The Pharmacological Characterization of a Novel Selective 5-Hydroxytryptamine$_{1A}$ Receptor Antagonist, NAD-299

LARS JOHANSSON, DANIEL SOHN, SETH-OLOF THORBERG, DAVID M. JACKSON, DIANA KELDER, LARS-GUNNAR LARSSON, LUCY RÉNYI, SVANTE B. ROSS, CARIN WALLSTEN, HÅKAN ERIKSSON, PING-SHENG HU, EVA JERNING, NINA MOHELL and ANITA WESTLIND-DANIELSSON

Accepted for publication June 9, 1997

ABSTRACT

The pharmacological properties of a novel selective 5-hydroxytryptamine$_{1A}$ (5-HT$_{1A}$) receptor antagonist, NAD-299 ([R]-3-N[(2R,3R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzo[4,5]cyclopenta[1,2-c]pyran-5-carboxamide hydrogen (2R,3R)-tartrate monohydrate] were examined in vitro and in vivo compared with the reference 5-HT$_{1A}$ receptor antagonist, WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazin-yl))ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride]. The new compound had high affinity for 5-HT$_{1A}$ receptors in vitro with a K_i value of 0.6 nM. The only other receptors for which NAD-299 had affinity less than 1 μM were alpha-1 and beta adrenoceptors with K_i values of 260 and 340 nM, respectively. Thus, the selectivity of NAD-299 for 5-HT$_{1A}$ receptors was more than 400 times. WAY-100635 had considerably higher affinity than NAD-299 for alpha-1 adrenoceptors ($K_i = 45$ nM) and dopamine D$_2$ and D$_3$ receptors ($K_i = 79$ and 67 nM, respectively). Like WAY-100635, NAD-299 competitively blocked 5-HT$_{1A}$-induced inhibition of vasoactive intestinal peptide-stimulated cAMP production in GH$_3$ZD10 cells and had no intrinsic activity. Both compounds were therefore 5-HT$_{1A}$ receptor antagonists in vitro and also behaved as such in vivo experiments. Thus, they competitively antagonized the 8-hydroxy-2-(di-n-propylamino)tetratin-induced 5-HT$_{1A}$ behavioral effects, hypothermia, corticosterone secretion and inhibition of passive avoidance behavior without causing any actions of their own. The effective dose of NAD-299 varied between 0.03 and 0.35 μmol/kg s.c., depending on the test and the dose of 8-hydroxy-2-(di-n-propylamino)tetratin.

The selective stimulation of 5-HT$_{1A}$ receptors with drugs such as 8-OH-DPAT (Arvidsson et al., 1985) produces a variety of behavioral, biochemical and electrophysiological effects. These include hypothermia (Hjorth, 1985; Middlemiss et al., 1985), hyperphagia (Dourish et al., 1985; Bendotti and Samanin, 1986), antidepressant-like activity (Cervo and Samanin, 1987, 1991), effects on sexual behavior (Johansson et al., 1990), changes in the 5-HT syndrome (Middlemiss et al., 1985; Berendsen et al., 1989; Larsson et al., 1990; Rényi, 1991), inhibition of cage leaving behavior (Rényi et al., 1986), alterations in memory (Winter and Petti, 1987; Ohno et al., 1993), disruption of a passive avoidance response (Johansson et al., 1988; Carli et al., 1992), changes in 5-HT neuronal firing rate (Blier and De Montigny, 1987), elevations in plasma corticosterone levels (Fuller, 1981; Koenig et al., 1987; Lorens and van de Kar, 1987; Kelder and Ross, 1992) as well as a variety of other biochemical effects (Cornfield et al., 1991). Detailed characterization of these pharmacological effects became possible only with the development of selective and highly potent 5-HT$_{1A}$ receptor antagonists.

(S)-UH-301 was the first 5-HT$_{1A}$ receptor antagonist described (Hillver et al., 1990; Björk et al., 1991). However, it was also shown to have considerable potency as a DA D$_3$ receptor agonist, a property that can complicate the interpretation of experiments. WAY-100135 and then the more selective WAY-100635 were described as highly potent and selective 5-HT$_{1A}$ receptor antagonists (Fletcher et al., 1993, 1994; Forster et al., 1995). They reversed the effects of 5-HT$_{1A}$ receptor agonists in various models and had no efficacy ("silent agonists"). These compounds, and in particular WAY-

Received for publication December 31, 1996.

