Effect of Clofibrate on the Chiral Disposition of Ibuprofen in Rats

STEFAN SCHEUERER, KENNETH M. WILLIAMS, ROLAND BRUGGER, ANDREW J. McLACHLAN, KAY BRUNE, RICHARD O. DAY and GERD GEISSLINGER

Department of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nuremberg, Erlangen, Germany (S.S., R.B., K.B., G.G.) and Department of Clinical Pharmacology and Toxicology, St. Vincent’s Hospital, and University of New South Wales, Sydney (K.M.W., A.J.M., R.O.D.)

Accepted for publication November 5, 1997 This paper is available online at http://www.jpet.org

ABSTRACT

A potentially clinically important interaction has been described between clofibrate and ibuprofen in vitro. To determine whether this in vitro interaction is paralleled by a change in pharmacokinetics of ibuprofen in vivo two groups of rats were treated orally with clofibrate (n = 8, 280 mg/kg/day) or vehicle (n = 7) for 3 days. On day 3, 2 hr after the last dose of clofibrate, the rats were given an i.v. dose of pseudoracemic ibuprofen (20 mg/kg, 10 mg R-ibuprofen, 10 mg 13C-S-ibuprofen). Plasma concentrations of the enantiomers were monitored by a stereospecific gas chromatography mass spectrometry assay. The clearance of R-ibuprofen more than doubled in the clofibrate-treated group (mean ± S.E.M.; 29.4 ± 4.0 ml/min) as compared to control rats (13.0 ± 1.4 ml/min; P = .003). This increase was similarly reflected in the clearance by inversion (treated, 23.2 ± 3.2 ml/min, untreated, 10.0 ± 1.2 ml/min; P = .003) and there was also an increase in the rate of inversion (treated, 1.04 ± 0.13 min⁻¹; untreated, 0.79 ± 0.16 min⁻¹; P = .029). By contrast, the estimates of fractional chiral inversion were not affected by clofibrate and were in close agreement whether estimated by the area under the plasma concentration-time curve approach (treated, 0.79 ± 0.02; untreated, 0.72 ± 0.02) or by deconvolution (treated, 0.78 ± 0.02; untreated, 0.73 ± 0.02). There was a significant increase in volume of distribution at steady-state (treated, 4.42 ± 1.12 liter/kg; untreated, 1.03 ± 0.30 liter/kg; P = .017) observed for the R-enantiomer but not the S-enantiomer (treated, 1.04 ± 0.16 liter/kg; untreated, 1.10 ± 0.21 liter/kg). Pretreatment of rats with clofibrate significantly increased the concentrations of ibuprofen in fat, lung, brain and liver tissue. With respect to the protein levels of two key enzymes involved in chiral inversion, clofibrate pretreatment significantly induced expression of long chain acyl-coenzyme A synthetase, although the expression of the epimerase was unaltered. It is concluded, that clofibrate may increase the proportion of R-ibuprofen incorporated into long-lived lipid (“hybrid” lipid) stores.

