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Abstract 

Cancers affecting women, such as breast, uterine, ovarian, endometrial and cervical cancers, 

have become increasingly prevalent. The growing incidence and death rates associated with 

these cancers warrant the development of innovative and alternative approaches to current 

treatments. This article investigates the association of women’s cancers with a molecular 

target known as protease-activated receptor 2 (PAR2), a G-protein coupled receptor that is 

expressed on the surface of cancer cells. Expression levels of the PAR2 gene were curated 

from publicly available databases and were found to be significantly overexpressed in tissues 

from patients with breast, uterine, ovarian, endometrial or cervical cancer compared to 

normal tissues. PAR2 overexpression has been previously linked to tumor progression and, in 

some cases, tumor growth. Activation of PAR2 by either endogenous proteases or synthetic 

agonists triggers certain downstream intracellular signaling pathways that have been 

associated with tumor progression, cell migration and invasion, angiogenesis and apoptosis of 

cancer cells. While recent advances have led to the identification of several PAR2 

antagonists, none has yet been developed for human use. Additionally, PAR2 inhibition has 

been shown also to increase the efficacy of chemotherapeutic drugs, allowing them to be 

potentially used at less toxic doses in combination therapies for cancer. The present work 

briefly summarizes the current status of PAR2 as a potential therapeutic target for treating 

women’s cancers.  

Significance Statement 

This article highlights potential roles for PAR2 in cancers affecting women. Overexpression 

of the PAR2 gene in women’s cancers is associated with various oncogenic processes such as 

tumor progression, cell migration and invasion, ultimately contributing to poorer patient 

prognoses. Given the increasing incidence of women’s cancers, there is an urgent need to 
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develop novel therapeutic drugs and PAR2 represents a promising target for developing new 

treatments.  

Introduction 

Cancer is the second largest cause of death, accounting for approximately 10 million deaths 

worldwide in 2020 (WHO, 2022). Cancer collectively describes different kinds of malignant 

tumors, often distinguished by which tissue is affected, and typically involves mutated or 

abnormal cells that grow in one tissue and spread or metastasize to other tissues. Primary 

tumors may be tolerated unless on a major organ, but secondary tumors produced through 

metastases frequently lead to death because they are more difficult to detect and treat. 

Cancers specifically affecting women are gynecological cancers that develop in the women’s 

reproductive system and include uterine (endometrial), ovarian, vaginal, vulvar and cervical 

cancer. While breast cancer affects both men and women, only 0.5-1% of all breast cancer 

cases occur in men (WHO, 2022). The World Health Organization (WHO) has reported that 

the most commonly occurring cancer among women is breast cancer (2.3 million women 

diagnosed and 685,000 deaths worldwide in 2020), followed by other gynecological cancers 

such as cervical and ovarian (WHO, 2022). It is estimated that there will be more than 3 

million new cases of breast cancer and 1 million deaths per year by the year 2040 (Arnold et 

al., 2022). Due to this increasing incidence and rapidly rising mortality rates, there is a global 

need to develop novel and effective treatments for women’s cancers. Early diagnosis and 

increased awareness amongst women remain major challenges in reducing the cancer burden 

(Duffy et al., 2020).   

 

Current treatment options for cancer include chemotherapy and surgery, depending on the 

size and location of the tumor, the stage of the cancer, and overall patient health (Division of 

Cancer Prevention and Control, 2023). Despite new advances in cancer treatment, resistance 
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to chemotherapeutic drugs and unwanted side effects like high cardiotoxicity substantially 

impact the survival rate of cancer patients (Prihantono and Faruk, 2021). Among common 

chemotherapeutic drugs used to treat breast cancer are docetaxel, paclitaxel, doxorubicin and 

capecitabine, which can be given as a monotherapy or adjuvant therapy for early-stage breast 

cancer (Waks and Winer, 2019). However, patients with breast cancer treated either with 

anthracyclines and/or taxanes commonly gain resistance to one or both drug treatments, 

leaving the patient with a limited range of alternative treatment options that generally have 

low response rates (Rivera and Gomez, 2010). More than 30% of women diagnosed with 

breast cancer at an early-stage progress further to the metastatic stage of breast cancer 

(Rivera and Gomez, 2010). The majority of patients with ovarian cancer usually are 

diagnosed at an advanced stage (Torre et al., 2018) and have a 70% chance of disease 

recurrence (Du Bois et al., 2009). Similarly, for other gynaecological cancers, the standard 

treatment regime involves surgical intervention with complete removal of the affected 

reproductive organ. Such invasive surgeries have the potential to create permanent damage 

with the possibility of prolonged fertility issues (Gonçalves et al., 2022), and may also trigger 

development of micrometastases (Tohme et al., 2017).   