ABBREVIATIONS: DA, dopamine; DOPA, L-3,4-dihydroxyphenylalanine; 8-OH-DPAT, 8-hydroxy-2-(di-n-propylamino)tetratin; 5-HT, 5-hydroxytryptamine; IBMX, 3-isobutyl-1-methylxanthine; 5-HTP, 5-hydroxytryptophan; NAD-299, ([R]-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzo[4,5]cyclopenta[1,2-c]pyran-5-carboxamide hydrogen (2R,3R)-tartrate monohydrate; NSD 1015, 3-hydroxybenzylhydrazine dihydrochloride; (S)-UH-301, (R)-5-fluoro-8-hydroxy-2-(dipropylamino)tetratin; VIP, vasoactive intestinal peptide; WAY-100135, N-tetra-butyl-3-(4-(2-methoxyphenyl)piperazinyl)-ethyl-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride; CHO, Chinese hamster ovary; FCS, fetal calf serum; HEPES, N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid; EDTA, ethylenediaminetetraacetic acid; ANOVA, analysis of variance; AMPA, L-α-aminooxy-3-hydroxy-5-methylisoxazole-4-propionic acid; DHA, dihydroaeprenolol; GABA, γ-aminobutyric acid; NMDA, N-methyl-d-aspartate; TBPS, tert-butylibicyclophosphothionate; QNB, L-quinuclidinyl benzilate.
100635, have been useful in the characterization of 5-HT\textsubscript{1A} receptor function.

We report here the basic biochemical and behavioral pharmacological characterization of a new selective 5-HT\textsubscript{1A} receptor antagonist, NAD-299 (fig. 1). The synthesis of this substance has been reported elsewhere (Evenden et al., 1995). WAY-100635 has been included in this study as a reference 5-HT\textsubscript{1A} receptor antagonist.

Materials and Methods

Materials. The GH\textsubscript{4}ZD10 (rat pituitary tumor cells) cells containing rat 5-HT\textsubscript{1A} receptors and the Ltk− (mouse fibroblast) cells expressing human DA D\textsubscript{2A} (long isoform) receptors were obtained from Dr. Olivier Civelli (Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland, OR). The CHO cells expressing human D\textsubscript{3}, rat 5-HT\textsubscript{6} and rat 5-HT\textsubscript{7} receptors were purchased from INSERM (Paris, France).

Compounds. The standard agonist used in the studies was 8-OH-DPAT, from Research Biochemicals International Inc., Natick, MA. NAD-299 and WAY-100635 were provided from the laboratories of Astra Arcus AB. The test compounds were dissolved in saline, if not otherwise stated. Ham's F10 medium, Earle's balanced salt solution without Ca2+ and Mg2+, FCS, penicillin, streptomycin and HEPEs were obtained from Gibco Ltd., Paisley, Scotland, U.K. [3H]cAMP and cAMP were obtained from Amersham International plc, Amersham, U.K. Diazepam, dithiothreitol, genistein, NSD 1015, 5-hydroxytryptamine hydrochloride, IBMX, nicotine, oxotremorine, sodium glutamate, theophylline, tris/base and VIP were obtained from Sigma Chemical Co., St. Louis, MO. Ascorbic acid was from Merck, Darmstadt, Germany. (+)-Butacalamol hydrochloride, cimetidine, galanin, MK801 and pyrilamine were from Research Biochemicals International, Inc. (\pm-Alprenolol hydrochloride was obtained from Astra Håssé, Mölndal, Sweden; methiothepine was a gift from Hoffman-LaRoche, Basel, Switzerland; methysergide was from Sandoz AG, Basel, Switzerland; paroxetine was from SmithKline Beecham Pharmaceuticals, Betchworth, UK; and phentolamine mesylate was from Ciba-Geigy AG, Basel, Switzerland. All other compounds used were of highest purity available.

The following radioactive ligands were used (Ci/mmol in parentheses): [3H]AMPA (53), [3H]DHA (59), [3H]flunitrazepam (82.5), [125I]galanin (2200), [3H]8-OH-DPAT (130), [3H]ketanserin (64), [3H]MK-801 (20.3), [3H]nicotine (63), [3H]prazosin (78), [3H]pyrilamine (31.2), [3H]L-QNB (43), [3H]raclopride (80), [3H]SCH23390 (86), [3H]TBPS (69.2), and [3H]tiotidine (83.7), all purchased from DuPont NEN, Boston, MA. [3H]citalopram (85.7), [3H]5-hydroxytryptamine (29.7) and [3H]RX821002 (60) were obtained from Amersham International plc, UK.

