Comparison between Alpha-1 Adrenoceptor-Mediated and Beta Adrenoceptor-Mediated Inotropic Components Elicited by Norepinephrine in Failing Human Ventricular Muscle

TOR SKOMEDAL, KJELL BORTHNE, HALF DAN AASS, ODD GEIRAN and JAN-BJØRN OSNES

Department of Pharmacology, University of Oslo, Medical Department B (H.A.) and Surgical Department A (O.G.), Rikshospitalet, Oslo, Norway
Accepted for publication October 29, 1996

ABSTRACT

The purpose of our study was to investigate the inotropic response to the endogenous agonist norepinephrine mediated through alpha-1 adrenoceptors and to compare this response to that mediated through beta-adrenoceptors in failing human ventricular myocardium. We studied ex vivo the inotropic effect of norepinephrine in isometrically contracting trabecular myocardium from both ventricles of explanted hearts. By studying influence of appropriate adrenoceptor blockers, qualitative characteristics of the inotropic response and sensitivity of the inotropic response to cholinergic stimulation, it was revealed that norepinephrine evoked both alpha-1 and beta adrenoceptor-mediated inotropic effects in failing human ventricle myocardium. Quantitatively the inotropic responses to norepinephrine varied markedly between preparations, but the mean responses elicited through the respective adrenoceptor systems were of comparable magnitude. Concomitant stimulation of alpha-1 and beta adrenoceptors by norepinephrine alone revealed a contribution of an alpha-1 adrenoceptor-mediated component to the final and unopposed inotropic response. Differential sensitivity of the two adrenoceptor systems to norepinephrine depending on etiology of heart failure and possibly also thyroid status was observed. It is concluded that norepinephrine evokes an alpha-1 adrenoceptor-mediated inotropic effect comparable to that evoked through the beta adrenoceptors in failing human ventricular myocardium, and that this alpha-1 adrenoceptor-mediated inotropic effect may be of functional importance.

The catecholamine-induced increase in contractile force in mammalian myocardium is mainly due to activation of beta adrenoceptors. The existence of myocardial alpha-1 adrenoceptors mediating positive inotropic effects is, however, now well established (Osnes et al., 1985; Fedida 1993; Terzic et al., 1993). In rat and rabbit heart the alpha-1 adrenoceptor-mediated effect is influencing and contributing to the final inotropic effect of combined receptor activation by the endogenous agonist norepinephrine (Skomedal et al., 1988, 1990a). As alpha-1 adrenoceptor-mediated and beta adrenoceptor-mediated inotropic effects can be differentially influenced (Endoh and Motomura, 1979; Christiansen et al., 1987), it has been speculated that alpha-1 adrenoceptor mediated effects may have increased importance during conditions where beta-adrenoceptor mediated effects are attenuated (Christiansen et al., 1987, Skomedal et al., 1988, 1990a). In the failing human heart where the beta-1 adrenoceptor mediated inotropic response is attenuated, it has been difficult to demonstrate an alpha-1 adrenoceptor-mediated inotropic effect of functional significance (e.g., Böhm et al., 1988; Brodde et al., 1992; Steinfath et al., 1992; Bristow 1993). Mügge et al. (1983) and Brückner et al. (1984) reported alpha-1 adrenoceptor-mediated inotropic effects in human ventricular myocardium, but these authors did not compare the alpha-1 adrenoceptor-mediated inotropic effect and the beta adrenoceptor-mediated inotropic effect. The study by Böhm et al. (1988) indicated, however, an increasing importance of the alpha-1 adrenoceptor-mediated inotropic effect during severe heart failure due to the increasing attenuation of the beta adrenoceptor-mediated effect. In all these studies phenylephrine (in the presence of a beta receptor antagonist) has been used as the alpha adrenoceptor agonist. In addition, Landzberg et al. (1991) also observed an alpha adrenoceptor-mediated inotropic effect of phenylephrine in humans in vivo. In the presence of a beta receptor antagonist, Aass et al. (1986) found an alpha-1 adrenoceptor-mediated inotropic effect of norepinephrine in human ventricular myocardium obtained from patients undergoing mitral valve replacement. Although not compared directly to the beta adrenoceptor-mediated inotropic effect, the alpha-1 adrenoceptor-mediated
inotropic effect observed in this study was of such a magnitude that a functional role might be expected. Neumann et al. (1993) and Scholz et al. (1995, 1996) reported data that indicated that naturally occurring norepinephrine was more effective as agonist compared to phenylephrine at the myocardial alpha-1 adrenoceptors mediating increase in contractility in failing human hearts. The functional importance of the alpha-1 adrenoceptors in failing human myocardium is thus still unsettled.

The purpose of our studies was to further elucidate the functional role of the myocardial alpha adrenoceptors in regulation of contractility also in failing human heart by investigating the relative magnitude of alpha-1 adrenoceptor-mediated and beta adrenoceptor-mediated inotropic responses in explanted human hearts. In our work we report that despite great variation in individual maximal responses to adrenergic stimulation by norepinephrine, the magnitude of the alpha-1 adrenoceptor-mediated inotropic component was comparable to that of the beta adrenoceptor-mediated inotropic component. In addition, the contribution from the two adrenergic receptor systems to the inotropic response may differ due to different etiology of heart failure.

