Involvement of Dopaminergic System in Phencyclidine-Induced Place Preference in Mice Pretreated with Phencyclidine Repeatedly

YUKIHIRO NODA, YOSHIKI MIYAMOTO, TAKAYOSHI MAMIYA, HIROYUKI KAMEI, HIROSHI FURUKAWA and TOSHITAKA NABESHIMA

Department of Neuropsychopharmacology and Hospital Pharmacy (Y.N., Y.M., T.M., H.K., T.N), Nagoya University School of Medicine, Nagoya 466-8560, Japan and Department of Medicinal Chemistry (H.F.), Faculty of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan

Accepted for publication March 30, 1998

This paper is available online at http://www.jpet.org

ABSTRACT

In the conditioned place preference test, phencyclidine (PCP) produces place aversion in naive rats, whereas PCP produces place preference in rats treated with PCP repeatedly. Although the PCP-induced place aversion is thought to involve the serotoninergic system, the mechanisms of the PCP-induced place preference are unclear. We investigated whether the dopaminergic system is involved in place preference induced by PCP in mice repeatedly treated with PCP, because it is well known that the dopaminergic system plays an important role in the rewarding effect of drugs. PCP (2–8 mg/kg s.c.) induced a dose-dependent place aversion in naive mice, whereas PCP (2–8 mg/kg s.c.) induced a dose-dependent place preference in mice pretreated with PCP (10 mg/kg/day s.c.) for 28 days. The place preference induced by PCP (8 mg/kg s.c.) was attenuated significantly by α-methyl-p-tyrosine (100 mg/kg i.p.), a tyrosine hydroxylase inhibitor, 6-hydroxydopamine (100 μg/mouse i.c.v.), a dopaminergic neurotoxin, and R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (0.5 mg/kg s.c.), a dopamine D₁ receptor antagonist. These agents themselves produced neither the place preference nor aversion. In contrast to the attenuating effects of these agents, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (30 mg/kg i.p.), a noradrenergic neurotoxin, ritanserin (1 mg/kg i.p.), a serotonin₂ receptor antagonist, and (−)-sulpiride (50 and 100 mg/kg i.p.), a dopamine D₂ receptor antagonist, failed to affect the PCP-induced place preference. In mice pretreated with methamphetamine (1 mg/kg/day s.c.) for 14 days, PCP (8 mg/kg s.c.) induced the place preference, but not aversion. These results demonstrate that the PCP-induced place preference depends on dopaminergic, but not on serotonergic and noradrenergic, neuronal systems and suggest a role for D₁ receptors in the mediation of the PCP-induced place preference.

A place conditioning paradigm is used widely for determining both rewarding and aversive properties of drugs in animals (see review, Schechter and Calcagnetti, 1993). In this paradigm, many drugs of abuse such as ampheta

Received for publication December 1, 1997.

1 This research was supported partly by a Grant for Drug Abuse Research from the Ministry of Health and Welfare of Japan, grants from the Ministry of Education, Science and Culture, Japan (no. 08457027) and from INSERM-JSPS Joint Research Project, and a Sasakawa Scientific Research Grant (9–220).

ABBREVIATION: PCP, phencyclidine [1-(1-phenylcyclohexyl)piperidine]; CPP, conditioned place preference; 5-HT, serotonin (5-hydroxytryptamine); DA, dopamine; AMPF, α-methyl-p-tyrosine; 6-OHDA, 6-hydroxydopamine; (+/-) SCH-23390, R(+)7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; DSP-4, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine; HPLC, high-performance liquid chromatography; NA, noradrenaline; 8-OH-DPAT, 8-hydroxy-2-(d-n-propylamino) tetralin; NMDA, N-methyl-D-aspartate.
PCP interacts with the dopaminergic system directly through an inhibition of dopamine reuptake (Smith et al., 1977) or, to a lesser extent, through a stimulation of DA release (Bowyer et al., 1984) in vitro. Several in vivo microdialysis studies have confirmed the ability of PCP to increase DA efflux in the nucleus accumbens (Bristow et al., 1993) and medial prefrontal cortex (Rao et al., 1989; Hondo et al., 1994). Further, long-term treatment with PCP produces the development of sensitization to PCP-induced hyperlocomotion and rearing (Nabeshima et al., 1987; Noda et al., 1996) and the increased turnover of DA in the brain (Nabeshima et al., 1987). These effects are antagonized by DA antagonists, which suggests that the dopaminergic system is involved in behavioral sensitization.