Subjects. Male Sprague-Dawley rats (B&K strain, B&K Universal, Sollentuna, Sweden), weighing 150 to 350 g, were used. The animals arrived in the laboratory at least 5 days before being used in the experiments and were housed 5 per cage under controlled conditions of temperature (21°C), relative humidity (55–65%) and light-dark cycle (12:12 h, lights on at 6 a.m.). Food (R36, Ewos, Södertälje, Sweden) and tap water were freely available in the home cage. The experiments were performed during the light phase, between 7 a.m. and 5 p.m. All injections were subcutaneous (s.c.) unless otherwise stated.

Radioligand binding studies. The rats were decapitated and the various brain regions dissected out on ice (table 1). The brain regions were frozen as tissues or homogenates in 0.32 M sucrose and stored at −20°C or −70°C until the day of the experiment. The membranes were prepared and the binding studies performed essentially as described previously (Chang et al., 1978; Speth et al., 1979; Gajkowski et al., 1983; Hall et al., 1986; Murphy et al., 1987; Cross et al., 1989; Land et al., 1991; Rapier et al., 1990; Steele et al., 1992; Jackson et al., 1995). The Ltk− cells expressing human DA D\textsubscript{2A} (long isoform) receptors and the CHO cells expressing human D\textsubscript{3}, rat 5-HT\textsubscript{6} and rat 5-HT\textsubscript{7} receptors were grown and the cell membranes prepared essentially as described by Malmberg et al. (1993). Protein concentration was measured by the method of Markwell et al. (1978). The compounds were dissolved and diluted in 0.1% acetic acid.

Table 1 summarizes the incubation conditions of the binding assays for the various receptors examined. The K\textsubscript{i} values (inhibition constants) of the test compounds were determined from inhibition curves by the iterative nonlinear curve-fitting program LIGAND (Munson and Rodbard, 1980). One- and two-site curve fitting was tested in all experiments. The one-site model gave a better fit (P > .05; F test) unless otherwise stated. The K\textsubscript{a} values (dissociation constants) of the various radioligands used to calculate the K\textsubscript{i} values were determined by saturation studies and are given in table 1.

Second messenger studies. The GH\textsubscript{4}ZD10 cells were cultured in 175-cm2 flasks in Ham's medium with 1 mM t-glutamine supplemented with 10% FCS, 10 mM HEPES, penicillin and streptomycin at 37°C. Cells in passages 8 to 11 were used. Geneticin (G418 sulfate, 700 \mu g/ml) was used for selection of cells transfected with receptors. The test compounds were dissolved to a 20 mM concentration in dimethyl sulfoxide and stored at −20°C until used. The stock solutions were further diluted in water containing 0.01% ascorbic acid and 0.1 mM IBMX.

The 5-HT was freshly prepared in the solution above. The cAMP assay was carried out according to dorflinger and Schonbrunn (1983) with some minor modifications (Fowler et al., 1992). The cells were detached from the cultured flasks with Earle's balanced salt solution supplement with 1 mM EDTA without Ca2+ and Mg2+. The cells were suspended in FCS-free Ham's medium and the suspension was centrifuged at 250 \times g for 6 min at room temperature. The pellets were resuspended to a density of 106 cells/ml in medium containing 0.01% ascorbic acid and 0.1 mM IBMX. Cells were preincubated in this solution for 1 h at 37°C and then diluted to a final density of 106 cells/ml. Aliquots (0.4 ml) of the cell suspension were added to test tubes containing 0.1 mM VIP at a final concentration of 30 nM along with the test compounds and incubated for 20 min at 37°C. Each sample was carried out in duplicate. Reactions were stopped by placing the assay tubes in boiling water for 4 min after which the samples were transferred to ice water. The lysates were then centrifuged at 12,000 rpm for 4 to 5 min at 4°C, and the supernatants were frozen and stored at −20°C until analyzed. Cyclic AMP levels were determined according to the method of Brown and Ekins (1972) as modified by Nordstedt and Fredholm (1990), in which free [3H]cAMP/cAMP is separated from that bound to the bovine adrenocortical protein kinase A on glass fiber filters with a semiautomatic cell harvester (Skatron AS, Tranby, Norway). Results are presented as percent of the VIP-stimulated response, set to 100%, or as relative