Methods

Myocardial preparations. Ventricular myocardium was obtained from heart transplant recipients immediately after explantation of the failing heart. During preparation of the tissue, the surface was kept wet with physiological saline. Thin trabeculae were localized in the ventricular cavities, cut free and placed in a relaxing oxygenated (95% O2/5% CO2) physiological salt solution at room temperature. To prevent contracture during transportation and further preparation, we used a Ca++/Mg++ concentration ratio of 1:8 comparable to that of St. Thomas' Hospital cardioplegic solution. Experimentally, magnesium cardioplegia has also been shown to effectively protect the myocardium from calcium overload (Ataka et al., 1993). The solution contained (mmol/liter): NaCl 118.3; KCl 3.0; CaCl2 0.5; MgSO4 4.0; KHPO4 2.4; NaHCO3 24.9; glucose 10.0; mannitol 2.2. The tissue was transported to the laboratory while kept immersed in this solution, muscle strips (about 1 mm in diameter, 8–10 mm long, endocardium as intact as possible) were prepared. The muscle strips were mounted in four organ baths containing the same oxygenated solution at 37°C except for Ca++ being 2.5 mmol/liter and Mg++ 1.2 mmol/liter. The muscles were driven electrically (field stimulation) at a frequency of 1 Hz with impulses of 5-msec duration and current about 20% above individual threshold (10–15 mA, determined in each experiment). The isometrically contracting muscles were stretched to the maximum of their length-tension curve. The developed tension was recorded by a Grass FT03C force-displacement transducer connected to a Grass RPSTC8B polygraph recorder equipped with TDIH driver amplifiers, with TPIF bridge amplifiers and with TP20C derivators. The direct current signals were analog-to-digital converted by a National Instruments NB-MIO-16X board mounted in an Apple Macintosh Quadra 700 computer. The data acquisition was externally triggered synchronously to the contraction-relaxation cycles by the square wave pulses that triggered the muscles to contract. Each channel was scanned at 1 KHz yielding a time resolution of 1 msec. For the human heart the time window to be scanned was set to 500 msec, i.e., 500 posttrigger scans were sampled for each contraction-relaxation cycle. The logged data were stored in files as time stamped and event marked unfiltred binary clusters by software developed for the purpose in the visual programming language LabVIEW. The software could later open the files for analysis and compute appropriate low-pass filtered trend curves for developed tension vs. time for each contraction-relaxation cycle. Areas representative for the different experimental periods (control, stimulated) could be selected to calculate averaged contraction-relaxation cycles for these periods. These cycles were then used to determine values for typical descriptive parameters including Tmax, TPT and TR20.

Experimental design. The muscles were allowed to equilibrate for 60 to 90 min before addition of agonist. The salt solution was changed in the middle of the equilibration period. Adrenoceptor agonists (phenylephrine, norepinephrine) were added directly to the organ bath in volumes of 25 to 75 μl to give the appropriate final concentrations and were completely mixed in the bath within 2 to 3 sec. Dose-response experiments were performed by cumulatively increasing the concentration of norepinephrine in the organ baths.

The adrenergic receptor antagonists prazosin and timolol were used to block alpha-1 adrenoceptors and beta adrenoceptors, respectively. Both prazosin and timolol are nonsubtype selective with respect to alpha-1 and beta adrenoceptors, respectively. The final concentration in the organ bath was 6 × 10^−6 mol/liter of both prazosin and timolol as 1.2 × 10^−6 mol/liter of both antagonists caused a slowly developing decline in basal contractility. Six × 10^−6 mol/liter is about 1000 × Kd for timolol at the beta adrenoceptors in human heart (Golf and Hansson, 1986) and thus corresponding to a theoretical occupancy of 99.90% of the receptors. Six × 10^−6 mol/liter is about 10,000 × Kd for prazosin at the alpha-1 adrenoceptors in human heart (Böhm et al., 1988) and thus corresponding to a theoretical occupancy of 99.99% of the receptors.

When used, adrenoceptor antagonists were either given before the agonists to eliminate the contractile response to activation of the respective receptor population, or after development of the contractile response to norepinephrine to reverse and thus verify the contribution of the respective receptor system. When added before agonist, the antagonists were diluted in the incubation solution and were thus allowed to act for 30 to 45 min before addition of agonist. When used, 1.2 × 10^−4 mol/liter carbachol was added at steady state inotropic response to norepinephrine. In dose-response experiments the incubation solution also contained ascorbic acid (10^−4 mol/liter) and atropine (10^−6 mol/liter).