Several lines of evidence suggest that the dopaminergic system plays an important role in the rewarding and abuse properties of drugs in the place conditioning paradigm. Blockade of DA receptors reduces or abolishes the place preference induced by amphetamine and opiates (Leone and Di Chiara, 1987). A recent study has shown that cocaine administered i.p. increases extracellular concentrations of DA in the nucleus accumbens and induces CPP (Hemby et al., 1994), which suggests that the mesolimbic DA neurons mediate the rewarding properties of various drugs of abuse (Di Chiara and Imperato, 1988). These findings, together with the pharmacological properties of PCP, suggest that the dopaminergic system is involved in PCP-induced place preference in rats pretreated with PCP repeatedly.

Accordingly, in the present study we investigated the pharmacological characterization of PCP-induced place preference in the CPP test. First, we investigated whether PCP-induced place preference in mice was modified by hypofunction or overfunction of the dopaminergic system. Second, selective DA receptor antagonists then were tested to delineate the role of D₁ vs. D₂ receptors in the mediation of the PCP-induced place preference. Finally, we examined the effect of a 5-HT₂ receptor antagonist, ritanserin, on PCP-induced place preference, because ritanserin antagonizes the PCP-induced place aversion (Nabeshima et al., 1996).

Methods

Animals. Male mice of the ddY strain (Japan SLC Inc., Shizuoka, Japan), weighing 25 to 27 g at the beginning of the experiments, were used. The animals were housed in plastic cages and were kept in a regulated environment (23 ± 1°C, 50 ± 5% humidity), with a 12/12 hr light-dark cycle (light on at 8:00 A.M.). Food (CE2, Clea Japan Inc. Tokyo, Japan) and tap water were available ad libitum.

All experiments were performed in accordance with the Guidelines for Animal Experiments of the Nagoya University School of Medicine. The procedures involving animals and their care were conducted in conformity with the international guidelines “Principles of Laboratory Animal Care” (NIH publication no. 85–23, revised 1985).

Drugs. Phencyclidine HCl (PCP) was synthesized by the authors according to the method of Maddox et al. (1965) and was checked for purity. AMPT, 6-OHDA and desipramine HCl were purchased from Sigma Chemical Co. (St. Louis, MO). Methamphetamine HCl (Philpope) was purchased from Daihannin Pharmaceutical Co. Ltd. (Osaka, Japan). (+) SCH-23390 HCl, (-) sulpiride and DSP-4 HCl were purchased from Funakoshi (Tokyo, Japan). Ritanserin was kindly provided by Janssen Kyowa Co. Ltd. (Tokyo, Japan) and tap water were available ad libitum. Drugs were administered PCP (2–8 mg/kg s.c.) was injected immediately before the conditioning. Ritanserin (0.3 and 1 mg/kg i.p.), AMPT (50 and 100 mg/kg i.p.), (+) SCH-23390 (0.1 and 0.5 mg/kg i.c.v.) and sulpiride (50 and 100 mg/kg i.p.) were administered 60, 180, 15 and 60 min, respectively, before every treatment with PCP (8 mg/kg). These drugs were administered for 3 alternating days in the 6-day conditioning period, and corresponding vehicles were administered for the other 3 days. 6-OHDA (100 μg/mouse i.c.v.) and DSP-4 (30 mg/kg i.p.) were administered 7 and 3 days, respectively, before the preconditioning test. To prevent the destruction of noradrenergic neurons, mice were administered desipramine (25 mg/kg i.p.) 30 min before 6-OHDA treatment.

In the experiment of repeated administration of PCP, mice were administered PCP (10 mg/kg/day) for 28 days as in a previous report (Kitaichi et al., 1996). In the experiment of repeated administration of methamphetamine, mice were administered methamphetamine (1 mg/kg/day) for 7 or 14 days. One day after the last treatment with PCP or methamphetamine, the place conditioning test including preconditioning, conditioning and postconditioning tests was commenced.

