Spinal Antinociceptive Synergism between Morphine and Clonidine Persists in Mice Made Acutely or Chronically Tolerant to Morphone

CAROLYN A. FAIRBANKS and GEORGE L. WILCOX

Department of Pharmacology (C.A.F., G.L.W.), Graduate Program in Neuroscience (G.L.W.), University of Minnesota, Minneapolis, Minnesota

Accepted for publication October 6, 1998

ABSTRACT

Morphine (Mor) tolerance has been attributed to a reduction of opioid-adrenergic antinociceptive synergy at the spinal level. The present experiments tested the interaction of intrathecally (i.t.) administered Mor-clonidine (Clon) combinations in mice made acutely or chronically tolerant to Mor. ICR mice were pretreated with Mor either acutely (40 nmol i.t., 8 h; 100 mg/kg s.c., 4 h) or chronically (3 mg/kg s.c. every 6 h days 1 and 2; 5 mg/kg s.c. every 6 h days 3 and 4). Antinociception was detected via the hot water (52.5°C) tail-flick test. After the tail-flick latencies returned to baseline levels, dose-response curves were generated to Mor, Clon, and Mor-Clon combinations in tolerant and control mice. Development of tolerance was confirmed by significant rightward shifts of the Mor dose-response curves in tolerant mice compared with controls. Isobolographic analysis was conducted; the experimental combined ED$_{50}$ values were compared statistically against their respective theoretical additive ED$_{50}$ values. In all Mor-pretreated groups, the combination of Mor and Clon resulted in significant leftward shifts in the dose-response curves compared with those of each agonist administered separately. In all tolerant and control groups, the combination of Mor and Clon produced an ED$_{50}$ value significantly less than the corresponding theoretical additive ED$_{50}$ value. Mor and Clon synergized in Mor-tolerant as well as in control mice. Spinally administered adrenergic/opioid synergistic combinations may be effective therapeutic strategies to manage pain in patients apparently tolerant to the analgesic effects of Mor.

Received for publication June 10, 1998.

This research was supported by National Institute on Drug Abuse Grants R01-DA-01933 and R01-DA-04274. Alcohol, Drug Abuse, and Mental Health Administration Training Grant T32A07234, awarded by the National Institute on Drug Abuse, supported C.A.F.

ABBREVIATIONS: Clon, Clonidine; i.t., intrathecal; %MPE, percentage of maximum possible effect; Mor, morphine; i.c.v., intracerebroventricular.
pothesized that the development of tolerance to systemically administered Mor might be due to a similar alteration in this spinal interaction. Consistent with that proposal, Roerig (1995) reported that the intrathecal antinociceptive synergy between Mor and clonidine (Clon), while present in placebo-pelleted subjects, was reduced to additivity in mice made chronically tolerant to Mor by pellet implantation. In light of the possibility that the outcome of these studies was affected by the presence of residual systemic, pellet-derived Mor at the time of testing, the present experiments sought to isolate this contribution using acute and chronic injection strategies both spinal and systemic. The present experiments tested the antinociceptive interaction between i.t. coadministered Mor and Clon in mice made acutely tolerant to both i.t. and systemically administered Mor and mice made chronically tolerant to Mor by repeated s.c. injection.

Materials and Methods

Animals. Experimental subjects were 20- to 25-g male ICR mice (Harlan, Madison, WI). These experiments were approved by the Institutional Animal Care and Use Committee. Subjects were housed in groups of 10 in a temperature- and humidity-controlled environment for at least 5 days before experimentation. Subjects were maintained on a 12-h light/dark cycle and had free access to food and water. Each animal was used only once.

Chemicals. Morphine sulfate was a gift from the National Institute on Drug Abuse, and Clon HCl was obtained from Boehringer-Ingelheim Ltd. (Ridgefield, CT). Both drugs were dissolved in 0.9% saline.

Antinociceptive Testing. Nociceptive responsiveness was determined using the warm water (52.5°C) immersion tail-flick test. The latency to the first rapid tail flick represented the behavioral end-point (Janssen et al., 1963). Baseline measurements of tail-flick latency to the first rapid tail flick represented the behavioral end-point using the warm water (52.5°C) immersion tail-flick test. The present experiments tested the antinociceptive interaction between i.t. coadministered Mor and Clon in mice made acutely tolerant to both i.t. and systemically administered Mor and mice made chronically tolerant to Mor by repeated s.c. injection.

Materials and Methods

Animals. Experimental subjects were 20- to 25-g male ICR mice (Harlan, Madison, WI). These experiments were approved by the Institutional Animal Care and Use Committee. Subjects were housed in groups of 10 in a temperature- and humidity-controlled environment for at least 5 days before experimentation. Subjects were maintained on a 12-h light/dark cycle and had free access to food and water. Each animal was used only once.

Chemicals. Morphine sulfate was a gift from the National Institute on Drug Abuse, and Clon HCl was obtained from Boehringer-Ingelheim Ltd. (Ridgefield, CT). Both drugs were dissolved in 0.9% saline.

Antinociceptive Testing. Nociceptive responsiveness was determined using the warm water (52.5°C) immersion tail-flick test. The latency to the first rapid tail flick represented the behavioral end-point (Janssen et al., 1963). Baseline measurements of tail-flick latencies were collected on all subjects (for a sample of n = 1157, mean = 3.5, S.D. = 1.0). Mice that failed to respond within 5 s to baseline tests were excluded from analysis (7%). To use each animal’s baseline tail-flick latency as its own control, percentage of maximum possible effect (%MPE) was determined according to the following formula: %MPE = (postdrug latency − predrug latency)/ (cutoff − predrug latency) × 100. To avoid tissue injury, a maximum score of 100% was assigned to those animals not responding before the 12-s cutoff. Probe drugs were injected i.t. by direct lumbar puncture (Hylden and Wilcox, 1980). All behavioral testing was conducted by the same experimenter.