Ibuprofen is a 2-arylpropionic acid widely used for its antiinflammatory and analgesic activities and is administered almost invariably as its racemate (R,S-ibuprofen). The S-enantiomer is the active agent with respect to inhibition of prostaglandin synthesis (Adams et al., 1967; Geisslinger et al., 1989) as is the case for other members of this group of NSAIDs. However, interest has focused on the stereoselective chiral disposition of the “inactive” R-enantiomers for three reasons. First, in vivo there is stereoselective chiral inversion of some R-2-arylpropionates to their S-enantiomers (Adams et al., 1976; Nakamura et al., 1981; Hutt and Caldwell, 1983; Caldwell et al., 1988). Second, the drugs may perturb lipid biochemistries and be stereoselectively incorporated into long-lived lipid stores (Fears, 1985; Williams et al., 1986; Gallustio et al., 1988; Freneaux et al., 1990; Mayer et al., 1994; Mayer et al., 1995). Third, it has been shown that ibuprofen can activate peroxisome proliferator-activated receptor γ (PPAR γ), a ligand-activated transcription factor known to play a role in adipogenesis (Lehmann et al., 1997). This activation is probably independent of prostaglandin synthesis inhibition (Lehmann et al., 1997). The first metabolic step linking inversion and interactions with lipids is the stereoselective activation of the R-enantiomers to their acyl-CoA thioesters by the long chain acyl-CoA synthetase (Brugger et al., 1996a; Chen et al., 1990; Tracey et al., 1993; Menzel et al., 1994), which is an essential enzyme in the metabolism of some R-2-arylpropionates to their S-enantiomers (Adams et al., 1976; Nakamura et al., 1981; Hutt and Caldwell, 1983; Caldwell et al., 1988).
of fatty acids. In the second step epimerization to S-ibuprofenyl-CoA is catalyzed by 2-arylpropionyl-CoA epimerase (Reichel et al., 1995, 1997). Finally, the thioesters are hydrolyzed. The rat has become a well accepted model for studying the mechanism of inversion and factors affecting inversion, particularly for ibuprofen.

A mechanistically interesting, and potentially clinically important, interaction has been described between clofibrate and ibuprofen, whereby there is increased inversion of R-ibuprofen in liver homogenate of rats treated with clofibrate. This increased inversion paralleled an increase in hepatic microsomal long-chain CoA synthetase consistent with the central role of the CoA thioester intermediate (Shieh and Chen, 1993; Knights et al., 1991). The main purpose of our study was to determine whether the potentiation of inversion in vivo is also paralleled by a change in the pharmacokinetics of ibuprofen in vivo, and in particular, is reflected by an increase in chiral inversion in rats treated with clofibrate. A technique using pseudoracemate ibuprofen containing 13C-S-ibuprofen with GCMS analysis was developed to achieve this goal. Moreover the influence of clofibrate on the expression of long chain acyl-CoA synthetase and epimerase, two key enzymes in the metabolic chiral inversion was studied.

Methods

Materials

R-ibuprofen (>98.5% optical purity) and 13C-S-ibuprofen (>98% optically pure, >97.8% isotopically pure) were kindly donated by Ethyl Corporation (courtesy of Dr. Denis Bauer, Baton Rouge, LA). The pseudoracemate solution was prepared using an equal proportion of these substances. The internal standard, ring tetradeterated (D4)-RS-ibuprofen was purchased from Tracer Technologies (Somerville, MA). 13C-RS-ibuprofen (21.6 μCi/mg) was kindly donated by the Boots Company, PLC (Nottingham, UK).

The gas chromatograph used in this study was an HP5890 interfaced to an HP5971A MSD via a capillary splitless injector. The column was a fused silica capillary column (DB-5, 15 m, 0.25-mm faced to an HP5971A MSD via a capillary splitless injector. The temperature, glacial acetic acid (10 ml), was taken to dryness under nitrogen with gentle warming (40°C). The residue was treated with a freshly prepared solution of 1,1-carbonodimimidazole in toluene (0.5 ml, 5 mg/ml). The organic layer was transferred to a tapered tube and was dried. The residue was re-suspended in toluene (800 μl). An aliquot (1 μl) was taken to dryness under nitrogen and the residue resuspended in saline solution (0.5 ml, 0.9%) and standards (100 μl) were extracted with hexane-ether (70:30, v/v 4 ml) after addition of internal standard (D4-R,S-ibuprofen, 5 μg/ml, 200 μl) and hydrochloric acid solution (200 μl, 2 M). The extraction was repeated (1.0 ml hexane-ether) and the extracts combined. The organic layer was transferred to a tapered tube and was taken to dryness under nitrogen with gentle warming (40°C). The residue was treated with a freshly prepared solution of 1,1-carbonodimimidazole in toluene (0.5 ml, 5 mg/ml). After 10 min at room temperature, the solution (50 ml) was added to an aqueous solution (10 ml) of 10% NaOH. The mixture was incubated over 24 hr at 60°C and the solution was acidified (0.2 M HCl, 5 ml), taken to dryness and the residue resuspended in toluene (0.5 ml). An aliquot of the toluene phase (800 μl) was taken to dryness under nitrogen and the residue resuspended in saline solution (0.5 ml). An aliquot (1 μl) was taken for GCMS analysis.

