modest (Table 1). In rats tested with both acute and cumulative administration, only the low-efficacy steroid 3β,5β-P exhibited altered potency to substitute for 2.0 g/kg ethanol between dosing conditions ($F_{1,1}\,=\,214.9; p < .05$). The percentage of rats tested that showed complete substitution of these steroids for 2.0 g/kg ethanol was significantly different between acute and cumulative dosing procedures ($F_{1,3}\,=\,11.0; p < .05$). Across the doses tested (5.6–56.0 mg/kg), only 3α,5α-P resulted in average response rates that were different from average control rates (mean (± S.D.) rates of 1.20 (± 0.64) versus 0.04 (± 0.05) under control versus steroid conditions). The average ED$_{50}$ values (95% CI) of 3α,5β-P, 3α,5α-THDOC, and 3α,5α-P to suppress response rates were 13.7 mg/kg (6.6–20.8; n = 5), 16 mg/kg (11–21; n = 3) and 38 mg/kg (32–44; n = 3), respectively. 3β,5β-P, up to 56 mg/kg, decreased response rates in only one of five rats tested, and thus the average ED$_{50}$ value for rate suppression was not determined.

Neuroactive steroids which modulate NMDA receptors and negatively modulate GABA$_A$ receptors did not substitute for 1.0 or 2.0 g/kg ethanol in the majority of subjects. Across the three test conditions, average ethanol-appropriate responding was no greater than 33% after any dose of these neuroactive steroids, reflecting complete substitution in a maximum of two of the rats tested with a steroid. Table 2 shows the maximal average ethanol-appropriate responding of each steroid and the dose at which it occurred. When tested up to 56 mg/kg per molar dose of steroid, only cumulative 3β,5β-PS resulted in average response rates that were different from average control rates (mean (± S.D.) rates of 1.39 (± .45) versus 0.33 (± .47) under control versus steroid conditions). The average ED$_{50}$ values (95% CI) of 3β,5β-PS and PS to suppress response rates were 31 mg/kg (25–37; n = 4) and 8.1 mg/kg (4.7–11.4; n = 4), respectively.

Discussion

The present study investigated the ethanol-like discriminative stimulus effects of a number of endogenously occurring neuroactive steroids which exhibit activity at GABA$_A$ and NMDA receptors. The results replicate and extend previous neuroactive steroid findings in ethanol discriminations.
As reported in earlier discriminations using rats (Ator et al., 1993; Bieńkowski and Kostowski, 1997; Bowen and Grant, 1998) and monkeys (Grant et al., 1996, 1997), the γ-aminobutyric acid α-positive modulators 3a,5α-P and 3α,5α-THDOC produced ethanol-like discriminative stimulus effects. Another γ-aminobutyric acid α-positive modulatory steroid, 3α,5β-P, and the low-efficacy steroid 3β,5β-P also produced discriminative stimulus effects similar to ethanol. The present results also confirm a report that i.p. administration of DHEAS, a neuroactive steroid with γ-aminobutyric acid α antagonist activity, does not substitute for the discriminative stimulus effects of ethanol (Bieńkowski and Kostowski, 1997). Similarly, pregnenolone, PS, and DHEA were devoid of ethanol-like discriminative stimulus effects after i.p. administration. Together, these findings suggest that γ-aminobutyric acidergic neuroactive steroids produce interoceptive effects similar to ethanol and strengthen the data for positive modulation of γ-aminobutyric acid receptors as a basis for the discriminative stimulus effects of ethanol.

Substitution of γ-aminobutyric acid α-active steroids for ethanol varied significantly as a function of the ethanol training dose and test dosing procedure. Acute administration of 3α,5α-P, 3α,5β-P, and 3α,5α-THDOC, and the low-efficacy steroid 3β,5β-P resulted in complete substitution for ethanol in 80 to 100% and 40 to 67% of the animals tested in the 1.0 and 2.0 g/kg ethanol discriminations, respectively. This finding is consistent with reports that γ-aminobutyric acid-positive modulatory steroids such as 3α,5α-P and 3β,5β-P demonstrated enhanced potency and/or efficacy in multiple tests of anxiolytic activity (Wieland et al., 1995). Consistent with the latter finding, 3α,5β-P was more potent in producing ethanol-like discriminative stimulus effects under each of the three test conditions as compared with 3α,5α-P. Acutely, 3α,5β-P also substituted in a greater percentage of animals trained to discriminate 1.0 and 2.0 g/kg ethanol compared with 3α,5α-P.