Determination of monoamine contents. Immediately after the postconditioning test, the 6-OHDA-AMPT- and DSP-4-treated and control mice were sacrificed. Brains were removed rapidly, and the prefrontal cortex and striatum were dissected out on an ice-cold plate according to the method of Glowinski and Iversen (1966). Each tissue sample was frozen quickly and stored in a deep freezer at −80°C until assayed.
The contents of monoamines were determined by a HPLC system with an electrochemical detector (Eicom, Kyoto, Japan) as described (Noda et al., 1997). Each frozen tissue sample was weighed, then homogenized with an ultrasonic processor (475 W, model XL2020, Heat Systems Inc., New York, New York) in 350 μl of 0.2 M perchloric acid containing isoproterenol (internal standard). The homogenate was placed in ice for 30 min and then centrifuged at 20,000 × g for 15 min at 4°C. The supernatant was mixed with 1 M sodium acetate to adjust the pH to 3.0 and then injected into a liquid chromatography system equipped with a reversed-phase ODS-column (4.6 × 150 mm, Eicompak MA-5 ODS (diameter of stationary phase grains, 5 μm), Eicom, Kyoto, Japan) and an electrochemical detector (model ECD-100, Eicom). The column temperature was maintained at 25°C, and the detector potential was set at +750 mV. The mobile phase was 0.1 M citric acid and 0.1 M sodium acetate, pH 3.9, containing 14% methanol, 160 mg/l sodium-l-octanesulfonate and 5 mg/l ethylenediaminetetraacetic acid; the flow rate was 1 ml/min.

Statistics. All data were expressed as means ± S.E. Statistical differences among individual groups were determined with the Student-Newmann-Keuls multiple comparisons test.

Results

Effect of PCP on the performance in the place conditioning paradigm. We have confirmed our previous results that PCP has both aversion and preference in the place conditioning paradigm depending on the treatment schedule. In the naive mice, PCP (2–8 mg/kg) showed place aversion in a dose-dependent manner (fig. 1A). In contrast to this finding, in mice pretreated with PCP (10 mg/kg/day s.c.) for 28 days, PCP (2–8 mg/kg) produced place preference in a dose-dependent manner (fig. 1B).

Because significant PCP-induced place aversion and preference were obtained at 8 mg/kg, this dose was used in all the subsequent experiments.

Effect of AMPT and 6-OHDA on the PCP-induced place preference. The contents of DA in the prefrontal cortex and striatum of AMPT-treated mice were decreased significantly to 40.6% and 63.5%, respectively, compared with those in the vehicle-treated mice (table 1). In contrast, the contents of NA and 5-HT in the prefrontal cortex and striatum remained unaffected (table 1). When PCP (8 mg/kg) was administered in combination with AMPT (100 mg/kg) during the conditioning phase, the PCP-induced place preference in mice pretreated with PCP repeatedly was attenuated significantly (fig. 2A). AMPT (100 mg/kg) itself did not produce either place preference or aversion (fig. 2A).

The contents of DA in the prefrontal cortex and striatum of 6-OHDA-treated mice were decreased remarkably to 28.3% and 51.0%, respectively, compared with those in the vehicle-treated mice (table 1). In contrast, the contents of NA and 5-HT in both regions remained unaffected (table 1). When 6-OHDA (100 μg/mouse) was administered 7 days before starting the preconditioning test, the PCP (8 mg/kg)-induced place preference was attenuated (fig. 2B). 6-OHDA (100 μg/mouse) itself did not produce either place preference or aversion (fig. 2B).

Effects of repeated methamphetamine treatment on the motivational properties of PCP in mice. PCP (8 mg/kg) significantly produced place aversion in mice pretreated with saline repeatedly. In mice pretreated with methamphetamine (1 mg/kg/day) for 7 days, however, PCP (8 mg/kg) produced neither place aversion nor preference. On the other hand, PCP (8 mg/kg) significantly induced place preference in mice treated with methamphetamine (1 mg/kg/day) for 14 days (fig. 3).