Determination of Plasma Ibuprofen Concentrations

The method was based on a modification of previously described GCMS techniques whereby the enantiomers were analysed as their diastereomeric phenylethylamide derivatives (Baillie et al., 1988; Sanins et al., 1991; Rudy et al., 1991). Standards of R-ibuprofen, S-ibuprofen and 13C-S-ibuprofen were prepared at the following concentrations: 0.05, 0.25, 0.5, 2.5, 5.0, 25.0, 50.0 and 250.0 μg/ml in rat plasma. Duplicate (n = 6) samples were assayed at 0.25, 2.5 and 25.0 μg/ml for validation of accuracy and precision of the assay. Plasma samples (50 μl) were added to 1 ml of 10% NaOH solution and hydrolysed under reflux for 24 hr. The solution was acidified (2 M HCl) and the mixture was extracted (1.0 ml hexane-ether) and the extracts combined. The organic layer was transferred to a tapered tube and was taken to dryness under nitrogen with gentle warming (40°C). The residue was treated with a freshly prepared solution of 1,1-carbonodimimidazole in toluene (0.5 ml, 5 mg/ml, 5 ml). After 10 min at room temperature, the solution (50 ml) was added to an aqueous solution (10 ml) of 10% NaOH. The mixture was incubated over 24 hr at 60°C and the solution was acidified (0.2 M HCl, 5 ml), taken to dryness and the residue resuspended in saline solution (0.5 ml). An aliquot of the toluene phase (800 μl) was taken to dryness under nitrogen and the residue resuspended in saline solution (0.5 ml). An aliquot (1 μl) was taken for GCMS analysis.

Determination of Ibuprofen in Tissues

Tissue (about 1 g) was solubilized by vortexing thoroughly with a blend of toluene and dimethyl dialkyl quaternary ammonium hydroxide and methanol (10 ml; Soluene-350, Canberra-Packard, Dreieich, Germany), followed by incubation over 60 hr at 60°C. An aliquot (1.0 ml) of the solubilized tissue solution was mixed with scintillant solution (2 ml; Ultima Gold, Canberra-Packard) and the radioactivity was determined as counts/min (Beckman scintillation counter; Beckman, Munich, Germany). These data were then expressed as μg/g RS-ibuprofen “equivalents.”

Sodium dodecylsulphate polyacrylamide gel electrophoresis and Western Blot Analysis

Purification and characterization of long-chain acyl-CoA synthetase (LACS; EC 6.1.2.3.) and 2-arylpropionyl-CoA epimerase from rat liver was performed according to previously reported protocols of Brugger et al. (1996a) and Shieh and Chen (1993), respectively.
Proteins for Western blot analysis were separated by SDS-PAGE (Laemmli, 1970) and electrotransferred onto nitrocellulose (Harlow and Lane, 1988). Blots were probed with antibodies directed against purified LACS according to Miyazawa et al. (1985) and epimerase (Reichel et al., 1995) and visualized using the enhanced chemiluminescence kit (ECL, Amersham, Braunschweig, Germany). Western blots were scanned and evaluated by densitometry using the SCAN ANALYSIS software package (Biosoft, Cambridge, UK), similar to the reported method of Shea (1994).