Fig. 1. Chemical structure of NAD-299 in base form.
samples were stored at and the regions dissected were immediately frozen on dry ice. The brains were rapidly removed injected 30 min later. The rats were sacrificed with a guillotine 30 min after the NSD 1015 injections. The quantitative data (EC50 and model as described above was used for Schild plots (Schild, 1949). “efficacy” which indicates the ratio of the effect of the test compound to maximum response of 5-HT in percent. The same experimental determination with the pH brought to about 5 with sodium hydroxide), was injected with the pH 7.4. 5-HT uptake, 5-HTP and DOPA accumulation. Groups of five rats were given Groups of five rats were given daily injections of saline for 5 to 7 days before Antagonism of 8-OH-DPAT-induced secretion of corticosterone. The method has been described previously (Kelder and Ross, 1992). Rats were given daily injections of saline for 5 to 7 days before Antagonism of 8-OH-DPAT-induced secretion of corticosterone. The method has been described previously (Kelder and Ross, 1992). Rats were given daily injections of saline for 5 to 7 days before
the start of the experiment to habituate the animals to the injections and thereby avoid acute increases in serum corticosterone. The test compounds were administered at the time noted before the injection of 8-OH-DPAT, 0.75 μmol/kg. Each experiment consisted of eight groups of five animals, and controls were always included. The rats were sacrificed 60 min after the injection of 8-OH-DPAT. The experiments were performed from 9 A.M. to 1 P.M. The trunk blood was collected in plastic tubes, and the serum obtained was stored at −70°C. Corticosterone in rat serum was assayed with a corticosterone[3H] RIA kit from ICN Biomedicals Inc., Costa Mesa, CA.

Flat body posture, forepaw treading and lower lip retraction. The test apparatus was a clear plastic cage (Macrolon type IV cage, 34 × 56 × 19 cm), without sawdust, in which the rats were placed singly. The cages were placed in front of a mirror. The rats were placed in the experimental room, at least 1 h before the start of the experiment. In the first experiment, the effect of the test compound alone was examined. The test compound was injected 35 min before observations began as described below. In the second experiment, the test compound was given 30 min before 8-OH-DPAT (1.5 μmol/kg). Five minutes before the 8-OH-DPAT treatment the rat was placed in the test apparatus for habituation. The scoring began 5 min after the 8-OH-DPAT treatment. Five rats were tested at the same time. Each rat was studied during 1 min, once every 5 min for 20 min. The components of the 5-HT-syndrome studied were flat body posture, reciprocal forepaw treading and lower lip retraction, but other symptoms, such as tremor, head weaving, Straub tail and sedation, were noted. The components were scored by use of a ranked intensity scale where: 0 = absent; 1 = equivocal; 2 = present; 3 = intense. The experimenter was blinded to the treatment. Results are expressed as the median sum of reciprocal forepaw treading, flat body posture and lower lip retraction.

Inhibition of cage leaving. This was performed as described by Rényi et al. (1986). The rats were housed in pairs in plastic cages (26 × 42 × 15 cm) with a sawdust-covered floor, which served as the test apparatus. The rats were first treated with the test compounds. Eighteen minutes later, the grid cover was removed from the cages and the time to climb out of the cage was measured during the next 12 min. If the rats climbed out of the cage, then, 30 min after administration of the test compound, they were injected with 0.3 μmol/kg 8-OH-DPAT. Ten minutes later the grid cover was removed, and the time taken to leave the cages was recorded in the same way.

Temperature measurements. A YSI 4000A tele-thermometer with a flexible probe was used. The rats were divided into groups of 5. At least 3 h before the experiment, each animal was weighed and marked; the rectal temperature taken by inserting the thermometer probe 10 cm into the rat. At the start of the first experiment, either the test substance or vehicle was administered to each subject. Thirty minutes later the rectal temperature of each rat was taken (time 0) and after each group of five rats had been tested, a challenge dose of 0.9 μmol/kg 8-OH-DPAT was administered to each rat in the group. The rectal temperature was again measured 30 and 60 min after administration of 8-OH-DPAT. The rectal temperature measured 30 min after 8-OH-DPAT, the time corresponding to the maximum hypothermia, is presented here.