 

To meet and overcome these challenges, there is an urgent need to identify new and 

therapeutically beneficial drug targets. The great majority of current pharmaceuticals (more 

than 30%) target G protein-coupled receptors (GPCRs), the largest protein family of cell 

surface signaling receptors (Chaudhary and Kim, 2021). GPCRs control a wide range of 

essential physiological responses, but some play crucial roles in modulating oncogenic 

processes (Chaudhary and Kim, 2021). This article focuses on one such GPCR as a possible 

drug target, namely protease-activated receptor 2 (PAR2). Here we report how PAR2 

regulates oncogenic signaling associated with women’s cancers (Figure 1), how expression 
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of this gene varies in women’s cancers (breast, uterine, ovarian, endometrial, cervical), how 

its mechanism of action and intracellular signaling are driven by endogenous proteases, and 

why agonists or antagonists that respectively activate or inhibit PAR2-mediated functions 

may impact on the progression or treatment of cancers.  

 

PAR2 in women’s cancers 

PAR2 is a member of the protease-activated receptor (PAR) family (PAR1-4) that belongs to 

a diverse group of rhodopsin-like GPCRs, which are membrane-spanning cell surface 

proteins (Adams et al., 2011). PAR2 has been reported to be highly expressed in human 

cancers (Ungefroren et al., 2017; Jiang et al., 2018). To support an association between PAR2 

and women’s cancers, expression of the PAR2 gene (F2RL1) is analysed here from publicly 

available databases using the University of California Santa Cruz (UCSC) Xena platform 

(Goldman et al., 2020) (Figure 2). The UCSC Xena platform curates publicly available 

genomic data, including from The Cancer Genome Atlas (TCGA) Pan-Cancer and the 

Genotype-Tissue Expression (GTEx) database, which are the largest and most commonly 

used databases on cancer genomic profiles and gene expression in human tissues 

(Consortium, 2013).  

 

The PAR2 gene (F2RL1) was overexpressed in patient tissues with breast invasive carcinoma 

(BRCA) compared to normal breast tissues (Figure 2a). This is consistent with numerous 

studies (Qian et al., 2018; Kim et al., 2021; Kapatia et al., 2022) reported in the last decade 

that show involvement of PAR2 in breast cancer. In vitro studies have also demonstrated that 

high PAR2 expression in breast tumor specimens and human cell lines (BT549, MCF-7, 

MDA-MB-231, MDA-MB435S, MDA-MB-436, SK-BR3 and ZR-75-1) correlates with 

breast cancer cell migration (Su et al., 2009). A PAR2 agonist was shown to induce 
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chemokinesis in MDA-MB-231 and MDA-MB-436 breast cancer cell lines (Su et al., 2009). 

Another study reported higher PAR2 levels in triple negative breast cancer (TNBC) patient 

tissues (n = 88) compared to non-TNBC patient tissues (n = 74). PAR2 levels were also 

significantly elevated in the lymph node of TNBC patients suggesting PAR2 as a biomarker 

for TNBC and a possible therapeutic target (Kapatia et al., 2022). Hormonal influences are 

intricately linked in breast cancer (Mitra et al., 2022), with estrogen receptor (ER) signaling 

pathways being central to tumor progression, while positive ER status tumors often respond 

to hormonal therapies (Ali and Coombes, 2002). PAR1 and PAR2 protein expression was 

shown to correlate differently with breast cancer aggressiveness, depending on ER status 