Data Analysis

Pharmacokinetic parameters were obtained from concentration-time data using the TOPFIT Program package (Heinzel et al., 1993). AUC for each of R-ibuprofen, S-ibuprofen and 13C-S-ibuprofen (AUCR, AUCS and AUC13C-S, respectively) was calculated using the linear trapezoidal rule with extrapolation to infinity from the last observation point. The area derived by extrapolation was not more than 17% of the total AUC in any case. The CL and Vss for R-ibuprofen and 13C-S-ibuprofen were calculated using the AUC and AUMC as described previously (Rowland and Tozer, 1989).

The elimination half-life for each compound was calculated from the slope of the terminal portion of the log concentration-time plot.

The Fi was calculated using two approaches, the AUC comparison and the deconvolution method. The calculation of the fractional inversion (FiAUC) using the AUC comparison method (equation 1) is based on the approach summarised by Rowland and Tozer (1989) to describe the pharmacokinetics of drug metabolites.

\[
Fi_{\text{AUC}} = \frac{\text{AUC}_S \times CL_{13C-S}}{\text{AUC}_R \times CL_R}
\]

where AUCR and AUCS are the AUC for R-ibuprofen and S-ibuprofen, respectively, after the administration of R-ibuprofen, and CL13C-S and CLR are the clearance of 13C-S-ibuprofen and R-ibuprofen, respectively.

The deconvolution approach to estimating Fi has been previously described (McLachlan and Williams, 1995; Karol and Goodrich, 1988) and is based on linear systems analysis (Cutler, 1978). Two deconvolution methods were used to estimate the fraction of R-ibuprofen inverted to S-ibuprofen (FiDECON). The staircase approximation deconvolution method (Cutler, 1981; also called the point approximation deconvolution method; Vaughan and Dennis, 1978) and the polynoexponential deconvolution method (Veng-Pederson, 1985; Gillespie and Veng-Pederson, 1985) implemented using the PCDECON computer software (Veng-Pederson, 1985). Plasma concentration-time data for 13C-S-ibuprofen were fitted to a biexponential equation before the deconvolution procedure for both deconvolution methods. This provides a smooth representation of the data to prevent problems related to data noise in the deconvolution procedure (Suverkup et al., 1989).

The fraction of R-ibuprofen inverted to S-ibuprofen was determined as the plateau value of the cumulative fraction inverted over time. The half-life of chiral inversion, a measure of the rate of inversion, was calculated as the time taken to achieve 50% of the plateau value. Data were analyzed by analysis of variance. Comparison of data between groups was performed using the Student’s unpaired t test with significance defined as P < .05. Data are expressed as mean ± S.E.M.

Results

The stereospecific GCMS assay was shown to be accurate and precise. The within-day coefficients of variation (n = 6) were less than 7.0% for each of R-, S- and 13C-S-ibuprofen at concentrations of 1.0 and 5.0 μg/ml based on the analysis of 50 μl samples of plasma. The day-to-day coefficient of variation was similarly less than 4.7%. The assay could reliably measure down to 0.05 μg/ml (<15% coefficient of variation).

There was no significant difference between the weights of the two groups of rats following the treatment period (control: 253 ± 2 g; treated: 251 ± 2 g).

There were significant increases in the total clearance of R-ibuprofen and the clearance of R-ibuprofen by inversion (CLR)) in rats pretreated with clofibrate (table 1). However, the mean half-life of R-ibuprofen approximately doubled in the pretreated rats despite this increased clearance because of an approximately 4-fold increase in VSS of the R-enantiomer (table 1; fig. 1). Interestingly, the fractional inversion of R-ibuprofen to S-ibuprofen was unaltered. By contrast with the effect of clofibrate on the pharmacokinetics of the R-enantiomer, clofibrate did not alter either the clearance, half-life or, notably, the VSS of S-ibuprofen (table 1; fig. 1). The AUC of the S-enantiomer was also unchanged (control, 2241 ± 508 μg hr ml⁻¹; treated, 1917 ± 153 μg hr ml⁻¹; P = .75).