Induction of Acute Tolerance to i.t. Administered Mor. Mice were made acutely tolerant to Mor by a single i.t. injection of Mor (40 nmol) (Fairbanks and Wilcox, 1997). All acute toleragen (tolerance-inducing agent) injections were administered between 6:00 and 9:00 AM. Approximately 8 h after the injection, tail-flick latencies were collected on all subjects to determine that the tail-flick latencies had returned to baseline levels. Subjects were then tested with Mor (0.2, 0.6, 2, 8, 15, and 20 nmol, i.t.). The tail-flick test was performed 10 min after this probe Mor injection.

Induction of Acute Tolerance to Systemically Administered Mor. Mice were made acutely tolerant to Mor by a single s.c. injection of Mor (100 mg/kg s.c., 100 μl) according the method of Yano and Takemori (1977). Approximately 4 h after the injection, tail-flick latencies were collected on all subjects to confirm that they had returned to baseline levels. Subjects were then challenged with Mor (0.2, 0.6, 2, 8, 15, and 20 nmol, i.t.). The tail-flick test was performed 10 min after this probe Mor injection.

Induction of Chronic Tolerance to Systemically Administered Mor. Mice were made chronically tolerant to Mor by repeated s.c. injections of Mor (3 mg/kg every 6 h days 1 and 2; 5 mg/kg every 6 h days 3 and 4, s.c.). Injections were administered at 12:00 AM, 6:00 AM, 12:00 PM, and 6:00 PM for 4 consecutive days. Saline pretreated controls (100 μl every 6 h, days 1–4) received equal numbers of injections as the Mor-treated subjects at the same times. Two (Fig. 4) or 6 h (Fig. 3) after the last injection, tail-flick latencies were collected on all subjects to confirm that the tail-flick latencies had returned to baseline levels. Subjects were then challenged with Mor (0.2, 0.6, 2, 8, 15, and 20 nmol, i.t.). The tail-flick test was performed 10 min after this probe Mor injection.

Statistical Analysis. Data describing antinociception are expressed as means of %MPE with S.E.M. Potency changes are presented as dose ratios between the ED50 values of different dose-response curves. Statistical comparisons of potencies are based on the confidence limits of the ED50 values. A dose-response shift is considered significant when the calculated ED50 value of one curve falls outside the confidence limits of the ED50 value of the curve to which it is being compared. The ED50 values and confidence limits were calculated according to the method of Tallarida and Murray (1987). Groups of 7 to 10 animals were used for each dose. For each experiment, six dose-response curves were generated. These included dose-response curves for Mor, Clon, and Mor-Clon coadministered in both Mor-tolerant and control groups. In the chronic studies, dose-response curves for the drugs administered separately were collected 1 week before the dose-response curves for drugs administered in combination. All Mor dose-response curves are displayed in Figs. 1-4A and Clon dose-response curves in Figs. 1–4B. The dose-response curves of the combination of Mor and Clon are represented in each figure twice: first in terms of the Mor dose in A, and second in terms of the Clon dose in B. To test for synergistic interactions, the ED50 values and the 95% confidence intervals of all dose-response curves were arithmetically arranged around the ED50 value using the equation (ln(10) × ED50) × (S.E. of log ED50). Isobolographic analysis (the appropriate method for evaluating synergistic interactions) (Tallarida and Murray, 1987; Tallarida, 1992) necessitates this manipulation. An additive ED50 value would be derived from a dose-response curve where the interactions between Mor and Clon merely represent the sum of the effects of each drug when given alone. When testing an interaction between two drugs given in combination for synergy, additivity, or subadditivity, a theoretical additive ED50 value is calculated for the combination based on the dose-response curves of each drug administered separately. This theoretical value is then compared by a t test (p < .05) with the observed experimental ED50 value of the combination of Mor and Clon. These values are based on total dose of both drugs, in other words, the total dose of Clon plus the total dose of Mor. To compare the drug doses administered separately, we have separated the Clon and Mor components of the observed and theoretical ED50 values; these are presented in Tables 1 to 4. An interaction is considered synergistic if the observed ED50 value is significantly less (p < .05) than the calculated theoretical additive ED50 value (Tallarida and Murray, 1987; Tallarida, 1992). Additivity is indicated when the theoretical and experimental ED50 values do not differ. Drug interactions may also be illustrated through construction of isobolograms, such as are represented in Figs. 1 to 4, C and D. In these graphs the ED50 values of Clon and Mor are respectively plotted as the y- and x-axis intercepts. The thicker lines directed from each ED50 value toward zero represent the respective lower confidence limits of each ED50 value. The straight line connecting these two points is the theoretical additive line. The open circle that lies on or near the theoretical additive line represents the calculated theoretical ED50 value of the combination of Clon-Mor. If the interaction is synergistic, the closed circle will be plotted significantly below the theoretical additive line and outside the lower confidence limits of ED50 values of Clon and Mor. In the present study, probe Mor in tolerant animals did not achieve full efficacy in experiments 2 and 4. Therefore, an ED50 value could not be calculated for Mor in those experiments. In these cases, to calculate a theoretical additive ED50...
value, we used the method described by Porreca and colleagues (1990) to evaluate synergistic interaction when one of the drugs in the combination is not fully efficacious.