Passive avoidance behavior. A shuttle box was divided equally into a light compartment and a dark compartment. Each compartment measured 21 × 22 cm floor area and the height was 22 cm. Rats were injected with the test compound or saline, 10 min later with 8-OH-DPAT (0.6 μmol/kg) or saline and 10 min later placed individually into the light compartment with no access to the dark side. After 3 min adaptation, the slide door was opened, which gave the rat free access to the dark chamber. When the animal crossed into the dark chamber (criterion, all four feet within the dark compartment), the door was shut and the animal given a scrambled shock (0.4 mA) for 5 sec through the grid floor. The animal was then removed and 24 h later the animal was tested in the absence of drug and the time (latency, seconds) for each animal to cross from the light compartment to the dark compartment determined. The cut-off time was set to 300 sec.

Statistics. One-way ANOVA followed by Student Neuman-Keuls or Dunn’s t-test was used for statistical analysis of the corticosterone, temperature, 5-HT, 5-HTP and DOPA results. Cage leaving behavior was compared by use of the Mann-Whitney U-test. The data are presented as the minimal effective dose, which is the lowest dose used that significantly blocked the effect of 8-OH-DPAT. The 5-HT syndrome and passive avoidance data were analyzed by Kruksal-Wallis ANOVA; when a significant difference was indicated by the ANOVA, between-groups analysis was performed with a Mann-Whitney U-test.

Results

In Vitro Experiments

Receptor binding profile in vitro. Table 2 summarizes the binding affinities of NAD-299 for various receptors and compares them with those of WAY-100635. Both NAD-299 and WAY-100635 had high affinity for 5-HT1A receptors with Ki values less than 1 nM. A representative curve of the displacement of [3H]8-OH-DPAT from 5-HT1A receptors by NAD-299 is shown in figure 2. Apart from an affinity at alpha-1 adrenoreceptors of 260 nM and at beta adrenoreceptors of 340 nM the affinity of NAD-299 was less than 1000 nM for a range of other receptors, including serotonergic (5-HT1B, 5-HT2A, 5-HT5, 5-HT1 and 5-HT uptake site), alpha-2 adrenergic, cholinergic (muscarinic and nicotinic), dopaminergic (D1, D2 and D3), histamine (H1 and H2), GABA-A, NMDA, AMPA, benzodiazepine and galanin receptors. WAY-100635 showed considerably higher affinities than NAD-299 for alpha-1 adrenoreceptors and DA D2 and D3 receptors.

Second messenger studies. The maximal suppressive effect of 5-HT on VIP-stimulated cAMP production was about

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>Comparison of the receptor binding profile of NAD-299 with that of WAY-100635</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptor</td>
<td>NAD-299 (Ki, nM)</td>
</tr>
<tr>
<td>5-HT1A</td>
<td>0.59 ± 0.08</td>
</tr>
<tr>
<td>α1</td>
<td>260 ± 40b</td>
</tr>
<tr>
<td>α2</td>
<td>>1000</td>
</tr>
<tr>
<td>β</td>
<td>340 ± 50</td>
</tr>
<tr>
<td>D2A</td>
<td>>1000</td>
</tr>
<tr>
<td>D2</td>
<td>>1000</td>
</tr>
<tr>
<td>5-HT2A</td>
<td>>1000</td>
</tr>
<tr>
<td>5-HT3A</td>
<td>>1000</td>
</tr>
<tr>
<td>5-HT6</td>
<td>>39000</td>
</tr>
<tr>
<td>5-HT7</td>
<td>1900 ± 160</td>
</tr>
<tr>
<td>5-HT uptake</td>
<td>>10000</td>
</tr>
<tr>
<td>Muscarinic</td>
<td>>10000</td>
</tr>
<tr>
<td>Nicotinic</td>
<td>>10000</td>
</tr>
<tr>
<td>D1</td>
<td>>10000</td>
</tr>
<tr>
<td>Histamine H1</td>
<td>>10000</td>
</tr>
<tr>
<td>Histamine H2</td>
<td>>10000</td>
</tr>
<tr>
<td>GABA-A</td>
<td>>10000</td>
</tr>
<tr>
<td>NMDA</td>
<td>>10000</td>
</tr>
<tr>
<td>AMPA</td>
<td>>10000</td>
</tr>
<tr>
<td>Benzodiazepine</td>
<td>>10000</td>
</tr>
<tr>
<td>Galanin</td>
<td>>2600</td>
</tr>
</tbody>
</table>