(Lidfeldt et al., 2015). Patients with high PAR2 protein expression have a significantly higher 

hazard ratio = 5.5 in the ER positive group (PAR2
High

 ER
+
) compared to a hazard ratio = 1.2 

in the ER negative group (PAR2
High

 ER
-
) group (Lidfeldt et al., 2015). Similarly, estrogen 

response element motifs were found within human F2RL1 (PAR2) promoter, and estrogen 

upregulated PAR2 expression in breast cancer cells (Nag and Bar-Shavit, 2018). Cooperative 

signaling and/or heterodimer formation of a PAR1–PAR2 complex has previously been 

shown (Lin and Trejo, 2013). In breast cancer, PAR2 has been reported to drive PAR1–PAR2 

induced signaling pathways, soft colony formation, invasion and progression of a xenograft 

model of breast cancer, but not vice versa (Jaber et al., 2014). Consistent with other studies, 

PAR2 is shown to be essential for PAR1-driven smooth muscle cell proliferation, neointimal 

hyperplasia (Sevigny et al., 2011), and fibrosis (Lin et al., 2015). Together, these findings 

highlight the importance of understanding crosstalk between ER status and PAR1–PAR2 

signaling pathways in shaping the phenotype of breast cancer.  

 

PAR2 has also been associated with granulocyte colony-stimulating factor 2 (CSF2), which is 

a cytokine known to be overexpressed in tumors. PAR2 and CSF2 were reported to be 
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significantly overexpressed in metastatic breast cancer cell lines (4T1 and MDA-MB-231). 

PAR2 activation by a peptide agonist contributed to increase in CSF2 gene expression, 

resulting in breast cancer tumor progresssion (Carvalho et al., 2018). Tissue factor, an agonist 

of PAR2, was linked to tumor progression, and PAR2 expression were significantly 

correlated in patients (n=172) experiencing recurrence of breast cancer tumors. Tissue factor 

induced PAR2 signaling was shown to play a pivotal role in poor prognosis of patients and 

linked to recurrence of breast cancer (Rydén et al., 2010).  

 

Similarly, TCGA and GTEx databases show that the PAR2 gene (F2RL1) was significantly 

overexpressed in women’s gynecological cancers, such as uterine carcinosarcoma (UCS) 

(Figure 2b), ovarian cancer (OV) (Figure 2c), uterine corpus endometrial carcinoma 

(UCEC) (Figure 2d) and cervical squamous cell carcinoma and endocervical 

adenocarcinoma (CESC) (Figure 2e), compared to normal tissues. The distinctly higher 

overexpression of PAR2 in cancer tissues, relative to normal tissues, suggests the possibility 

of PAR2 being important in women’s cancer. A study of 61 uterine endometrial cancer tissues 

revealed a high PAR2 histology score that correlated with high PAR2 gene expression, 

compared to 15 normal endometrium tissue samples (Jahan et al., 2007). PAR2 upregulation 

in uterine endometrial cancer tissues is indicative of PAR2’s involvement in tumor 

progression via angiogenesis (Jahan et al., 2007). PAR2 activation has been reported to 

promote proliferation and inhibit apoptosis in human HeLa cervical cancer cells and in 

primary human cervical cells (Shanshan et al., 2019). On the other hand, a PAR2 antagonist 

reportedly reduced both HeLa cell growth and PAR2 protein expression in nude mice 

(Shanshan et al., 2019). A recent study reported a positive correlation between PAR2 

expression and metastatic characteristics in 119 clinical CESC tumor samples, suggesting a 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 6, 2024 as DOI: 10.1124/jpet.124.002176

 at A
SPE

T
 Journals on D

ecem
ber 22, 2024

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


 8 

potential role for PAR2 as a prognostic marker of metastasis in CESC patients (He et al., 

2021).  

 

PAR2 in ovarian cancer has attracted recent attention with studies showing PAR2’s 

involvement in various oncogenic processes during tumor progression. One study showed 

that high PAR2 expression in 95 ovarian clear cell carcinoma tissues was associated with 

tumor progression and shorter survival in ovarian cancer patients (Aman et al., 2017). 

Another study showed that PAR2 was significantly overexpressed in human ovarian cancer 

tissues (n=1200) compared to normal tissues (Jiang et al., 2021a). In vitro studies showed 

high PAR2 expression in high-grade serous ovarian cancer cell line (OV90) and that PAR2 

activation by the synthetic peptide agonist 2f-LIGRL-NH2 can induce cancer cell migration 

and invasion of OV90 cells, which was inhibited by PAR2 antagonist (I-191) or CRISPR-

Cas9 knockout of the PAR2 gene (Jiang et al., 2021a).  