Explanted hearts. In our report data obtained from 20 explanted hearts are presented. The explanted hearts were failing either due to ischemic cardiomyopathy (postinfarction failure, n = 10) or to nonischemic cardiomyopathy (dilated cardiomyopathy (n = 4), congenital malformations (n = 4), myocarditis (n = 1) or toxic (adriamycin) cardiomyopathy (n = 1). In the group of patients undergoing heart transplantation due to ischemic cardiomyopathy, nine were men (44–61 yr, mean 54 yr) and one was a woman aged 58 yr. In the group of patients undergoing heart transplantation due to nonischemic cardiomyopathy, six were men (aged 14–57 yr, mean 36 yr) and four were women (aged 24–55 yr, mean 39 yr). All patients were severely symptomatic from their heart failure (New York Heart Association functional class III–IV). Three of the patients in the nonischemic group had relatively normal left ventricular function. Two of these had severe pulmonary hypertension secondary to congenital heart disease (Eisenmenger’s syndrome) and the third had Uhl’s syndrome with failing of the right ventricle. The other 17 patients all had severely depressed left ventricular function with ejection fraction of 24 ± 6% (mean ± S.E.) and pulmonary capillary wedge pressure of 21 ± 7 mm Hg (mean ± S.E.) with no difference between failure due to ischemic heart disease or not. The nonischemic patients had more severe right ventricular failure revealed as a higher right atrial pressure than the ischemic group, 15 ± 5.4 vs. 4 ± 2 mm Hg (mean ± S.E., P = 001), respectively. The nonischemic group also had a lower resting cardiac index of L.5 ± 0.3 liter/min/m2 compared to 2.2 ± 0.4 liter/min/m2 (mean ± S.E., P = .006) in the ischemic failure group. All patients were receiving supportive medical treatment before transplantation by at least two of the following drugs: digitalis (mostly digitoxin), loop diuretics (furosemide, bumetanide), ACE-inhibitors (captopril, enalapril, lisinopril), spironolactone and nitrates (isosorbidmononitrate). Some patients also received one or more of the following drugs: aspirin, warfarin, lovastatin, dipri-
Adrenoceptor Function in Human Heart

Results

Characterization of the alpha-1 adrenergic inotropic effect of phenylephrine. In the presence of 6×10^{-6} mol/liter timolol, activation of alpha-1 adrenoceptors by 1.2×10^{-4} mol/liter phenylephrine evoked an inotropic response with the characteristics expected for an alpha-1 adrenoceptor-mediated inotropic response in mammalian myocardium. After a lag phase of about 30 sec, a monophasic inotropic response developed with a time to 50% relative response of 96 ± 9 sec (mean ± S.E., $n = 6$) (fig. 1, table 1). TPT, TR20 and RT were not significantly changed compared to control (table 1).

Phenylephrine increased the contractile force by $33.1 \pm 5.3\%$ (mean ± S.E., $n = 6$) compared to control level. Under comparable conditions and in preparations from the corre-

![Fig. 1. Time course curves showing the development of the inotropic responses in failing human ventricular myocardium exposed to 1.2×10^{-4} mol/liter norepinephrine in the presence of 6×10^{-6} mol/liter prazosin (beta adrenoceptor stimulation, $n = 8$), in the presence of 6×10^{-3} mol/liter timolol (alpha-1 adrenoceptor stimulation, $n = 14$), alone (concomitant alpha-1 and beta adrenoceptor stimulation, $n = 14$), and to 1.2×10^{-4} mol/liter phenylephrine in the presence of 6×10^{-6} mol/liter timolol (alpha-1 adrenoceptor stimulation, $n = 6$). Ordinate: Inotropic response expressed as T_{max} in percent of individual maximal responses. Abscissa, Time in seconds after addition of agonist. The receptor blockers were added 30 to 45 min before the agonists. Horizontal bars (given where they exceed the width of the symbol) represent ± S.E. of time to 50% relative response (see also table 1).

sponding hearts and chambers, norepinephrine increased the contractile force by $46.6 \pm 7.4\%$ (mean ± S.E., $n = 6$) compared to control level. Thus, based on comparison of responses in preparations from the same heart and chamber, phenylephrine apparently displayed an intrinsic activity of $70.9 \pm 10.1\%$ (mean ± S.E., $n = 6$, $P = .035$) compared to norepinephrine at the human cardiac alpha-1 adrenoceptors.

The influence of adrenergic blocking agents on the time course of the inotropic response to norepinephrine. In the presence of 6×10^{-6} mol/liter of the alpha-1 adrenoceptor blocker prazosin, 1.2×10^{-4} mol/liter norepinephrine elicited a monophasic positive inotropic response after a lag phase of about 5 sec. Time from addition of norepinephrine to 50% relative response was 22 ± 2 sec (mean ± S.E., $n = 8$) (fig. 1, table 1). This response was sensitive to beta adrenoceptor blockade as it was reversed by addition of 6×10^{-6} mol/liter timolol (fig. 2a).

In the presence of 6×10^{-6} mol/liter of the beta adrenoceptor blocker timolol, 1.2×10^{-4} mol/liter norepinephrine elicited a monophasic positive inotropic response after a lag phase of about 25 sec. In this situation, time from addition of norepinephrine to 50% relative response was 91 ± 3 sec (mean ± S.E., $n = 14$) (fig. 1, table 1). This response was sensitive to alpha-1 adrenoceptor blockade as it was reversed by addition of 6×10^{-6} mol/l prazosin (fig. 2b).

Time course of the inotropic response to norepinephrine alone and the reversal of this response by sequential addition of adrenergic blockers. In the absence of adrenergic blocking agents, 1.2×10^{-4} mol/liter norepinephrine evoked a monophasic positive inotropic response that developed after a lag phase of about 5 sec. In this
situation, time from addition of norepinephrine to 50% relative response was 34 ± 4 sec (mean ± S.E., n = 14) (table 1, fig. 1). The inotropic response thus elicited demonstrated sensitivity both to the alpha-1 adrenoceptor blocker prazosin and to the beta adrenoceptor blocker timolol. This was demonstrated as the reversal responses to sequential addition of the respective adrenoceptor blockers at the steady state phase of the inotropic response (fig. 3) (see also Skomedal et al., 1988). The inotropic response to norepinephrine thus showed two components: one sensitive to the alpha-1 adrenoceptor blocker prazosin, amounting to 26.7 ± 3.5% of the total response (mean ± S.E., n = 12) and one sensitive to the beta-adrenoceptor blocker timolol, amounting to 73.3 ± 3.5% of total response (mean ± S.E., n = 12).