* n.d. = not determined.
| b Significantly better fit to a two-site model with Ki1 = 160 ± 34 and Ki2 = 16,300 ± 6,800 nM (P < .05; F test).
40%. This was achieved at 1 μM 5-HT. Neither NAD-299 nor WAY-100635 exerted any intrinsic activity (efficacy) on the 5-HT1A receptor. This could be concluded from data (expressed as percent of VIP-stimulated cAMP production) obtained with the two putative antagonists at 0.1, 1 and 10 μM. NAD-299 exposure gave 101 ± 4.8, 101 ± 3.9 and 95 ± 3.7 (mean ± S.E., n = 6), respectively; and WAY-100635 exposure gave 103 ± 17, 104 ± 4 and 103 ± 8 (mean ± S.E., n = 2), respectively. The inhibitory effect of 5-HT was fully antagonized by both compounds tested (fig. 3), because the calculated apparent maximal effects of NAD-299 (87%) and WAY-100635 (86%) were not significantly different from 100%. Calculation of EC50 values of the inhibition of 5-HT-induced suppression of cAMP formation indicates that WAY-100635 was about four times more potent than NAD-299 with EC50 values of 2 and 7 nM, respectively. The competitive nature of the compounds on 5-HT-inhibited cAMP production were investigated according to the description by Schild (1949). Both putative antagonists produced a parallel displacement to the right of the 5-HT concentration-response curve (fig. 4). The equiactive concentration ratios were then used for the Schild analysis. The slopes of the Schild plots yielded straight lines which did not significantly deviate from unity. The Kp values were 1 nM and 0.2 nM for NAD-299 and WAY-100635, respectively.

In Vivo Experiments

NAD-299 and WAY-100635 were examined for their abilities to antagonize 8-OH-DPAT-induced effects in various in vivo test models. Because the tests required different doses of 8-OH-DPAT to produce an almost maximal effect, the dose used in each test is given in table 3, which summarizes the

<table>
<thead>
<tr>
<th>Test</th>
<th>8-OH-DPAT</th>
<th>NAD-299</th>
<th>WAY-100635</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HTP accumulation</td>
<td>0.3</td>
<td>0.20</td>
<td>0.025</td>
</tr>
<tr>
<td>Striatum</td>
<td>0.3</td>
<td>0.12</td>
<td>0.020</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>0.75</td>
<td>0.04</td>
<td>0.018</td>
</tr>
<tr>
<td>Corticosterone secretion</td>
<td>1.5</td>
<td>0.16</td>
<td>0.10</td>
</tr>
<tr>
<td>Flat body posture</td>
<td>1.5</td>
<td>0.03</td>
<td>0.016</td>
</tr>
<tr>
<td>Forepaw treading</td>
<td>1.5</td>
<td>0.35</td>
<td>0.09</td>
</tr>
<tr>
<td>Lower lip retraction</td>
<td>0.3</td>
<td>0.3</td>
<td>0.05</td>
</tr>
<tr>
<td>Inhibition of cage leaving</td>
<td>0.9</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>response</td>
<td>0.6</td>
<td>MED</td>
<td>0.3</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>0.6</td>
<td>MED</td>
<td>0.3</td>
</tr>
<tr>
<td>Passive avoidance</td>
<td>0.6</td>
<td>MED</td>
<td>0.3</td>
</tr>
</tbody>
</table>

*Values stated are micromoles per kilogram.
results of these experiments. The ED\textsubscript{50} values were estimated by interpolation of log dose-response curves.

Antagonism of 8-OH-DPAT-induced 5-HTP accumulation. 8-OH-DPAT (0.3 \(\mu\)mol/kg s.c.) produced an almost maximal decrease in the 5-HTP accumulation under the experimental conditions used (table 4). NAD-299 was 6 to 10 times less potent than WAY-100635 in antagonizing the 8-OH-DPAT-induced decrease in 5-HTP accumulation in hypothalamus and striatum (fig. 5). NAD-299 by itself, at doses 1 to 30 \(\mu\)mol/kg, had no effect on the 5-HTP accumulation (table 4). WAY-100635 by itself produced a decrease in the 5-HTP accumulation at 5.5 \(\mu\)mol/kg but not at lower doses. However, this effect does not seem to result from a direct action on the somato-dendritic 5-HT\textsubscript{1A} receptors, because the same dose completely blocked the effect of 8-OH-DPAT on the 5-HTP accumulation (table 4).