Results

Confirmation of the Induction of Acute Tolerance to i.t. Administered Mor. We determined dose-response curves for the effects of Mor in the tail-flick test in naive, saline-pretreated, and Mor-pretreated (40 nmol, i.t.) mice. Morphine dose-response curves did not differ between naive or saline-pretreated mice (data not shown). Data from two naive and one saline-pretreated dose-response curves were pooled to generate a nontolerant dose-response curve (Fig. 1A, ED50: 1.2 nmol, 0.7–1.7). Mor pretreatment increased the ED50 value in a dose-dependent manner (Fig. 1A). Data from three Mor-pretreated (40 nmol, i.t.) dose-response curves were pooled and are represented in Fig. 1A. Pretreatment with 40 nmol of Mor produced a 9.6-fold rightward shift in the Mor dose-response curve (ED50: 12 nmol, 8.5–15). This dramatic rightward shift confirms the induction of Mor tolerance in this acute model. These data served to characterize our acute spinal tolerance model, were conducted concurrently with the present set of experiments, and have been presented previously (Fairbanks and Wilcox, 1997). They are plotted here for the purpose of comparison to the present results.

Synergy Detectable in Mice Made Acutely Tolerant by i.t. Administered Mor. Intrathecal administration of Clon produced an antinociceptive dose-response curve with an ED50 value of 21 nmol (11–30) in Mor-pretreated (40 nmol, i.t.) animals (Fig. 1B). This value is comparable to that of Clon administered to saline-pretreated mice (ED50: 24 nmol, 6.2–42; Fig. 1B), indicating no apparent cross-tolerance. Based on these ED50 values, the Mor-Clon equieffective dose ratios were determined to be 1:20 in the nontolerant mice and 1:2 in the Mor-tolerant mice. Administration of Mor-Clon combinations in either Mor-tolerant or control mice produced leftward shifts in the dose-response curves for each drug administered in the presence of the other compared to each
drug administered separately (Fig. 1, A and B). The shifts are significant; the \(ED_{50} \) values for each drug administered in combination is significantly lower than that of each drug administered separately (Table 1). This holds true for both pretreatment groups. In the isobolograms representing the drug interaction in controls (Fig. 1C) and Mor-tolerant animals (Fig. 1D), the experimental point (closed circle) falls significantly below the theoretical additive line and calculated theoretical additive \(ED_{50} \) value (open circle); these data illustrate synergism in both cases. Statistical analysis confirmed that the experimental \(ED_{50} \) values of the combinations in control and Mor-tolerant mice were significantly less than the respective calculated theoretical additive \(ED_{50} \) values (Table 1; \(p < .05 \)). These results indicate a synergistic interaction between Mor and Clon in both controls and mice made acutely tolerant to spinally administered Mor.

Synergy Present in Mice Made Acutely Tolerant by Systemic Administration of Mor. Morphine pretreatment (100 mg/kg s.c.) reduced the efficacy of probe Mor to less than 50% MPE even at the highest doses tested (20 nmol, i.t.). To determine a combination equieffective dose ratio, we estimated a combination equieffective dose ratio, we estimated the \(ED_{50} \) value to be 12 nmol (comparable to the previous acute tolerance experiments) and from that value we determined the combination equieffective dose ratio (1:2 Mor/Clon). Intrathecal administration of Clon revealed an antinociceptive dose-response curve with an \(ED_{50} \) value of 22 nmol (14–30) in Mor-tolerant mice (Fig. 2B). This value differs from that of Clon administered alone to saline-pretreated mice (\(ED_{50}; \) 7.5 nmol, 5.4–10; Fig. 2B). The observed shift indicates a 3-fold cross-tolerance to Clon (i.t.) in mice made acutely tolerant to systemically administered Mor. Based on these \(ED_{50} \) values, the Mor-Clon equieffective dose ratios were estimated to be 1:5 in the nontolerant mice and 1:2 in the Mor-tolerant mice. Administration of probe Mor-Clon combinations to Mor-tolerant (100 mg/kg s.c.) or control mice resulted in leftward shifts in the dose-response curves for each drug administered in the presence of the other compared with each drug administered separately (Fig. 2, A and B). The shifts are significant; the \(ED_{50} \) values for each drug administered in combination are significantly lower than those of each drug administered separately (Table 2). This is consistent for both pretreatment groups. In the isobolograms representing the drug interaction in controls (Fig. 2C) and Mor-tolerant animals (Fig. 2D), the experimental point (closed circle) falls significantly below the theoretical additive line and calculated theoretical additive \(ED_{50} \) value (open circle); these data denote synergism in both cases. Statistical analysis verified that the experimental \(ED_{50} \) values of the combinations in control and Mor-tolerant mice were significantly less than the respective calculated theoretical additive \(ED_{50} \) values (Table 3, \(p < .05 \)). These results signify a synergistic interaction between Mor and Clon in both controls and mice made chronically tolerant to systemically administered Mor.