Effects of (+) SCH-23390 and (−) sulpiride on the PCP-induced place preference. As shown in figure 4, (+) SCH-23390 (0.5 mg/kg) significantly attenuated place preference produced by PCP in mice pretreated with PCP repeatedly. (−) SCH-23390 (0.5 mg/kg) itself did not produce either place preference or place aversion (fig. 4). However, (−) sulpiride (50 and 100 mg/kg) failed to modify the place preference produced by PCP.

Effect of ritanserin and DSP-4 on the PCP-induced place preference. In agreement with a previous report (Nabeshima et al., 1996), ritanserin (0.3 and 1 mg/kg) inhibited the place aversion produced by PCP in naive mice (fig. 5). However, it (1 mg/kg) failed to inhibit the place preference produced by PCP in mice pretreated with PCP repeatedly (fig. 6A). Ritanserin (1 mg/kg) itself did not produce either place preference or aversion (fig. 5).

The contents of NA in the prefrontal cortex and striatum of DSP-4-treated mice were decreased to 34.2% and 42.0%, respectively, compared with those in the vehicle-treated mice (table 1). In contrast, the contents of DA and 5-HT in both regions remained unaffected (table 1). PCP (8 mg/kg)-induced place preference was not affected by DSP-4 (30 mg/kg) (fig. 6B).

![Fig. 1. Effect of PCP on the performance in the place conditioning paradigm in naive mice (A) and in mice pretreated with PCP (10 mg/kg/day) for 28 days (B). The experimental protocol is described in the text. Each column represents the mean ± S.E.M. Numbers in the parentheses are the number of animals used. *P < .05, **P < .01 vs. corresponding saline-treated group.](image-url)
In the present study, PCP produced a dose-dependent place preference in mice pretreated with PCP for 28 days, as reported previously (Kitaichi et al., 1996; Nabeshima et al., 1996). This finding that PCP has rewarding properties is consistent with the results of several studies that PCP is self-administered by animals (Marquis and Moreton, 1987). Further, such a phenomenon also has been observed in humans; although single use of PCP produces aversive effects, long-term use of it causes abuse (Isaacs et al., 1986). Thus, these findings suggest that some functional changes induced by repeated PCP treatment play a critical role in PCP-induced place preference.

The dopaminergic system plays an important role in the rewarding and abuse properties of drugs in the place conditioning paradigm (Leone and Di Chiara, 1987). Several in vivo microdialysis studies have confirmed the ability of PCP to increase DA efflux in the nucleus accumbens (Bristow et al., 1993) and medial prefrontal cortex (Rao et al., 1989; Hondo et al., 1994). Repeated PCP treatment produces the behavioral sensitization (Nabeshima et al., 1987; Noda et al., 1996) and the increase of DA turnover in the striatum and nucleus accumbens (Nabeshima et al., 1987). Taken together, the dopaminergic system may be involved in PCP-induced place preference in rats pretreated with PCP repeatedly. The present study showed that PCP-induced place preference in mice pretreated with PCP for 28 days was blocked by coadministration of a tyrosine hydroxylase inhibitor, AMPT, and lesion of the dopaminergic system by 6-OHDA. Analysis of the neurochemical effects of 6-OHDA and AMPT treatment revealed a marked decrease of DA level and no reduction of NA and 5-HT levels in the brain. Although AMPT depletes both NA and DA contents in the brain, the reasons for which no depletion of NA was obtained by AMPT in the present biochemical study are unclear. A possible explanation is that the doses of AMPT used are lower than those of the depleted