DOPA accumulation. NAD-299 by itself did not significantly change the rate of DOPA synthesis in hypothalamus and striatum after DOPA decarboxylase inhibition (fig. 6). WAY-100635, on the other hand, produced a marked increase in the DOPA accumulation in striatum at the highest dose tested (5.5 \(\mu\)mol/kg) (fig. 6). However, the increase in DOPA accumulation induced by 8-OH-DPAT at 0.3 \(\mu\)mol/kg was antagonized by NAD-299 and WAY-100635 at 5-HT\textsubscript{1A} receptor-antagonizing doses.

Antagonism of 8-OH-DPAT-induced secretion of corticosterone. 8-OH-DPAT at 0.75 \(\mu\)mol/kg produced an almost maximal increase in the corticosterone secretion into the blood circulation (see fig. 8). WAY-100635 was about 3 times more potent than NAD-299 in antagonizing the 8-OH-DPAT-induced corticosterone secretion when injected 15 min before 8-OH-DPAT (0.75 \(\mu\)mol/kg) and the rats were sacrificed 60 min thereafter (fig. 7). The antagonism was competitive, because increased 8-OH-DPAT doses decreased the antagonism at fixed doses of the antagonists (fig. 8). The antagonizing effects of NAD-299 (0.5 \(\mu\)mol/kg) and WAY-100635 (0.2 \(\mu\)mol/kg) had disappeared when the compounds were injected 2 h before 8-OH-DPAT, and the rats were sacrificed 1 h later (fig. 9).

Flat body posture, forepaw treading and lower lip retraction. NAD-299 and WAY-100635, at the doses tested, did not exert any effects on the three behavioral measures (data not shown). In a dose finding study with 8-OH-DPAT it was found that lower lip retraction was induced already by 0.09 \(\mu\)mol/kg of 8-OH-DPAT, flat body posture was induced by an intermediate dose (0.4 \(\mu\)mol/kg), but a higher dose (1.5 \(\mu\)mol/kg) was needed to induce forepaw treading. Because 1.5

TABLE 4

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\mu)mol/kg s.c.</th>
<th>5-HTP accumulation, % of control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hypothalamus Striatum</td>
</tr>
<tr>
<td>NAD-299</td>
<td>1</td>
<td>94 (\pm) 5 96 (\pm) 5</td>
</tr>
<tr>
<td>NAD-299</td>
<td>31</td>
<td>99 (\pm) 5 101 (\pm) 4</td>
</tr>
<tr>
<td>WAY-100635</td>
<td>1</td>
<td>99 (\pm) 4 98 (\pm) 3</td>
</tr>
<tr>
<td>WAY-100635</td>
<td>5.5</td>
<td>75 (\pm) 3* 78 (\pm) 3*</td>
</tr>
<tr>
<td>WAY-100635 + 8-OH-DPAT</td>
<td>5.5 + 0.3</td>
<td>112 (\pm) 9 110 (\pm) 13</td>
</tr>
<tr>
<td>Saline + 8-OH-DPAT</td>
<td>0.3</td>
<td>55 (\pm) 4* 62 (\pm) 4**</td>
</tr>
</tbody>
</table>

*P < .05, **P < .01 vs. saline control (Dunnett’s t-test after ANOVA).
μmol/kg 8-OH-DPAT induced all components of the 5-HT behavioral effects, it was chosen for the study with the antagonists. NAD-299 at 0.03 μmol/kg significantly antagonized forepaw treading and flat body posture and at 0.3 μmol/kg the lower lip retraction (fig. 10). Complete block of all components of the syndrome induced by 8-OH-DPAT was obtained with NAD-299 at 3 μmol/kg.

Inhibition of cage leaving response. NAD-299 and WAY-100635 by themselves did not affect the cage leaving behavior in the dose range tested. The inhibition of the cage leaving response by 8-OH-DPAT (0.3 μmol/kg) was antagonized by both compounds. The minimal effective doses (the lowest tested dose that caused significant blockade of the effect of 8-OH-DPAT) was 0.3 μmol/kg for NAD-299 and 0.05 μmol/kg for WAY-100635.

Hypothermia. Neither of the antagonists themselves affected body temperature (data not shown). The hypothermia-inducing effects of 0.9 μmol/kg 8-OH-DPAT were blocked by the antagonists (fig. 11). WAY-100635 was 7 times more potent than NAD-299 in this test (table 3).