There was excellent agreement between the estimates of the fraction of R-ibuprofen inverted to S-ibuprofen based on deconvolution analysis and those based on conventional AUC analysis (table 2). Furthermore, there was also good agreement between the staircase approximation approach (data not shown) and the polynoexponential deconvolution method. Deconvolution analysis provided data on the cumulative fraction of R-ibuprofen inverted to S-ibuprofen (table 2; fig. 2) and demonstrated that there was a significant increase in the rate of inversion reflected by the reduction in the half-life of inversion from 13.9 ± 3.7 to 8.3 ± 4.4 min (P = .029) in the clofibrate-treated group.

Pretreatment with clofibrate significantly increased the concentrations of radiolabeled 14C-RS-ibuprofen in the following tissues: fat, lung, brain and liver (table 3). In contrast, the distribution into kidney was unaltered.

The Western blot analysis for LACS and epimerase, respectively, in rat livers are shown in figure 3. Densitometric analysis yielded an approximately 3-fold increase in the protein levels of LACS, due to the 3-day clofibrate pretreatment (control: 18444 ± 66799 arbitrary units; treated: 54153 ± 37819 arbitrary units; P < .01), whereas no changes were detected for the epimerase (control: 82581 ± 3703 arbitrary units; treated: 90776 ± 15551 arbitrary units; P = .6).

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Mean (±S.E.M.) pharmacokinetic parameters of the enantiomers of ibuprofen in clofibrate treated (n = 8) and control (n = 7) rats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>R-Ibuprofen</td>
</tr>
<tr>
<td>Control</td>
<td>Treated</td>
</tr>
<tr>
<td>CL (ml/min)</td>
<td>13.0 (± 1.4)</td>
</tr>
<tr>
<td>Vss (liter/kg)</td>
<td>1.03 (± 0.30)</td>
</tr>
<tr>
<td>t1/2 (min)</td>
<td>98.5 (± 8.1)</td>
</tr>
<tr>
<td>CLR (ml/min)</td>
<td>10.0 (± 1.2)</td>
</tr>
<tr>
<td>VSS (liter/kg)</td>
<td>1.2 (± 1.7)</td>
</tr>
<tr>
<td>t1/2 (min)</td>
<td>107.6 (± 23.0)</td>
</tr>
</tbody>
</table>
R-ibuprofen, 10 mg 13C-S-ibuprofen). C, Mean (± S.E.M.) plasma concentration-time data for S-ibuprofen for control rats (●, n = 7), and for rats treated with clofibrate (▲, n = 8) after administration of pseudoracemic-ibuprofen (10 mg R-ibuprofen, 10 mg 13C-S-ibuprofen). B, Mean (± S.E.M.) plasma concentration-time data for S-ibuprofen versus time in control rats (—, n = 7), and for rats treated with clofibrate (▲, n = 8) after administration of pseudoracemic-ibuprofen (10 mg R-ibuprofen, 10 mg 13C-S-ibuprofen). C, Mean (± S.E.M.) plasma concentration-time data for 13C-S-ibuprofen for control rats (●, n = 7), and for rats treated with clofibrate (▲, n = 8) after administration of pseudoracemic-ibuprofen (10 mg R-ibuprofen, 10 mg 13C-S-ibuprofen).

TABLE 2

Data for the extent and half-life of inversion calculated by deconvolution or area analysis