Table 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>NA (ng/g wet tissue)</th>
<th>DA (ng/g wet tissue)</th>
<th>5-HT (ng/g wet tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefrontal cortex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>6</td>
<td>327.9 ± 92.1</td>
<td>50.3 ± 8.5</td>
<td>450.3 ± 32.5</td>
</tr>
<tr>
<td>PCP</td>
<td>7</td>
<td>326.7 ± 13.4</td>
<td>69.0 ± 20.9</td>
<td>417.9 ± 31.0</td>
</tr>
<tr>
<td>AMPT (100 mg/kg)</td>
<td>6</td>
<td>255.2 ± 29.2</td>
<td>20.4 ± 6.3*</td>
<td>438.9 ± 19.8</td>
</tr>
<tr>
<td>Control</td>
<td>6</td>
<td>337.7 ± 21.6</td>
<td>75.5 ± 2.7</td>
<td>399.8 ± 50.0</td>
</tr>
<tr>
<td>PCP</td>
<td>6</td>
<td>277.0 ± 26.9</td>
<td>78.1 ± 9.1</td>
<td>355.6 ± 66.8</td>
</tr>
<tr>
<td>6-OHDA (100 µg/mouse)</td>
<td>8</td>
<td>233.6 ± 47.7</td>
<td>21.4 ± 4.2**</td>
<td>432.1 ± 22.1</td>
</tr>
<tr>
<td>Control</td>
<td>6</td>
<td>366.1 ± 8.1</td>
<td>57.7 ± 6.3</td>
<td>415.1 ± 14.8</td>
</tr>
<tr>
<td>PCP</td>
<td>6</td>
<td>395.7 ± 6.8</td>
<td>69.7 ± 24.0</td>
<td>403.5 ± 21.0</td>
</tr>
<tr>
<td>DSP-4 (30 mg/kg)</td>
<td>7</td>
<td>125.3 ± 22.4**</td>
<td>50.7 ± 5.8</td>
<td>413.0 ± 17.5</td>
</tr>
<tr>
<td>Striatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>6</td>
<td>167.5 ± 23.2</td>
<td>10753.9 ± 1170.2</td>
<td>431.9 ± 54.6</td>
</tr>
<tr>
<td>PCP</td>
<td>7</td>
<td>183.9 ± 20.9</td>
<td>10291.4 ± 463.2</td>
<td>542.8 ± 26.4</td>
</tr>
<tr>
<td>AMPT (100 mg/kg)</td>
<td>6</td>
<td>136.1 ± 25.4</td>
<td>6829.4 ± 838.7*</td>
<td>527.8 ± 59.6</td>
</tr>
<tr>
<td>Control</td>
<td>6</td>
<td>209.6 ± 35.3</td>
<td>9637.7 ± 1137.8</td>
<td>419.2 ± 63.5</td>
</tr>
<tr>
<td>PCP</td>
<td>6</td>
<td>152.6 ± 57.1</td>
<td>8704.6 ± 727.6</td>
<td>407.9 ± 40.0</td>
</tr>
<tr>
<td>6-OHDA (100 µg/mouse)</td>
<td>8</td>
<td>113.4 ± 23.9</td>
<td>4910.8 ± 655.2**</td>
<td>461.7 ± 22.9</td>
</tr>
<tr>
<td>Control</td>
<td>6</td>
<td>201.8 ± 22.9</td>
<td>9794.6 ± 752.0</td>
<td>514.1 ± 71.2</td>
</tr>
<tr>
<td>PCP</td>
<td>6</td>
<td>189.5 ± 13.3</td>
<td>12113.9 ± 532.1</td>
<td>538.6 ± 118.7</td>
</tr>
<tr>
<td>DSP-4 (30 mg/kg)</td>
<td>7</td>
<td>84.7 ± 15.9**</td>
<td>9407.7 ± 451.4</td>
<td>435.2 ± 29.8</td>
</tr>
</tbody>
</table>

*Values are expressed as the mean ± S.E.M. *P < .05, **P < .01 vs. control group.

![Fig. 2](image-url) Effect of AMPT (A) and 6-OHDA (B) on the preference induced by PCP in mice. The experimental protocol is described in the text. Each column represents the mean ± S.E.M. Numbers in the parentheses are the number of animals used. *P < .05 vs. (vehicle + saline)-treated group. #P < .05 vs. (vehicle + PCP)-treated group.
NA contents. DSP-4, a NA neurotoxin, at the dose of 30 mg/kg which caused significant depletion of NA, but not of DA and 5-HT, in the brain, failed to affect the PCP-induced place preference. Thus, it is suggested that the abolition of PCP-induced place preference results specifically from the destruction of DA neurons.