We observed a lack of ethanol substitution after i.p. administration of the NMDA antagonist steroids 3α,5β-PS and 3β,5β-PS. Unlike other NMDA antagonists that substitute for ethanol (Grant and Colombo, 1992; Sanger, 1993; Shelton and Balster, 1994), these steroid sulfates did not substitute for the discriminative stimulus effects of 1.0 or 2.0 g/kg ethanol. The results may be due to an inability of i.p. administered sulfate esters of neuroactive steroids to penetrate the CNS because i.p. 3β,5β-P hemisuccinate, a synthetic analog of 3β,5β-PS that crosses the blood-brain barrier, produces ethanol-like discriminative stimulus effects (K.A. Grant, unpublished observations). Assuming this hypothesis, the data suggest that a 30-min pretreatment is not enough time for sufficient hydrolysis of these steroid sulfates to the unesterified, γ-aminobutyric acid-active, ethanol-like steroids 3α,5β-P and 3β,5β-P.

As hypothesized, NMDA-agonist and γ-aminobutyric acid-α-antagonist steroids did not produce robust ethanol-like discriminative stimulus effects under any test conditions. After administration of pregnenolone, PS, DHEA, and DHEAS, the average ethanol-appropriate response was consistently low and complete substitution for ethanol was observed in few rats. Of these neuroactive steroids, only DHEAS was tested in an earlier ethanol discrimination, and the present results are consistent with those obtained in the previous study (Bieńkowski and Kostowski, 1997). However, it should be noted that acute administration of pregnenolone produced some 1.0 g/kg ethanol-like activity and cumulative administration of DHEA and DHEAS resulted in some 2.0 g/kg ethanol-like activity. One possible explanation for these results is endogenous conversion of pregnenolone, DHEA, and DHEAS into γ-aminobutyric acid-α-positive modulatory steroids such as 3α,5α-P and androsterone (3α-hydroxy-5α-androstan-17-one).

Brain and plasma concentrations of the neuroactive steroids 3α,5α-P and 3α,5α-THDOC are relatively low in male rats under most conditions. After exposure to an acute stressor, endogenous levels of these steroids rapidly increase to concentrations that have been reported to modulate γ-aminobutyric acid receptor function in vitro (Purdy et al., 1991; Paul and Purdy, 1992; Barbaccia et al., 1996, 1997). Because our experiments were conducted in nonstressed male rats, it is likely that endogenous neuroactive steroid levels were inconsequential and that the data reflect the effects of exogenous steroid administration.

In summary, the present results replicated and extended earlier findings with endogenously occurring neuroactive ste-
roids in ethanol discriminations. The ethanol-like discriminative stimulus effects of 3a,5a-P and 3a,5a-TDOEC were confirmed and the GABA_A-positive modulatory steroid 3a,5b-P and the low-efficacy steroid 3β,5b-P also substituted for ethanol. Although the potencies of these steroids were relatively consistent, the percentage of animals tested that showed complete substitution of GABA_A-active steroids for ethanol differed as a function of ethanol training dose and test dosing procedure. The present results confirmed an earlier report that i.p. DHEAS did not substitute for ethanol. DHEA, pregnenolone, and FS also did not produce ethanol-like interoceptive effects. Because the negative results with 3a,5b-PS and 3β,5b-PS may reflect a lack of CNS penetration, future in vivo studies should use novel neuroactive steroid derivatives that easily cross the blood-brain barrier to investigate NMDA receptor involvement in the interactions between ethanol and neuroactive steroids. Overall, the present findings strengthen the data for positive modulation of GABA_A receptors as a basis for the discriminative stimulus effects of ethanol and indicate that a number of endogenously occurring neuroactive steroids can produce interoceptive effects similar to those of ethanol.

Acknowledgments

We thank Drs. Robert Mach, Michael Nader, Linda Porrino, and Herman Samson for helpful comments on an earlier version of this paper.

References

Bowen CA and Grant KA (1998a) Increased specificity of ethanol’s discriminative stimulus effects in an ethanol-pentobarbital-water discrimination in rats. Drug Alcohol Depend, in press.

Send reprint requests to: Kathleen A. Grant, Ph.D., Department of Physiology and Pharmacology, Duke Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083. E-mail: kagrant@wfubmc.edu.