<table>
<thead>
<tr>
<th>Rat</th>
<th>Control Group</th>
<th>Clofibrate Treated Group</th>
<th>Rat</th>
<th>Control Group</th>
<th>Clofibrate Treated Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fi</td>
<td>t_{1/2}^{inv.} (min) AUC^a</td>
<td></td>
<td>Fi</td>
<td>t_{1/2}^{inv.} (min) AUC^a</td>
</tr>
<tr>
<td>1</td>
<td>0.65</td>
<td>0.69</td>
<td>1.35</td>
<td>0.65</td>
<td>0.82</td>
</tr>
<tr>
<td>2</td>
<td>0.79</td>
<td>1.00</td>
<td>10</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>3</td>
<td>0.67</td>
<td>1.65</td>
<td>11</td>
<td>0.81</td>
<td>0.78</td>
</tr>
<tr>
<td>4</td>
<td>0.75</td>
<td>0.78</td>
<td>8.0</td>
<td>0.74</td>
<td>0.75</td>
</tr>
<tr>
<td>5</td>
<td>0.73</td>
<td>0.80</td>
<td>13</td>
<td>0.80</td>
<td>0.82</td>
</tr>
<tr>
<td>6</td>
<td>0.78</td>
<td>0.85</td>
<td>14</td>
<td>0.81</td>
<td>0.89</td>
</tr>
<tr>
<td>7</td>
<td>0.73</td>
<td>0.81</td>
<td>15</td>
<td>0.67</td>
<td>0.70</td>
</tr>
<tr>
<td>8^a</td>
<td>Mean</td>
<td>0.73</td>
<td>13.9</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>S.E.M.</td>
<td>0.02</td>
<td>1.4</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- Data obtained by the polyexponential deconvolution method.
- Data based on AUC analysis.
- Rat 8 was excluded because of problems during blood sampling.
- P (unpaired, two-way, t test) for the comparison of the mean data for control with clofibrate treated animals for each parameter, respectively.

TABLE 3

Effect of clofibrate pretreatment on the distribution of ibuprofen into various tissues [data are given as ibuprofen/tissue (µg/g; mean ± S.E.M.)]

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Control group</th>
<th>Clofibrate Group</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>5.70 ± 1.19</td>
<td>8.42 ± 1.18</td>
<td>.0004</td>
</tr>
<tr>
<td>Lung</td>
<td>5.23 ± 2.18</td>
<td>8.62 ± 3.18</td>
<td>.03</td>
</tr>
<tr>
<td>Brain</td>
<td>0.89 ± 0.42</td>
<td>1.93 ± 1.16</td>
<td>.03</td>
</tr>
<tr>
<td>Kidney</td>
<td>17.32 ± 11.50</td>
<td>24.95 ± 10.51</td>
<td>.19</td>
</tr>
<tr>
<td>Liver</td>
<td>13.32 ± 8.50</td>
<td>34.71 ± 17.73</td>
<td>.008</td>
</tr>
</tbody>
</table>

Fig. 1. Mean (± S.E.M.) plasma concentration-time data for R-ibuprofen for control rats (●, n = 7), and for rats treated with clofibrate (▲, n = 8) after administration of pseudoracemic-ibuprofen (10 mg R-ibuprofen, 10 mg 13C-S-ibuprofen).

Fig. 2. The mean cumulative fractional inversion (Fi) of R-ibuprofen to S-ibuprofen versus time in control rats (—, n = 7) and in rats pretreated with clofibrate (▲, n = 8) as determined by plasma analysis.

Discussion

The use of stable isotopes has proved to be a valuable approach for pharmacokinetic studies and has been applied to studies of the kinetics and mechanism of inversion of ibuprofen in rats (Sanins et al., 1991) and man (Baillie et al., 1989; Rudy et al., 1991). Importantly, the use of isotopically labeled S-ibuprofen in combination with the R-enantiomer (pseudoracemate), allows an estimation of the fractional inversion of R-ibuprofen in the form it is usually administered, i.e., the racemate. Furthermore, only a single dose of drug needs to be administered. This is useful because data indicate that there are interactions between the enantiomers of ibuprofen at protein binding sites such that each enantiomer modifies the kinetics of the other (Lee et al., 1989; Evans et al., 1989). In the absence of a pseudoracemic preparation and associated GCMS methodology, estimations of inversion require separate administration of the enantiomers and the assumption that interactions between enantiomers do not occur.