Discussion

The in vitro radioligand binding studies with the novel 5-HT₁A receptor antagonist, NAD-299, show that it is highly selective for the 5-HT₁A receptors. The only other receptors for which the compound had affinity less than 1 μM were alpha-1 and beta adrenoceptors. However, NAD-299 had a selectivity for 5-HT₁A receptors vs. the alpha-1 adrenoceptors and beta adrenoceptors of about 400 times. Although the
reference antagonist, WAY-100635, is 3 times more potent than NAD-299, it is less selective because of its affinities for alpha-1 adrenoceptors and DA D2A and D3 receptors. NAD-299 also differs in selectivity from the structurally related 5-HT1A receptor antagonist, (S)-UH-301, that has considerable affinity for D2 receptors (Hillver et al., 1990; Björk et al., 1991).

The 5-HT1A receptor antagonistic property of NAD-299 was demonstrated in the in vitro experiments measuring the concentration-dependent block of the inhibitory effect of 5-HT on VIP-stimulated cAMP production in GH4ZD10 cells. The results of Schild analysis of this blockade was found to be consistent with a simple reversible and competitive antagonism. The KB values were close to the Ki values calculated from the results of the binding experiments. Neither NAD-299 nor WAY-100635 had any intrinsic activity in this test, i.e., they were without any agonist effect. The GH4ZD10 cell line was chosen because of its neuronal origin and because the expressed 5-HT1A receptors are a verified model of postsynaptic receptors in rat hippocampus (Fowler et al., 1992). This cell line expresses a low amount of receptors (<50 fmol/mg protein). The low expression level, however, was not the reason for the lack of intrinsic activity since similar results were obtained (data not shown) in a CHO cell line (obtained from Dr. Philip Strange, Canterbury University, UK) containing >1 pmol human 5-HT1A receptor/mg protein. This lack of intrinsic activity was verified in the various in vivo experiments performed. Thus, no decrease in the 5-HP accumulation in NSD 1015-treated rats, which would indicate stimulation of 5-HT1A receptors, was observed. Because of the large reserve of somato-dendritic 5-HT1A receptors this test is very sensitive to partial 5-HT1A receptor agonists and several compounds, e.g., (−)-pindolol and NAN-190 (1-(2-methoxyphenyl)-4-[4-(2-phtalimido)butyl]piperazine hydrobromide), which behave as agonists in tests of postsynaptic 5-HT1A receptors, have been found to be partial agonists of the somato-dendritic receptors (Hjorth and Carlsson, 1986; Hjorth and Sharp, 1990). This and other functional in vivo tests, e.g., block of 8-OH-DPAT-induced behavioral effects, hypothermia and corticosterone secretion, confirm that NAD-299, like WAY-100635, is a “silent” 5-HT1A receptor antagonist.

Although these 5-HT1A receptor antagonists have no intrinsic activity, they are not always without any pharmaco-
logical effects under in vivo conditions. It has been reported that WAY-100655 can increase the firing rate of raphé 5-HT neurons in extracellular electrophysiological studies in guinea pigs (Mundey et al., 1996) and UH-301 in rats (Arboelius and Svensson, 1992). These findings indicate that 5-HT may, under certain homeostatic conditions, exert a tonic inhibitory effect which can then be blocked by an antagonist. The observation (table 4) that a high dose (5.5 μmol/kg) of WAY-100655 decreased the 5-HTP accumulation in hypothalamus and striatum may be caused by the effects of WAY-100655 on other neuron systems, e.g., DA or noradrenaline, because WAY-100655 has some affinities to D₂ receptors in vitro (table 2) and at this dose also in vivo (fig. 6) and to α₁-adrenoceptors in vitro (table 2). Combination of this dose of WAY-100655 with 0.3 μmol/kg 8-OH-DPAT abolished the decrease in the 5-HTP accumulation observed for both compounds alone. The origin of this interaction has not been examined in the present study.

In summary, the development and availability of the novel selective 5-HT₁ₐ receptor antagonist, NAD-299, provides a breakthrough from a structurally new chemical class for studies of 5-HT₁ₐ receptor pharmacology in animals and its clinical application in man.

Acknowledgments

The skilful technical assistance of Charlotte Ahlgren, Annelle Bengtsson, Ulla Haglund, Patricia Jimenez, Li-Marie Lindgren, Susanne Rosqvist, Maria Sålemark and Gunn Torell-Svantesson is gratefully acknowledged. We thank Dr. Alan Cross, Astra Arcus AB, Rochester, NY, for some of the binding data.

References