TABLE 1

Characterization of the inotropic responses to phenylephrine and norepinephrine

<table>
<thead>
<tr>
<th></th>
<th>Time to 50% Relative Response, Sec after Addition of Agonist</th>
<th>Time to Peak Tension (TPT), % of Control Period</th>
<th>Time to Relaxation to 20% Level (TR20), % of Control Period</th>
<th>Relaxation Time (RT - TR20-TPT), % of Control Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylephrine (n = 6) (in the presence of timolol)</td>
<td>96 ± 9</td>
<td>102 ± 2</td>
<td>102 ± 1</td>
<td>102 ± 2</td>
</tr>
<tr>
<td>Norepinephrine (n = 14) (in the presence of timolol)</td>
<td>91 ± 3</td>
<td>101 ± 1</td>
<td>100 ± 1*a</td>
<td>100 ± 2*b</td>
</tr>
<tr>
<td>Norepinephrine (n = 8) (in the presence of prazosin)</td>
<td>22 ± 2*b</td>
<td>78 ± 3*b</td>
<td>76 ± 2</td>
<td>72 ± 3</td>
</tr>
<tr>
<td>Norepinephrine (n = 14) (absence of blockers)</td>
<td>34 ± 4</td>
<td>86 ± 2</td>
<td>79 ± 2</td>
<td>72 ± 4</td>
</tr>
</tbody>
</table>

a Significantly different from the corresponding values for norepinephrine in the presence of prazosin and norepinephrine alone (P < .001).

b Significantly different from the corresponding values for norepinephrine in the presence of timolol (P < .001) and norepinephrine alone (P = .03).

Fig. 2. a, Recording of contraction-relaxation cycles in failing human ventricular myocardium exposed to 1.2 × 10⁻⁴ mol/liter norepinephrine in the presence of 6 × 10⁻⁶ mol/liter prazosin (beta adrenoceptor stimulation). Control contraction before addition of agonist (—); maximal inotropic steady state response (---); reversal of the inotropic response by 6 × 10⁻⁶ mol/liter timolol (—). b, Recording of contraction-relaxation cycles in failing human ventricular myocardium exposed to 1.2 × 10⁻⁴ mol/liter norepinephrine in the presence of 6 × 10⁻⁶ mol/liter timolol (alpha-1 adrenoceptor stimulation). Control contraction before addition of agonist (—); maximal inotropic steady state response (---); reversal of the inotropic response by 6 × 10⁻⁶ mol/liter prazosin (—).

Fig. 3. a) Reversal of the inotropic response to concomitant alpha-1 and beta adrenoceptor stimulation by norepinephrine: steady state response to 1.2 × 10⁻⁴ mol/liter norepinephrine (—), reversal response to 6 × 10⁻⁶ mol/liter timolol (——) and reversal response to 6 × 10⁻⁶ mol/liter prazosin (—). b) Reversal of the inotropic response to concomitant alpha-1 and beta adrenoceptor stimulation by norepinephrine: steady state response to 1.2 × 10⁻⁴ mol/liter norepinephrine (—), reversal response to 6 × 10⁻⁶ mol/liter prazosin (——) and reversal response to 6 × 10⁻⁶ mol/liter timolol (—). Ordinate, Developed tension in mN. Abscissa, Time in msec after the initiating stimulus.

Qualitative characteristics of the inotropic responses to norepinephrine in the presence and absence of adrenergic blocking agents. Time to peak tension in the control period was 183 ± 5 msec (mean ± S.E., n = 16). The inotropic responses elicited by 1.2 × 10⁻⁴ mol/liter norepinephrine in the presence of prazosin and timolol, respectively, were accompanied by different qualitative changes in the contraction-relaxation cycles. In the presence of 6 × 10⁻⁶ mol/liter prazosin, there was a shortening of the duration of the contraction-relaxation cycles (fig. 2a) with a
significant reduction in TPT, TR20 and RT (table 1) reflecting a selective increase in relaxation compared to contraction. The shortening of TPT, TR20 and RT was sensitive to the beta adrenoceptor blocker timolol (fig. 2a).

In the presence of 6 × 10⁻⁶ mol/liter timolol, the changes in the contraction-relaxation cycles caused by 1.2 × 10⁻⁴ mol/liter norepinephrine were markedly different from those described for the presence of prazosin. In this situation there was no shortening of the duration of the contraction-relaxation cycles (fig. 2b). The values for TPT, TR20 and RT were unchanged compared to control (table 1).

The response to norepinephrine in the absence of adrenergic blockers had characteristics similar to those observed in the presence of prazosin with a significant reduction in TPT, TR20 and RT (table 1). This shortening of TPT and TR20 was sensitive to timolol, but not to prazosin as evident from figure 3, a and b.