The dosage of clofibrate used to treat the rats is large. However, we followed the same dosage regimen of Knights et al. (1991) to allow a direct comparison between their in vitro and our in vivo data. (In this respect the minimum dose required to induce the changes recorded in our study is not known.) The absolute increase in inversion of R-ibuprofen observed in preparations of rat liver homogenate was not observed in vivo where the Fi was not significantly altered by pretreatment with clofibrate. The degree of inversion in the control group (77%) was similar to previous estimates of inversion in Wistar rats (50–70%; Knihinicki et al., 1990) and to estimates of inversion in humans (57–71%; Lee et al., 1985; Geisslinger et al., 1990), although the Vss was also in close agreement with the previous data in rats (Knihinicki et al., 1990). However, the clearances by inversion were higher and the half-lives of inversion shorter in our study. For example,
a half-life of inversion of approximately 32 min was estimated in the earlier investigation (Knihinicki et al., 1990), contrasting with the 14 min in our study.

Although the total fraction of R-ibuprofen inverted was unchanged, there was a significant increase in the total clearance and the clearance of R-ibuprofen by inversion. It is difficult to be certain that noninversion pathways of ibuprofen metabolism were affected by clofibrate. In association with its well known induction of peroxisomal proliferation, clofibrate induces a range of enzymes including the cytochrome P450 (CYP) 4A (fatty acid ω-hydroxylation) family of enzymes (Sundseth and Waxman, 1992), acyl-CoA synthetases and hydrolases (Knights et al., 1988; Mentlein et al., 1986), and fatty acyl-CoA oxidases (Gronn et al., 1992). Noninversion, oxidative pathways are marginally stereoselective for the S-enantiomer in humans (Rudy et al., 1991), whereas clearly inversion is the dominant pathway of metabolism of R-ibuprofen. Oxidation occurs on the isobutyl side chain of ibuprofen and oxidation is mediated by the CYP2C subfamily (Leemann et al., 1994). A recent study suggested both regioselective and stereoselective metabolism of ibuprofen (Hamman et al., 1997). CYP2C9 favored formation of S-2- and S-3 hydroxyibuprofen whereas CYP2C8 favored R-2 hydroxyibuprofen (Hamman et al., 1997). Thus the expression of these two isozymes may influence the disposition of ibuprofen in vivo. However, there are no reports to this time suggesting that xenobiotics induce CYP 2C8/9. The reason the proportion of ibuprofen inverted to the S-enantiomer was unaffected is that there must be a proportional diversion of drug to other pathways. Taken with our evidence that clofibrate had no effect on the disposition of S-ibuprofen, it can reasonably be assumed that the oxidation of R-ibuprofen was not affected by clofibrate. It was thus an hypothesis generated from these data that the increase in the Vss and the increase in metabolic clearance reflected an increase in the rate of incorporation of drug into what have been termed “hybrid” lipids (Williams et al., 1986) i.e., lipids in which the normal endogenous fatty acid is replaced by a xenobiotic (Fears, 1985). R-ibuprofenoyl-CoA is the precursor both for inversion (Shieh and Chen, 1993), and for incorporation of the drug into hybrid lipids. One would hypothesize on this basis that the overall fraction of the dose ending up in hybrid lipids might increase if the rate of formation of R-ibuprofenoyl-CoA was increased.

The liver is the major site of inversion of ibuprofen and of LACS expression (Brugger et al., 1996b). Consequently, we further investigate our hypothesis of enhanced lipid incorporation the effect of clofibrate on LACS expression was investigated in the liver. The data from the Western blot analysis demonstrated that clofibrate significantly increased the expression of LACS. Furthermore, as the enzyme stereoselectively activates R-ibuprofen to its CoA-thioester (Brugger et al., 1996a) increased formation of R-ibuprofenoyl-CoA may result in increased incorporation into hybrid lipids. Moreover, the fact that expression of the 2-arylpropionyl-CoA epimerase, the key enzyme that epimerases the chiral center of the ibuprofenoyl-CoA thioester, was unaltered by clofibrate, was also consistent with our additional finding that the Fi remained unchanged. Thus increased formation of R-ibuprofenoyl-CoA thioester via up-regulation of LACS in the absence of a change in the epimerase is the most likely explanation for our findings that the Vss for R-ibuprofen increased although the Fi was unaltered.