Synergy Persists in Mice Made Chronically Tolerant by Systemic Mor (probe test at 2 h after the final injection). Mor pretreatment (3 mg/kg every 6 h s.c. days 1 and 2; 5 mg/kg every 6 h s.c. days 3 and 4) produced a 5-fold rightward shift (\(ED_{50}; \) 6 nmol, 2–10) in the probe Mor dose-response curve compared with that of saline-pretreated subjects (\(ED_{50}; \) 1.2 nmol, 0.7–1.9) (Fig. 3A). Intrathecal administration of Clon produced an antinociceptive dose-response curve with an \(ED_{50} \) value of 89 nmol (20–158) in animals pretreated with this Mor regimen (Fig. 3B). This value does not differ from that of Clon administered alone to saline-pretreated mice (\(ED_{50}; \) 64 nmol, 27–102; Fig. 3B). Based on these \(ED_{50} \) values, the Mor-Clon equieffective dose ratios were determined to be 1:50 in the nontolerant mice and 1:15 in the Mor-tolerant mice. Combination of Mor and Clon resulted in significant leftward shifts in the dose-response curves compared with those of each agonist administered separately (Fig. 3; Table 3). This observation indicates an increase in potency for each drug administered in the presence of the other compared with each drug administered alone. In the isobolograms representing the drug interaction in controls (Fig. 3C) and Mor-tolerant animals (Fig. 3D), the experimental point (closed circle) falls significantly below the theoretical additive line and calculated theoretical additive \(ED_{50} \) value (open circle); these data denote synergism in both cases. Statistical analysis verified that the experimental \(ED_{50} \) values of the combinations in control and Mor-tolerant mice were significantly less than the respective calculated theoretical additive \(ED_{50} \) values (Table 3, \(p < .05 \)). These results signify a synergistic interaction between Mor and Clon in both controls and mice made chronically tolerant to systemically administered Mor.

Table 1

<table>
<thead>
<tr>
<th>Probe Drug</th>
<th>Pretreatment</th>
<th>(ED_{50}) Clon (95% CL)</th>
<th>(ED_{50}) Mor (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mor</td>
<td>Saline</td>
<td>1.2 (0.7–1.7)</td>
<td>12 (8.5–15)</td>
</tr>
<tr>
<td></td>
<td>Mor</td>
<td>21 (11–30)</td>
<td>24 (6.2–42)</td>
</tr>
<tr>
<td>Clon</td>
<td>Saline</td>
<td>3.6 (0.4–6.9)*</td>
<td>0.2 (0.02–0.4)*</td>
</tr>
<tr>
<td></td>
<td>Mor</td>
<td>12 (8.0–14)</td>
<td>0.6 (0.3–0.8)</td>
</tr>
<tr>
<td>Mor + Clon</td>
<td>Saline</td>
<td>0.4 (0.2–0.5)*</td>
<td>0.2 (0.1–0.3)*</td>
</tr>
<tr>
<td></td>
<td>Mor</td>
<td>11 (6.9–17)</td>
<td>5.5 (4.0–7.1)</td>
</tr>
</tbody>
</table>

* Significant difference from theoretical additive by Student’s t test, \(p < .05 \).
Dose ratios were determined to be 1:20 in the nontolerant mice and approximated at 1:5 in the Mor-tolerant mice. Administration of probe Mor-Clon combinations to Mor-tolerant (3 mg/kg every 6 h s.c. days 1 and 2; 5 mg/kg every 6 h s.c. days 3 and 4) or control mice resulted in leftward shifts in the dose-response curves for each drug administered in the presence of the other compared to each drug administered separately (Fig. 4, A and B). These shifts are significant: the ED_{50} values for each drug administered in combination are significantly lower than that of each drug administered separately (Table 2). This observation indicates an increase in potency for each drug administered in the presence of the other compared with each drug administered alone. In the isobolograms representing the drug interaction in controls (Fig. 4C) and Mor-tolerant animals (Fig. 4D), the experimental point (closed circle) falls significantly below the theoretical ED_{50} value from the Mor dose-response curve. Despite this imperfection, the observed difference between the observed ED_{50} value of the combination and the theoretical additive ED_{50} value is sufficiently great to strongly demonstrate a synergistic interaction.
TABLE 2
Acute tolerance to systemically administered Mor (100 mg/kg)

<table>
<thead>
<tr>
<th>Probe Drug</th>
<th>Pretreatment</th>
<th>ED$_{50}$ Clon (95% CL)</th>
<th>ED$_{50}$ Mor (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mor</td>
<td>Saline</td>
<td>1.2 (0.5–1.9)</td>
<td>Not calculated</td>
</tr>
<tr>
<td></td>
<td>Mor</td>
<td>7.5 (5.4–10)</td>
<td></td>
</tr>
<tr>
<td>Mor + Clon</td>
<td>Saline</td>
<td>0.7 (0.4–1.1)*</td>
<td>0.2 (0.1–0.24)*</td>
</tr>
<tr>
<td>(1:1.5 dose ratio)</td>
<td></td>
<td>3.5 (2.6–4.5)</td>
<td>0.8 (0.6–1.0)</td>
</tr>
<tr>
<td>Observed (synergy)</td>
<td></td>
<td>9.2 (6.0–12)</td>
<td>4.6 (3.0–6.2)</td>
</tr>
<tr>
<td>Theoretical additive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mor + Clon</td>
<td>Mor</td>
<td>3.0 (0.9–5.1)*</td>
<td>1.5 (0.4–2.5)*</td>
</tr>
<tr>
<td>(1:2 dose ratio)</td>
<td></td>
<td>9.2 (6.0–12)</td>
<td>4.6 (3.0–6.2)</td>
</tr>
<tr>
<td>Observed (synergy)</td>
<td></td>
<td>1.2 (0.5–1.9)</td>
<td>1.2 (0.5–1.9)</td>
</tr>
<tr>
<td>Theoretical additive</td>
<td></td>
<td>1.2 (0.5–1.9)</td>
<td>1.2 (0.5–1.9)</td>
</tr>
</tbody>
</table>

* Significant difference from theoretical additive by Student’s t test, p < .05.

tive line and calculated theoretical additive ED$_{50}$ value (open circle); these data indicate synergism in both cases. Statistical analysis confirmed that the experimental ED$_{50}$ values of the combinations in control and Mor-tolerant mice were significantly less than the respective calculated theoretical additive ED$_{50}$ values (Table 4; p < .05). These results demonstrate a synergistic interaction between Mor and Clon in both controls and mice made chronically tolerant to systemically administered Mor.