A 5-HT2 receptor antagonist, ritanserin, attenuated the PCP-induced place aversion in mice pretreated with PCP repeatedly. The experimental protocol described in the text. Each column represents the mean ± S.E.M. Numbers in the parentheses are the number of animals used. *P < .05, **P < .01 vs. saline-treated group. #P < .01 vs. (saline + PCP)-treated group.

Fig. 3. Effects of repeated methamphetamine treatment on the motivational properties of PCP in mice. The experimental protocol is described in the text. Each column represents the mean ± S.E.M. Numbers in the parentheses are the number of animals used. *P < .05 vs. vehicle (vehicle + saline)-treated group. #P < .05 vs. (vehicle + PCP)-treated group.

Fig. 4. Effects of (+) SCH-23390 and (-) sulpiride on the place preference induced by PCP in mice pretreated with PCP repeatedly. The experimental protocol is described in the text. Each column represents the mean ± S.E.M. Numbers in the parentheses are the number of animals used. *P < .05 vs. corresponding (vehicle + saline)-treated group. #P < .05 vs. corresponding (vehicle + PCP)-treated group.
Another possibility is that the serotonergic system, in particular 5-HT$_2$ receptors, mediating the aversion may became desensitized by repeated PCP treatment because some biochemical studies have demonstrated an decrease of 5-HT turnover and 5-HT$_2$ receptor density in the brain of rats treated with PCP repeatedly (Nabeshima et al., 1985, 1987). Previously our finding showed that PCP-induced place aversion is diminished in rats pretreated with PCP for 14 days (Nabeshima et al., 1996), which indicates that PCP induces neither place aversion nor preference. In such rats, PCP-induced head-twitch behavior, which may be mediated by 5-HT$_2$ receptors, also was diminished (Nabeshima et al., 1996), which suggests that such a regimen produces the desensitization of the serotonergic system. Thus, the present result, that PCP induces place preference in mice pretreated with methamphetamine repeatedly. Although repeated methamphetamine treatment produces the hyperfunction of the dopaminergic system, there is little evidence that the serotonergic system is desensitized by methamphetamine. Therefore, the present study showed that PCP-induced place preference in mice pretreated with PCP repeatedly, may not be caused only by desensitization of the serotonergic system by repeated PCP treatment. However, further studies are necessary to clarify the significance of desensitized serotonergic system.

Recent studies with selective D$_1$ and D$_2$ receptor antagonists have demonstrated that blockade of D$_1$, but not D$_2$ receptors prevents behavioral sensitization to amphetamine (Drew and Glick, 1990). An increase in D$_1$ receptor density in the brain has been found after daily treatment with methamphetamine (Ujike et al., 1991). Further, amphetamine regulates the expression of several genes, including c-fos, via D$_1$ receptors in the rat brain (Nguyen et al., 1992). Considering these findings and the present finding that PCP induced the place preference in rats pretreated with methamphetamine repeatedly, there is a possibility that the rewarding effect of PCP is mediated via D$_1$ receptors. The present results showed that the selective D$_1$ receptor antagonist (+) SCH-23390 blocked the PCP-induced place preference. In contrast, the selective D$_2$ receptor antagonist, (-) sulpiride failed to block it, although we used enough doses to block the central D$_2$ receptors (Ljungberg and Ungerstedt, 1978). The doses of (+) SCH-23390 used in this study were ineffective as a conditioning stimulus, and SCH-23390 has been shown to attenuate the drug-conditioned place preference as well as drug-conditioned place aversion (Acquas et al., 1989). Thus, the attenuation of PCP place conditioning cannot be attributed to an aversive action of the antagonist by itself. A similar effect of SCH-23390 has been observed in the cocaine-induced place preference in rats as well as the PCP-induced place preference. Namely, Cervo and Samanin (1995) demonstrated that SCH-23390 administered before cocaine during the conditioning phase significantly blocked the establishment of place conditioning, whereas (-) sulpiride had no effect. These findings suggest that D$_1$ receptors play a more important role in cocaine place conditioning as well as that of PCP. It is unlikely that the relatively high affinity of SCH-23390 for 5-HT$_2$ receptors (Bischoff et al., 1986) plays a role, because (+) SCH-23390 at the doses used in the present study does not affect the in vivo binding of [3H]spiperone in the rat prefrontal cortex (Bischoff et al., 1986). In addition, in the present study, ritanserin, a selective 5-HT$_2$ receptor antagonist, failed to affect the PCP-induced place preference in mice pretreated with PCP repeatedly. Taken together with these findings, the present results suggest that PCP can sensitize D$_1$ receptors to DA, enabling them to act independently from D$_2$ receptors, as observed in some cases of sensitization (Breese et al., 1985), and that D$_1$ receptors are involved in the conditioning of the rewarding effect of PCP.