Influence of cholinergic stimulation on the mechanical responses to norepinephrine in the presence of adrenergic blockers. Activation of muscarinic receptors by 1.2 × 10⁻⁴ mol/liter carbachol influenced differently the steady state response to norepinephrine in the presence of prazosin and timolol, respectively. In the presence of 6 × 10⁻⁶ mol/liter prazosin, both the inotropic response and the shortening of time to peak tension induced by 1.2 × 10⁻⁴ mol/liter norepinephrine were attenuated by carbachol (table 2). In the presence of 6 × 10⁻⁶ mol/liter timolol, however, carbachol increased the inotropic response to norepinephrine although time to peak tension was almost unchanged (table 2). The carbachol-induced changes were sensitive to the muscarinic receptor blocker atropine (data not shown).

Dose-response relationships of the inotropic responses to norepinephrine in the presence of adrenergic blockers. Norepinephrine evoked a concentration-dependent increase in contractile force both in the presence of prazosin and of timolol, respectively (fig. 4, table 3). In muscle tissue obtained from hearts failing due to ischemic cardiomyopathy, norepinephrine appeared to be equipotent in the presence of prazosin and timolol, respectively (fig. 4a, table 3). In muscle tissue obtained from hearts failing due to nonischemic cardiomyopathy, however, norepinephrine was apparently about 10 times more potent in the presence of prazosin compared to the presence of timolol (fig. 4b, table 3). The qualitative changes of the contraction-relaxation cycles were similar to those found in the corresponding time course experiments (cf. fig. 2).

Maximal inotropic responses to norepinephrine in the presence of adrenergic blockers. The responses to maximal stimulation by norepinephrine varied considerably in preparations from different individuals. There was, however, an apparent covariation between the inotropic response in the presence of prazosin and in the presence of timolol in preparations obtained from the same heart and chamber (fig. 5) with a rank order correlation of r² = 0.4793 (P = .013). Thus, the mean values for the maximal effect of the two inotropic response components of norepinephrine were comparable both in time course (single concentration) experiments (fig. 5) and in dose-response (multiple concentrations) experiments (table 3).

Influence of thyroid status on adrenergic inotropic responses to norepinephrine. In one heart failing due to ischemic cardiomyopathy from a patient judged to be hypothyroid as indicated by an elevated TSH value (TSH = 20 nmol/liter), the dose-response relationships to norepinephrine deviated from those found in other hearts failing both due to ischemic and due to nonischemic cardiomyopathy (fig. 6). In this situation norepinephrine was about 30 times more potent at the alpha-1 compared to the beta adrenoceptors. The maximal inotropic responses mediated by the two adrenoceptor systems were, however, still comparable (table 3).

Discussion

Our observations revealed the existence of an alpha-1 adrenoceptor-mediated inotropic response that can be elicited by norepinephrine also in the terminally failing human heart ventricle. This is supported by 1) the appearance of a slowly developing inotropic effect of norepinephrine in the presence of 6 × 10⁻⁶ mol/liter timolol; 2) the sensitivity of this inotropic response to the alpha-1 adrenoceptor blocker prazosin; 3) the qualitative characteristics of the response and 4) the insensitivity of this inotropic response to be attenuated by concomitant activation of muscarinic cholinergic receptors.

Furthermore, quantitatively the mean inotropic response evoked by activation of alpha-1 adrenergic receptors was found to be comparable to that evoked through activation of beta adrenergic receptors when expressed as maximal developed tension. This is in contrast to several ex vivo studies on failing human myocardium where the alpha-1 adrenoceptor-mediated inotropic response to phenylephrine has been found to be small compared to the beta adrenoceptor-mediated inotropic response to isoprenaline (e.g., Böhm et al. 1986, Brodde et al., 1992, Steinfath et al., 1992; Bristow 1993). Although a great variation in inotropic responses between different hearts was observed in our study, this apparently applied to the alpha-1 adrenoceptor-mediated and the beta-adrenoceptor-mediated inotropic responses in parallel (fig. 5).

In the presence of 6 × 10⁻⁶ mol/liter prazosin, there was a fast developing inotropic response to norepinephrine. Qualitatively this response was characterized by a shortening of the duration of the contraction-relaxation cycle. In addition the response was attenuated by concomitant activation of muscarinic receptors. These characteristics are typical for a beta adrenoceptor/cyclic AMP-dependent mediated inotropic response in mammalian heart muscle, e.g., of isoprenaline or of norepinephrine in the presence of an alpha-adrenoceptor blocker (Ledda et al., 1975, Brückner et al., 1978, Skommedal et

TABLE 2

<table>
<thead>
<tr>
<th>Effect of carbachol on the response to norepinephrine in the presence of adrenergic blockers</th>
<th>Inotropic Response, % of Norepinephrine (n = 4)</th>
<th>Change in Time to Peak Tension (TPT), % of Norepinephrine (n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norepinephrine in the presence of timolol</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Control response</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>+ Carbachol</td>
<td>107 ± 2a</td>
<td>100 ± 0</td>
</tr>
<tr>
<td>Norepinephrine in the presence of prazosin</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Control response</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>+ Carbachol</td>
<td>44 ± 5a</td>
<td>45 ± 7a</td>
</tr>
</tbody>
</table>

*Significantly different from corresponding control response (P = .014).
Activation of muscarinic receptors by carbachol differentially influenced the alpha-1 adrenoceptor and the beta adrenoceptor-mediated inotropic responses. This phenomenon is well known from other mammalian species (Endoh and Motomura, 1979) and also described in human ventricular muscle (Neumann et al., 1993; Scholz et al., 1996). The explanations for these different effects are mainly related to 1) the bidirectional regulation of adenylyl cyclase by beta adrenoceptors and muscarinic cholinergic receptors, and accordingly to cyclic AMP mediated effects on e.g., sarcoplasmic reticulum and myofilaments (review: Sulakhe and Vo, 1995) and to 2) a possible reinforcement of breakdown of phosphoinositides by stimulation of alpha-1 adrenoceptors and of muscarinic cholinergic receptors (e.g., Brown et al., 1985; Poggio et al., 1986; Ransnäs et al., 1986). The response to cholinergic agonists in this situation can thus be used as a functional test whether the cyclic AMP system is activated.