Discussion

Conceptually, additivity refers to the interaction of two drugs such that when coadministered the resultant effect approximates the maximum effect or the sum of the effects of the two drugs administered individually (see Tallarida, 1992 for a more precise definition). Synergy describes the interaction of two drugs such that when coadministered the resultant efficacy or potency supports a greater-than-additive or multiplicative interaction compared to each drug administered alone (Gessner and Cabana, 1970; Tallarida and Murray, 1987). A rigorous mathematical distinction between these two phenomena has been published (Tallarida, 1992) and should be used as the ultimate scientific definition. Tolerance may be described as a decrease in agonist effect over time and/or a significant rightward shift in the agonist dose-response curve (Stevens and Yaksh, 1989), the opposite effect of synergy. This relationship formed the basis of the assertion that tolerance resulted from an absence of an ongoing synergistic interaction.

Concurrent administration of Mor i.c.v. and i.t. results in an antinociceptive synergistic interaction in mice (Roerig et al., 1984). This synergistic interaction may result in part from the interaction of the i.t. administered Mor with noradrenaline released from descending noradrenergic terminals in the spinal cord subsequent to i.c.v. administration of Mor. This synergistic interaction is reduced to additivity in mice made tolerant to Mor by pellet implantation (Roerig et al., 1984). That observation led to the proposal that the reduction in the synergistic interaction to additivity may be a mechanism by which apparent Mor tolerance develops (Roerig et al., 1984; Wigdor and Wilcox, 1987; Roerig, 1995). Roerig (1995) explored this proposal by testing the interactions of i.t. applied Mor-Clon combinations in Mor pellet- and placebo pellet-implanted ICR mice. Those experiments revealed that, although the interaction of Mor-Clon was synergistic in placebo-pelleted mice, it was merely additive in Mor-pelleted mice.

In our experimental model, Mor pretreatment produced significant and dose-related rightward shifts of the Mor dose-response curve (Figs. 1A, 2A, 3A, and 4A); these results confirm the induction of tolerance. The present study tested the interaction between i.t. coadministered Mor and Clon in both tolerant and control subjects. The results differ from those reported in the Mor pellet implantation model (Roerig, 1995). The present experiments do not support the proposal that reduction of the spinal adrenergic/opioid ligand synergistic interaction to additivity represents a mechanism underlying Mor analgesic tolerance.

Acute Induction of Tolerance by i.t. Administration of Mor. The pharmacology of spinal cord changes in acute and chronic opioid tolerance appears to be similar with respect to dependence on the N-methyl-d-aspartate/nitric oxide synthase cascade (Trujillo and Akil, 1991; Marek et al., 1991; Ben-Eliyahu et al., 1992; Tiseo and Inturissi, 1993; Elliott et al., 1994; Tiseo et al., 1994; Fairbanks and Wilcox, 1997). We initiated the present studies to ascertain whether the α_2 adrenergic receptor-mediated effects observed in a chronic Mor tolerance model (Roerig, 1995) would similarly be paralleled in an acute Mor tolerance paradigm. Morphine pretreatment by a single supramaximal i.t. injection (40 nmol) produced spinal antinociceptive Mor tolerance but no cross-tolerance to Clon (i.t.). In both the tolerant and nontolerant states, coadministration of Mor and Clon produced antinociceptive synergy (Fig. 1; Table 1).

Conceivably, the persistence of synergy observed in this first experiment could be specific to tolerance induction by i.t. Mor administration. Systemic administration of Mor activates supraspinal opioid receptors, an action which is correlated with a spinal release of noradrenaline (Wigdor and Wilcox, 1987). The prolonged presence of noradrenaline after repeated systemic Mor administration or Mor pellet implantation may lead to down-regulation or desensitization of spinal adrenergic receptors. Such an action could decrease the apparent potency of exogenously administered α_2 adrenergic receptor agonists (e.g., Clon cross-tolerance) and or the endogenous adrenergic contribution to the opioid-adrenergic synergy. To address this possibility, we tested the interaction of Mor-Clon (i.t.) coadministration in mice made acutely tolerant to systemically administered Mor (Fig. 2).

Acute Induction of Tolerance by Systemic Administration of Mor. Morphine pretreatment (100 mg/kg s.c.) produced acute tolerance to Mor (Fig. 2A) and acute cross-tolerance to Clon (Fig. 2B; Table 2). This cross-tolerance was consistent with the premise that activation of descending noradrenergic pathways by systemically administered Mor could result in an adrenergic receptor down-regulation or desensitization. However, in both the tolerant and nontolerant states, coadministration of Mor and Clon produced antinociceptive synergy (Fig. 2; Table 2). Therefore, the persistence of synergy in the tolerant state generalized to the presence of Mor tolerance after systemic administration. It is possible that the persistence of Mor-Clon antinociceptive synergy observed in Figs. 1 and 2 might be specific to acute induction of Mor. Therefore, we tested the interaction of i.t. coadministered Mor and Clon in mice made chronically tolerant to systemically administered Mor (Fig. 3).
Chronic Induction of Tolerance by Systemic Administration of Mor.