This thesis was further supported by our investigation of tissue distribution using radiolabeled (14C) racemic ibuprofen. The magnitude of the increase in distribution of radiolabeled ibuprofen into tissues (1.5–6.0 times) after clofibrate treatment was of the same order as the increase in the Vss (2.5 times). The pharmacological relevance of the clofibrate-induced changes in ibuprofen tissue distribution and on the enzymatic level remains unclear. Although increased incorporation of R-ibuprofen into hybrid lipids may be of toxicological relevance it has also been shown that ibuprofenoyl-CoA thioesters inhibit cyclooxygenase-2 mediated prostaglandin E2 synthesis (Neupert et al., 1997) that might have therapeutic significance. Thus, the finding that clofibrate induces acyl-CoA-synthetase and thus promotes forma-
tion of R-ibuprofenoyl-CoA thioester is an interesting finding deserving further investigation.

Only male animals were investigated in our study. It is reported that male rats are more susceptible to enzyme induction by clofibrate than female rats (Sundseth and Wexler, 1976), and thus sex may also be an important determinant of the interaction, and a factor to be considered when investigating inversion in humans. Another potential contribution to the change in kinetics induced by clofibrate is an effect on biliary function. In contrast to humans, rats excrete some unchanged ibuprofen in bile (approximately 12%; Dietz et al., 1990). However, the overall excretion is not high and in any case clofibrate has been reported to decrease biliary flow (James and Ahokas, 1992) and so this consideration would not appear to be an explanation for our results.

Displacement of R-ibuprofen by clofibrate from plasma protein binding sites might also be invoked to account for the increased clearance of R-ibuprofen. Clofibrate is reported to have a moderately long half-life of between 7 and 24 hr in rats (Brodie et al., 1976), and, therefore, although not measured, was likely to have been present in blood at relatively high concentrations at the time the ibuprofen dose was administered. However, it is to be noted that neither the clearance nor the volume of distribution of the S-enantiomer were affected in the clofibrate-treated group. S-ibuprofen binds less avidly to the common binding site on the albumin molecule than R-ibuprofen, and there is mutual displacement of the enantiomers from this binding site (Evans et al., 1989).

The S-enantiomer is thus more susceptible to protein binding displacement interactions. However, as noted, there was no evidence that the pharmacokinetic parameters of S-ibuprofen were affected by clofibrate. These data suggest that the increase in the clearance and the volume of distribution of R-ibuprofen was not due to a protein binding interaction.

In conclusion, the study confirmed the value of stable isotopes for the study of chiral inversion when the drug is administered in the usual form, i.e., the racemate. It was demonstrated that the previously observed clofibrate induced increased fractional inversion of R-ibuprofen to S-ibuprofen in vitro in rats (Knights et al., 1991) was not paralleled by an increased F in vivo, despite the substantial increase in the clearance by inversion of R-ibuprofen. Data on tissue distribution and enzyme expression suggest that more drug is diverted to other pathways, in particular incorporation into hybrid lipids, after exposure to clofibrate. Such an interaction may also occur in humans and the methodology developed in our study is suited to such an investigation.

Acknowledgments

The authors thank K. Backer for technical assistance and Ch. Sauerheimer, C. Labahn and M. Ionac for animal maintenance.

References

Send reprint requests to: Dr. Gerd Geisslinger, Department of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, Universitätstraße 22, 91054 Erlangen, Germany.