Abundant evidence exists that SCH-23390 impairs learning and memory in rodents. Thus, it is possible that the effect on place conditioning may be resulted from a generalized disruption of behavior rather than a specific motivational deficits. This possibility, however, is unlikely because SCH-23390 has failed to modify the place preference induced by [d-Ala$_2$]deltorphine II, a selective delta-1 opioid receptor agonist (Suzuki et al., 1996). Therefore, (+) SCH-23390 may not disrupt learning, but directly affect a reward process in our present experiment.

(+)-SCH-23390 blocks the PCP-induced place preference by the involvement of D$_1$ receptors in mediating the rewarding effects of PCP as assessed by expression of place preference. Kobayashi and Inoue (1993) reported that the systemic administration of MK-801, which is a noncompetitive NMDA receptor antagonist, as well as PCP, enhances the in vivo

Fig. 6. Effect of ritanserin (A) and DSP-4 (B) on the place preference induced by PCP in mice. The experimental protocol is described in the text. Each column represents the mean ± S.E.M. Numbers in the parentheses are the number of animals used. *P < .05, **P < .01 vs. (vehicle + saline)-treated group.
binding of [3H]SCH-23390 in the striatum. In addition, MK-801 enhances the stimulant effect of a D1, but not a D2 receptor agonist, in monoamine-depleted mice (Goodwin et al., 1992; Svensson et al., 1992). On the basis of these results, we speculate that the functional changes in the dopaminergic system, particularly in D1 receptors, were produced during repeated PCP treatment for 28 days, and then, the rewarding effect of PCP resulted from an increase in D1 receptor activation, secondary to an increase of DA release. If such is the case, then the administration of (+) SCH-23390 before the conditioning phase would attenuate the motivational effect of PCP by masking PCP-induced activation of D1 receptors. However, studies that could associate the neurochemical and behavioral actions of PCP should be performed to elucidate the mechanisms of PCP abuse.

The conditioned place preference consists of an acquisition or development phase during which the animals receive the drug in one distinctive environment, and a test or expression phase in which drug-free animals are tested for their preference of the environment previously paired with the drug. Blockade of D1 receptors blocks the acquisition and expression of amphetamine-induced place preference (Hiroi and White, 1991), whereas it blocks only acquisition of cocaine-induced place preference (Cervo and Samanin, 1995). In the present study, (+) SCH-23390, administered before PCP during the conditioning, blocked the acquisition, whereas it is unclear whether (+) SCH-23390 blocks the expression of PCP-induced place preference. Thus, the significance of D1 receptors and/or others in expression of PCP-induced place preference should be clarified by further study with use of D1 receptors and/or other antagonists, because it has been suggested that different neurochemical mechanisms appear to mediate the acquisition and expression of this incentive learning (Hiroi and White, 1991).

In summary, the present results indicate that the repeated administration of PCP produces place preference, and that dopaminergic systems, but not serotonergic or noradrenergic systems, are involved in PCP-induced place preference and that some changes in dopaminergic systems induced by repeated PCP treatment play a critical role in the addiction of this drug. Further, the present study demonstrates an involvement of D1 receptors in the conditioning of the rewarding effect of PCP. The previously documented (Leone and DiChiara, 1987; Shippenberg et al., 1993) effectiveness of systemically administered (+) SCH-23390 in attenuating the rewarding effects of opioids and other drugs of abuse suggests that D1 receptor ligands may be useful therapeutic agents for the treatment of drug addiction.

Acknowledgments

We are grateful to Janssen Kyowa Co. Ltd. for the gift of ritasarin.

References

Send reprint requests to: Toshitaka Nabeshima, Ph.D., Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466, Japan.