We used a schedule of repeated systemic Mor injections to induce tolerance. Morphine pretreatment produced tolerance to i.t. administered Mor (Fig. 3A) but no observable cross-tolerance to i.t. administered Clon (Fig. 3B). Coadministration of Mor and Clon produced antinociceptive synergy in both Mor-tolerant and control animals (Fig. 3; Table 3); this observation agrees with the observations made in acutely tolerant animals (Figs. 1 and 2). The presence of Mor-Clon antinociceptive synergy by the i.t. route remained in animals made chronically tolerant to Mor. Therefore, the observed persistence of tolerance was not attributable to a difference between acutely and chronically induced tolerance.

These data differ from the previous investigation of Mor-Clon antinociceptive interactions in mice made tolerant by Mor pellet implantation (Roerig, 1995). It is possible that as yet unidentified conditions associated with the development of subclinical systemic illness induced by the Mor pellet implantation (Sparber et al., 1979) may underlie the reduction of the synergy in Mor-pelleted mice. If so, the pellet model may better reflect the physiological barriers to effective pain management that exist in the clinical arena. Resolution of the specific conditions under which synergy is or is not present may provide insights into the mechanisms underlying the development of tolerance to analgesics.
present in tolerant states may facilitate improved and selective clinical pain management.

A notable difference between this set of experiments and that of the chronic Mor pellet implantation model (Roerig, 1995) is the relative dose ratios of Mor to Clon. This difference could be important because synergism is not solely a property of the drugs but is also dependent on the proportions of the drugs in the combination (Tallarida, 1992). In all three of our tolerance experiments discussed so far, the Mor dose-response curves were collected 4 to 8 h after the single

TABLE 3

<table>
<thead>
<tr>
<th>Probe Drug</th>
<th>Pretreatment</th>
<th>ED$_{50}$ Clon (95% CL)</th>
<th>ED$_{50}$ Mor (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mor</td>
<td>Saline</td>
<td>1.2 (0.7–1.9)</td>
<td>6.0 (2–10)</td>
</tr>
<tr>
<td>Clon</td>
<td>Mor</td>
<td>64 (27–102)</td>
<td>89 (20–158)</td>
</tr>
<tr>
<td>Mor + Clon (1:50 dose ratio)</td>
<td>Saline</td>
<td>7 (2–13)*</td>
<td>0.15 (0.03–0.3)*</td>
</tr>
<tr>
<td>Observed (synergy)</td>
<td>Theoretical additive</td>
<td>31 (15–47)</td>
<td>0.6 (0.3–0.9)</td>
</tr>
<tr>
<td>Mor + Clon (1:15 dose ratio)</td>
<td>Saline</td>
<td>9.5 (7.3–12)*</td>
<td>0.6 (0.5–0.8)*</td>
</tr>
<tr>
<td>Observed (synergy)</td>
<td>Theoretical additive</td>
<td>46 (23–66)</td>
<td>3.0 (1.6–4.4)</td>
</tr>
</tbody>
</table>

* Significant difference from theoretical additive by Student’s t test, $p < .05$.

Fig. 4. Chronic tolerance to systemically administered Mor: probe test at 2 h after final injection. Dose-response curves for i.t. administered Mor and Clon and Mor-Clon combination. A, dose-response curves of the spinal antinociceptive effect of 1) Mor on nontolerant (open circles, dashed line) and Mor-pretreated animals (open triangles, solid line) and 2) Mor in the presence of Clon on nontolerant (closed circles, dashed line) and Mor-pretreated animals (closed triangles, solid line). B, dose-response curves of the spinal antinociceptive effect of 1) Clon on nontolerant (open circles, dashed line) and Mor-pretreated animals (open triangles, solid line) and 2) Clon in the presence of Mor on nontolerant (closed circles, dashed line) and Mor-pretreated animals (closed triangles, solid line). C, isobolographic analysis was applied to the data from Fig. 4, A and B, that represent responses to the combination of Clon-Mor in saline-treated mice. In this isobologram, the ED$_{50}$ value of the combination of Clon-Mor (closed circle) falls below the theoretical additive line and differs significantly from that of the theoretical ED$_{50}$ value (open circle) (Table 4); therefore, the combination is synergistic in control mice. D, isobolographic analysis was applied to the data from Fig. 4, A and B, that represent responses to the combination of Clon-Mor in Mor-tolerant mice. In this isobologram, the ED$_{50}$ value of the combination of Clon-Mor (closed circle) falls below the theoretical additive line and differs significantly from that of the theoretical ED$_{50}$ value (open circle) (Table 4); therefore, the combination is synergistic in Mor-tolerant mice.
The observed ED50 values of drugs given alone and in combination. This state of lingering synergy may artificially skew the potency of Clon represented the smaller portion of the drug combination (Roerig, 1995). This increase in the potency of Clon in Mor-tolerant animals compared to placebo-pelleted controls suggests the presence of residual Mor in a concentration that is sufficient to potentiate the i.t. administered Clon but insufficient to prolong the tail-flick latency. This state of lingering synergy may artificially skew the observed ED50 values of drugs given alone and in combination, perhaps masking the statistical determination of synergy.

Accordingly, we conducted a second test of Mor-Clon interaction in animals made chronically tolerant to Mor by repeated systemic induction. In this experiment, all dose-response curves were collected 2 h after the final injection. The objective was to test for Mor-Clon synergy at a time when the Clon effect might be potentiated by presumably residual levels of Mor. Based on tail-flick latency tests conducted on several animals at various times after the final injection, this 2-h time appeared to be the earliest point at which the majority of the animals’ tail-flick latencies had returned to baseline levels. This time was, therefore, the point at which we administered probe doses of Mor.