In experiments with norepinephrine in the absence of adrenoceptor blockers (combined alpha-1 and beta adrenoceptor stimulation), the time course deviated both from the time course to alpha-1 and from the time course to beta adrenoceptor stimulation (fig. 1, table 1). Thus, the development of the inotropic response in human failing heart to unopposed stimulation by norepinephrine was influenced by both recep-

TABLE 3

<table>
<thead>
<tr>
<th>Etiology of Heart Failure</th>
<th>Potency, pD2 Value</th>
<th>Efficacy, Inotropic Response, % of Control Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonischemic cardiomyopathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norepinephrine + prazosin (n = 5)</td>
<td>6.18 ± 0.11</td>
<td>153 ± 14</td>
</tr>
<tr>
<td>Norepinephrine + timolol (n = 6)</td>
<td>5.19 ± 0.06*</td>
<td>148 ± 10</td>
</tr>
<tr>
<td>Ischemic cardiomyopathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norepinephrine + prazosin (n = 6)</td>
<td>5.62 ± 0.24</td>
<td>179 ± 10</td>
</tr>
<tr>
<td>Norepinephrine + timolol (n = 6)</td>
<td>5.55 ± 0.15</td>
<td>171 ± 17</td>
</tr>
<tr>
<td>Ischemic cardiomyopathy and hypothyroidism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norepinephrine + prazosin (n = 2)</td>
<td>4.23 ± 0.35</td>
<td>144 ± 13</td>
</tr>
<tr>
<td>Norepinephrine + timolol (n = 2)</td>
<td>5.72 ± 0.19</td>
<td>133 ± 7</td>
</tr>
</tbody>
</table>

* Significantly different from corresponding value obtained in the presence of prazosin (P = .008).

al., 1982, Skomedal and Osnes, 1983, Aass et al., 1983, Skomedal et al., 1985; Aass et al., 1986; reviews: Scholz 1980; Osnes et al., 1985). This response was sensitive to the beta-adrenoceptor blocker timolol (fig. 2a) and was taken as the typical beta adrenoceptor-mediated component of norepinephrine in failing human ventricle.

In contrast to the situation described above, the inotropic response evoked by norepinephrine in the presence of 6×10^{-6} mol/liter timolol developed slowly. Qualitatively this response was characterized by a “symmetrical” change of the contraction-relaxation cycle with unchanged values for TPT, TR20 and RT (=TR20-TPT). In addition, the response was reinforced and not attenuated by concomitant activation of muscarinic receptors. These characteristics are typical for an alpha-1 adrenoceptor/cyclic AMP-independent mediated inotropic response in mammalian heart muscle, e.g., of phenylephrine or norepinephrine in the presence of a beta adrenoceptor blocker (Ledda et al., 1975, Brückner et al., 1978, Skomedal et al., 1982, Skomedal and Osnes, 1983, Aass et al., 1983, Skomedal et al., 1985; Aass et al., 1986; reviews: Scholz 1980; Osnes et al., 1985). This response was sensitive to the alpha-1 adrenoceptor blocker prazosin (fig. 2b) and was thus taken as the typical alpha-1 adrenoceptor-mediated component of norepinephrine in failing human ventricle.
Adrenoceptor Function in Human Heart 727

Reversal responses to adrenergic receptor blockers revealed a functional contribution of the alpha-1-adrenoceptor-mediated component to the final and unopposed response to norepinephrine also in failing human myocardium. The relative contribution of the alpha-1 adrenoceptor-mediated (prazosin sensitive) component and of the beta adrenoceptor-mediated (timolol sensitive) component to the unopposed inotropic response to norepinephrine found in our work is in general agreement with findings in normal myocardium from rat and rabbit (Skomedal et al., 1988; Osnes et al., 1989, Skomedal et al., 1990a) and in atria from children with congenital heart defects (Borthne et al., 1995). Quantitatively, there is thus a discrepancy between the expression of the alpha-1 adrenoceptor-mediated inotropic response during selective activation and activation of the alpha-1 adrenoceptor concomitantly with the beta adrenoceptors. An inhibitory interaction between the alpha-1 and the beta adrenoceptors is thus revealed in failing human myocardium and this observation is also in general agreement with findings in normal myocardium from rat and rabbit (Skomedal et al., 1988, 1990a). These response patterns are thus apparently general ones for the dual adrenoceptor regulation of the mammalian myocardium whether normal or failing.