Chronic Induction of Tolerance by Systemic Administration of Mor (probe test at 2 h post final injection). Morphine pretreatment by a repeated bolus systemic injection produced tolerance to i.t. applied Mor (Fig. 4A). Testing 2 h after the final injection, there was a 2-fold increase in potency of Clon (i.t.) in Mor-tolerant mice compared to controls (Fig. 4B; Table 4). This observation would be consistent with the idea that the residual Mor potentiated the antinociceptive effect of Clon. However, this leftward shift was insufficient to reverse the relative dose ratios of Clon to Mor. Furthermore, in both the tolerant and control states, coadministration of Mor and Clon produced antinociceptive synergy (Fig. 4; Table 4).

Collectively, the present experiments demonstrate that the induction of Mor tolerance in mice, whether by acute i.t., by acute systemic, or by chronic repeated systemic injection of Mor, does not compromise the synergistic antinociceptive potential of Mor-Clon-induced antinociception. Sufficient receptor/effecter interactions must remain functional to elicit the observed robust synergistic response. Interestingly, a collection of observations describing Mor tolerance appears to parallel findings related to the neuropathic pain state (Mao et al., 1995). Specifically, N-methyl-D-aspartate receptor antagonists appear to attenuate both states (Trujillo and Akil, 1991) as do nitric oxide synthase inhibitors (Kolesnikov et al., 1992; Kolesnikov et al., 1993; Babey et al., 1994; Elliott et al., 1994a,b; Meller et al., 1994; Bhargava, 1995; Mizoguchi et al., 1996); translocation of protein kinase C to the membrane also appears to be involved in both phenomena (Mao et al., 1994, 1995). It has been determined that Mor-Clon synergy is detectable in a state of neuropathic pain (Ossipov et al., 1997). This finding is of considerable interest given that it was previously thought that neuropathic pain was largely unresponsive to opioid therapy. The present experiments complement those observations and extend the parallel between neuropathic pain and Mor tolerance by demonstrating the effectiveness of Mor-Clon antinociceptive synergy in different states of Mor tolerance. These experiments support the potential utility of including Clon as a coadjuvant in spinal application of Mor for patients who appear to have become tolerant to Mor. It is interesting that a single, randomized, double-blind, clinical study (Eisenach et al., 1994) has isobolographically examined epidurally coadministered Clon and fentanyl; a synergistic interaction was not statistically detectable. These authors attributed this result to higher variability than expected; detection of a synergistic interaction would require a larger patient population than studied. However, in this study, patient needs for postoperative supplemental Mor were substantially reduced in those receiving the combination. Furthermore, in contrast to single drug administration, complete analgesia was obtainable in those patients receiving higher doses of the combination.

Table 4

<table>
<thead>
<tr>
<th>Probe Drug</th>
<th>Pretreatment</th>
<th>ED50 Clon (95% CL)</th>
<th>ED50 Mor (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mor</td>
<td>Saline</td>
<td>2.1 (1.4–2.8)</td>
<td>Not calculated</td>
</tr>
<tr>
<td>Clon</td>
<td>Mor</td>
<td>62 (47–77)</td>
<td>31 (23–39)</td>
</tr>
<tr>
<td>Mor + Clon (1:20 dose ratio)</td>
<td>Saline</td>
<td>6.2 (1.7–11)*</td>
<td>0.3 (0.2–0.5)*</td>
</tr>
<tr>
<td>Observed (synergy)</td>
<td>Theoretical additive</td>
<td>25 (20–31)</td>
<td>1.3 (1–1.5)</td>
</tr>
<tr>
<td>Mor + Clon (1:5 dose ratio)</td>
<td>Mor</td>
<td>0.7 (0.1–1.3)*</td>
<td>0.14 (0.02–0.3)*</td>
</tr>
<tr>
<td>Theoretical additive</td>
<td>7.0 (5.2–8.8)</td>
<td>1.4 (1.0–1.8)</td>
<td></td>
</tr>
</tbody>
</table>

* Significant difference from theoretical additive by Student’s t test, p < .05.

The observed ED50 values of drugs given alone and in combination. This state of lingering synergy may artificially skew the observed ED50 values of drugs given alone and in combination, perhaps masking the statistical determination of synergy.
Other clinical studies have shown that epidurally adminis-
tered Clon decreases the required dose of Mor (Motsch et al.,
1990) and prolongs the duration of action of (Rostaing et al.,
1991). These studies and the recent Food and Drug Admin-
istration of Mor-Clon synergy in states of Mor tolerance.

Acknowledgments
We extend profound appreciation to Dr. Sandra C. Roerig, Dr.
Michael Ossipov, and Laura S. Stone for helpful discussions and also
to Kelley F. Kitto, Ivan Posthumus, and H. Oanh Nguyen for excel-
 lent technical assistance.

References
Babey AM, Kolesnikov Y, Cheng J, Inturrisi CE, Trifilletti RR and Pasternak GW
Bennett GJ and Xie DX (1988) Antagonism of spinal clonidine and NMDA recep-
tors in rats. J Pharmacol Exp Ther 245:512–517.
Bhargava HV (1995) Attenuation of tolerance to, and physical dependence on,
morphine in the rat by inhibition of nitric oxide synthase. Gen Pharmacol 26:
1049–1053.
Eisenach JC, D’Angelo R, Taylor C and Hoob DD (1994) An isobolographic study of
epidural clonidine and fentanyl after cesarean section. Anesth Analg 79:
Elliott K, Hynansky A and Inturrisi CE (1994a) Dextromethorphan attenuates and
Elliott K, Minami N, Kolesnikov YA, Pasternak GW and Inturrisi CE (1994b) The
NMDA receptor antagonists, LY274614 and MK-801, and nitric oxide synthase
inhibitor, NG-nitro-L-arginine, attenuate analgesic tolerance to the mu-opioid
Fairbanks CA and Wilcox GL (1997) Acute tolerance to spinally administered
morphine compares mechanistically with chronically induced morphine tolerance.
J Pharmacol Exp Ther 283:1408–1417.
Gessner PK and Cabana BE (1970) A study of the interaction of the hypnotic effects
and of the toxic effects of chloral hydrate and ethanol. J Pharmacol Exp Ther
Hammond DL and Yaksh TL (1984) Antagonism of stimulation-produced antinoci-
ception by intrathecal administration of methysergide or phentolamine. Brain
Howe JR and Zieglgänsberger W (1984) Spinal peptidergic and catecholaminergic
Hylden JLL and Wilcox GL (1983) Pharmacological characterization of substan-
ces that reduce operant expression in mice: Modulation by spinal and noradrenergic
Janssen PA, Niemegeers CJE and Dony JGH (1963) The inhibitory effect of fentanyl
Kolesnikov YA, Pick CG and Pasternak GW (1993) Blockade of tolerance to
morphine but not kappa opioids by a nitric oxide synthesis inhibitor. Proc Natl
Acad Sci USA 90:5152–5156.
Kolesnikov YA, Pick CG and Pasternak GW (1992) N-Glutamic acid-precipitates
opioids into the nucleus reticularis gigantocellularis of the rat: Analgesia and
increase in the normotensive level in the spinal cord. Biochem Pharmacol
27:2756–2758.
Mao J, Price DD and Mayer DJ (1994) Thermal hyperalgesia in association with the
development of morphine tolerance in rats: Roles of excitatory amino acid recep-
Mao J, Price DD and Mayer DJ (1995) Experimental myoneuropathy reduces the
antiinfective effects of morphine: Implications for common intracellular mech-
agonists (kynurenic acid and MK-801) attenuate the development of morphine
Meller ST, Cummings CP, Traub RJ and Gehbhart GF (1994) The role of nitric oxide
in the development and maintenance of the hyperalgesia produced by intraplantar
Motsch J, Narita M, Nagase H, Suzuki T, Quock EM and Tseng LF (1996) Use of
antisense oligodeoxynucleotide to determine delta-opioid receptor involvement in
Monasky MS, Zinsmeister AR, Stevens CW and Yaksh TL (1990) Interaction of
intrathecal morphine and ST-91 on antinociception in the rat: Dose-response
Motsch J, Graber E and Ludwig K (1999) Addition of clonidine enhances postopera-
tive analgesia from epidural morphine: A double-blind study. Anesthesiology
73:1067–1073.
Ossipov M, Harris S, Lloyd P and Messines E (1990a) An isobolographic analysis of
the antinociceptive effect of systemically and intrathecally administered combina-
epidural clonidine on analgesia and pharmacokinetics of epidural fentanyl in
Sparber SB, Gelert VF and Fossum L (1978) On the use of operant behavior to study
the neuropharmacology of opiates with special reference to morphine and its
relationship to dopamin in the central nervous system (Review). Adv Biochem
Tallarida RJ (1992) Statistical analysis of drug combinations for synergism [pub-
Computer Programs. Springer-Verlag, New York.
tolerance by the competitive N-methyl-D-aspartate receptor antagonist LY274614:
Tiseo PJ and Inturrisi CE (1995) Attenuation and reversal of morphine tolerance by
the competitive NMDA receptor antagonist, LY274614. J Pharmacol Exp Ther
264:1096–1099.
Trujillo RA and Akil H (1991) Inhibition of morphine tolerance and dependence by
the NMDA receptor antagonist MK-801. Science 251:85–87.
Vogt S and Wilcox GL (1987) Central and systemic morphine-induced antinoci-
ception in mice: Comparison of descending serotonergic and noradrenergic path-
Wilcox GL, Carlson K-H, Jochim A and Jurna I (1987) Mutual potentiation of
antinociceptive effects of morphine and clonidine in rat spinal cord. Brain Res
408:64–83.
Yaksh TL (1979) Direct evidence that spinal serotonin and noradrenergic terminals
mediate the spinal antinociceptive effects of morphine in the periapical wedged
Yaksh TL (1985) Pharmacology of spinal adrenergic systems which modulate spinal
Yano I and Takemori AE (1977) Inhibition by naloxone of tolerance and dependence in
mice treated acutely and chronically with morphine. Res Commun Chem Path
Pharmacol 16:721–734.
Yeung JC and Rudy TA (1980) Multiplicative interaction between narcotic agonisms
expressed at spinal and supraspinal sites of action as revealed by concurrent
intrathecal and intracerebroventricular injections of morphine. J Pharmacol Exp
Send reprint requests to: Dr. George L. Wilcox, Department of Pharmacol-
yogy, University of Minnesota, 3-249 Millard Hall, 435 Delaware St. SE, Min-
neapolis, MN 55455. E-mail: george@med.umn.edu.

1116 Fairbanks and Wilcox
Vol. 288

Downloaded from jpet.aspetjournals.org at ASPET Journals on October 25, 2017