The concentration of norepinephrine used in the time course experiments was chosen to give close to maximal inotropic responses. In dose-response experiments also graded responses were demonstrated and these experiments provided classical dose-response relationships for norepinephrine in the presence of the respective adrenergic blockers. The typical qualitative characteristics of the alpha-1 adrenoceptor-mediated and the beta adrenoceptor-mediated inotropic responses were observed also in these experiments. Especially, at maximal concentrations of norepinephrine in the presence of 6 × 10^{-6} mol/liter timolol there was no shortening of the duration of the contraction-relaxation cycle demonstrating the sufficiency of the beta adrenoceptor blockade (table 1).

Dose-response experiments indicated differences that may be interesting with respect to etiology of the heart failure. In failure due to ischemic cardiomyopathy, the alpha-1 and beta adrenoceptor systems were apparently equally sensitive to activation by norepinephrine (fig. 4a). In failure due to nonischemic cardiomyopathy, the beta adrenoceptor system was the more sensitive one by about one log unit compared to the alpha-1 adrenoceptor system (fig. 4b). This difference in sensitivity at the beta adrenoceptors did not parallel the difference in cardiac index observed between the ischemic and nonischemic heart failure groups, respectively. There were no obvious differences in responsiveness (expressed as maximal developed tension) between the two adrenergic systems to activation by norepinephrine although the mean responses were nominally less in nonischemic compared to ischemic cardiomyopathy (table 3). This nominal difference in responsiveness to adrenergic stimulation paralleled, however, the difference in cardiac index between the ischemic and the nonischemic failing hearts.

It has been reported that beta adrenergic responsiveness decreases with age in human heart (White et al., 1994). The observed difference in sensitivity to alpha-1 and beta adrenoceptor stimulation in preparations used for dose-response experiments may at least partly be due to age differences as the patients transplanted due to ischemic cardiomyopathy were about 20 yr older (51–61 yr, mean 56 yr) than the patients transplanted due to nonischemic cardiomyopathy (18–53 yr, mean 37 yr). Because our study was not designed to investigate more specifically mechanisms related to beta-adrenergic effects, other possible explanations for the ob-

Fig. 5. Maximal inotropic responses in failing human ventricular myocardium (max) to 1.2 × 10^{-5} mol/liter norepinephrine in the presence of appropriate receptor blockers obtained in corresponding hearts and chambers (○, n = 12). ■ and bars represent mean ± S.E. of the separate values. Ordinate, alpha-1 adrenoceptor-mediated inotropic response in percent of control period. Abscissa, alpha-1 adrenoceptor-mediated inotropic response in percent of control period. Rank order correlation, r^2 = 0.4793, P = .013.

Fig. 6. Inotropic responses expressed as developed tension (T_{max}) to increasing concentrations of norepinephrine in ventricular myocardium from a patient with hypothyroidism failing due to ischemic cardiomyopathy: alpha-1 adrenoceptor-mediated response in the presence of 6 × 10^{-6} mol/liter timolol (○, n = 2); beta adrenoceptor-mediated response in the presence of 6 × 10^{-6} mol/liter prazosin (□, n = 2). Ordinate, Inotropic response in per cent of individual maxima. Abscissa, Log concentration of norepinephrine (mol/liter). Horizontal bars represent ± S.E. of pD2 values.
served differences will be speculative only. However, differences in the \textit{beta} adrenergic effector mechanisms both with respect to downregulation and to uncoupling of receptors in ischemic \textit{vs}. nonischemic cardiomyopathy have been reported (Bristow \textit{et al.}, 1991, review: Bristow, 1993).

In several reports the \textit{alpha}-1 adrenoceptor-mediated inotropic effect of phenylephrine (in the presence of \textit{beta} adrenoceptor blocker) has repeatedly been reported to be small compared to the \textit{beta} adrenoceptor-mediated inotropic effect of isoprenaline (e.g., Böhm \textit{et al.}, 1988, Brodde \textit{et al.}, 1992; Steinfath \textit{et al.}, 1992; Bristow 1993). Although Böhm \textit{et al.} (1988) suggested an increased importance of the \textit{alpha}-1 adrenoceptor-mediated inotropic effect in severe heart failure, the \textit{alpha}-1 adrenoceptor-mediated effect of phenylephrine in failing human heart has been considered to be of little interest, e.g., as a compensating mechanism for the attenuated \textit{beta} adrenoceptor-mediated effect that is regularly observed in failing heart muscle (e.g., Brodde \textit{et al.}, 1992). Aass \textit{et al.} (1986) were the first to report an \textit{alpha}-1 adrenoceptor-mediated inotropic effect of norepinephrine in human ventricular myocardium. During the collection period for our data, Neumann \textit{et al.} (1993) and Scholz \textit{et al.} (1995, 1996) presented data in accordance with ours: norepinephrine is apparently able to elicit an \textit{alpha}-1 adrenoceptor-mediated inotropic response in failing human ventricular myocardium that is of a magnitude that makes this component interesting compared to the \textit{beta} adrenoceptor-mediated component. In our work, the \textit{alpha}-1 adrenoceptor-mediated inotropic component of norepinephrine is of a magnitude comparable to the \textit{beta} adrenoceptor-mediated inotropic component and will make it appropriate to reconsider the functional importance of this regulatory mechanism during terminal heart failure.

Norepinephrine and phenylephrine have apparently different intrinsic activities at the \textit{alpha}-1 adrenoceptors in failing human heart. This has not been evident from \textit{ex vivo} experiments in animal myocardium (e.g., Aass \textit{et al.}, 1983) and has, to our knowledge, not been addressed with respect to heart muscle before Neumann \textit{et al.} (1993) and Scholz \textit{et al.} (1995, 1996) presented their data where phenylephrine was found to be a partial agonist with very low intrinsic activity at the human cardiac \textit{alpha}-1 adrenoceptors compared to norepinephrine. In our work phenylephrine exerted an inotropic response of about 70\% compared to norepinephrine in preparations obtained from the same hearts. The time course curves were, however, almost superimposed (fig. 1), indicating no major difference between norepinephrine and phenylephrine in changing the kinetics of the involved processes. At present we have no explanation for the apparent difference between norepinephrine and phenylephrine with respect to intrinsic activity at the \textit{alpha}-1 adrenoceptors in failing human heart muscle. To our knowledge, there is for example, no data indicating different intrinsic activity of norepinephrine and phenylephrine at different subtypes of \textit{alpha}-1 adrenoceptors. However, the newly discovered \textit{alpha}-1L subtype (Muramatsu \textit{et al.}, 1995; Noguchi \textit{et al.}, 1995) might be of interest because prazosin apparently is less potent in blocking \textit{alpha}-1 adrenoceptor-mediated inotropic effects in human heart (Mügge \textit{et al.}, 1983, Skomedal \textit{et al.}, 1985) compared to rat and rabbit heart (Skomedal \textit{et al.} 1980, Davey 1986, Hiramoto \textit{et al.} 1988).

One patient was judged to be hypothyroid at the time of transplantation as indicated by an elevated level of TSH. This patient had a known hypothyroidism that was substituted with thyroxine. Due to serious arrhythmia the patient also received amiodarone which may cause hypothyroidism (review: Figge and Figge, 1990). Amiodarone will thus probably reinforce a hypothyroid effect upon the sensitivity of the cardiac \textit{beta} adrenoceptors (e.g., Björnerheim \textit{et al.}, 1991). The sensitivity of the \textit{beta} adrenoceptors to norepinephrine in this situation appeared to be markedly reduced compared to the \textit{alpha}-1 adrenoceptors as expressed by a striking preference in stimulation of the \textit{alpha}-1 adrenoceptors. Although these observations are from one heart only, the data are in general agreement with experimental findings in normal animal heart: hypothyroidism is known to increase the sensitivity to \textit{alpha}-1 adrenoceptor stimulation and to reduce the sensitivity to \textit{beta} adrenoceptor stimulation (e.g., Nakashima \textit{et al.}, 1971, Kunos \textit{et al.}, 1974, Osnes 1976, Williams and Leikowitz, 1979, Fox \textit{et al.}, 1985). Thus the thyroid status should apparently be kept in mind when interfering with the adrenoceptors of a failing heart.

In failing heart the \textit{beta} adrenergic response is blunted (e.g., Brodde \textit{et al.}, 1992, Steinfath \textit{et al.}, 1992, Bristow, 1993). Our observations indicated that the \textit{alpha}-1 adrenoceptor-mediated response thus may be of functional importance in comparison with the \textit{beta} adrenoceptor-mediated response. In situations where the \textit{beta} adrenoceptor-mediated inotropic component is further attenuated (cholinergic activity, use of \textit{beta} adrenoceptor blockers, hypothyroidism), the \textit{alpha}-1 adrenoceptor-mediated inotropic component may be even more important also during heart failure. Although speculative, an intriguing possibility is that the \textit{alpha}-1 adrenoceptor-mediated effects may at least support the contrac- tile reserve and may even contribute to the “recovery” of heart function seen in terminal failing hearts that are treated with \textit{beta}-adrenoceptor blockers (see e.g., Eichhorn and Hjalmarson, 1994).

In conclusion, in contrast to findings with phenylephrine as \textit{alpha}-1 adrenergic agonist, the endogenous agonist norepinephrine apparently exerts an \textit{alpha}-1 adrenoceptor-mediated inotropic effect in failing human myocardium that is comparable to the \textit{beta}-adrenoceptor-mediated one when expressed as developed tension. During concomitant activation of adrenergic receptors the final inotropic response to norepinephrine is mediated through both receptor systems. The \textit{alpha}-1 adrenoceptor-mediated inotropic component is thus, although varying, apparently of potential functional importance in failing human ventricular myocardium.

Acknowledgments
The assistance from Iwona Schiander and from the staff of the Department of Thoracic Surgery is gratefully acknowledged.

References
Björnerheim, R., Froysarker, T. and Hanson, V.: Effects of chronic amiodarone

Ono, J.-B.: Positive inotropic effect without cyclic AMP elevation after alpha-

adrenoceptor stimulation of perfused hearts from hypothyroid rats. Acta Phar-

Ono, J.-B., Aass, H. and Skomedal, T.: On adrenergic regulation of heart function:

Role of myocardial alpha-adrenoceptors. In Alpha-adrenoceptor Blockers in

Cardiovascular Disease, ed. by H. Refsum and O. D. Mjøs, pp. 69–102,

Scholz, T., Aass, H. and Ono, J.-B.: Prazosin-sensitive component of the

Scholz, H., Neumann, J., Eschenhagen, T. and Stein, B.: Alpha-adrenoceptor

Send reprint requests to: Dr. Tor Skomedal, University of Oslo, Department of

Pharmacology, P.O. Box 1057 Blindern, N-0316 Oslo, Norway.