 

PAR2 and its activation mechanisms 

PAR2 is generally expressed on several types of immune cells such as T-cells, neutrophils, 

eosinophil, monocytes, mast cells, and on numerous epithelial and endothelial cells including 

of the lungs, liver, heart, smooth muscles, skin, kidney, gastrointestinal tract and pancreas 

(Heuberger and Schuepbach, 2019). PAR2 is implicated in the modulation of physiological 

processes associated with immunity, tissue metabolism, gastrointestinal functions, and 

neuronal signaling (Peach et al., 2023). In the context of cancer, protective or damaging roles 

of PAR2 are dependent on the type of stimuli or agonist, tissue type, and the presence of 

other environmental stimuli.  
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PAR2 consists of seven transmembrane (TM) helices interconnected by three extracellular 

loops (ECL) and three intracellular loops (ICL). PAR2 selectively recognizes endogenous 

proteolytic enzymes, as well as synthetic ligands, that act as agonists in promoting PAR2 

coupling to intracellular G proteins and recruitment of β-arrestins to promote signal 

transduction and functional diversity (Ramachandran et al., 2012). PARs have a similar seven 

TM helix bundle structure as other GPCRs, but are unusual in being activated by proteolytic 

enzymes that cleave at distinct sites in the extracellular N-terminus to create a tethered ligand 

(TL) that folds back and self-activates the receptor (Ramachandran et al., 2012). This 

interaction initiates conformational changes in the receptor, which couples to different 

arrangements of the heterotrimeric intracellular G proteins leading to changes in their 

signaling activities. Proteolytic cleavage at different sites in the N-terminus of PARs leads to 

different active conformations of the receptor that preferentially activate specific G protein-

dependent and/or independent intracellular signaling cascades.  

 

In the case of PAR2, the N-terminus is cleaved by trypsin-like serine proteases (trypsin, 

chymotrypsin, tryptase, factor Xa/VII, matriptase, kallikreins (KLK 2/4/5/6/14), granzyme 

A), and other proteases including elastase, acrosin, thrombin and cathepsin S (Ramsay et al., 

2008; Reddy et al., 2010). The TL sequence of human PAR2 is SLIGKV-, which binds to a 

conserved region on ECL2 (Kennedy et al., 2020). In addition to protease-mediated 

activation, short synthetic peptide agonists corresponding to this TL sequence can activate 

PAR2 without proteolytic cleavage (Ramachandran et al., 2012). However, significantly 

higher concentrations (mM-µM) of these synthetic peptides are required for maximal efficacy 

as compared to much lower concentrations (nM-pM) of endogenous proteases (Barry et al., 

2006).  
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PAR2 activating proteases and synthetic agonists 

Both proteases and synthetic PAR2 agonists are widely used to investigate PAR2 activated 

signaling. Proteases were originally linked to performing essential biological functions, such 

as nutrient digestion, modulating protein-protein interactions and being involved in the 

blood-clotting and apoptosis pathway. However, proteases have also been reported to cause 

tumor progression mainly due to their ability to invade the extracellular matrix and facilitate 

tumor cell migration and invasion (Eatemadi et al., 2017). Proteases are involved in 

modulating nutrient and oxygen supply for tumor growth and reportedly have higher 

expression at an early stage of cancer development, thereby modulating many aspects of 

cancer progression (Eatemadi et al., 2017). Table 1 shows some PAR2-cleaving proteases 

and their involvement in regulating various oncogenic processes of women’s cancers. 

 

Proteases regulate a wide range of tumor functions, but development of protease inhibitors as 

potential cancer treatments has been challenging. Key problems are the pleiotropic properties 

of each protease, metabolic instability of both proteases and endogenous inhibitors, 

complicated design of more stable and bioavailable synthetic inhibitors, involvement of 

proteases at different stages of cancer development and progression, and diverse distribution 

of proteases throughout the body where they are needed to carry out other physiological 

functions that maintain homeostasis (Eatemadi et al., 2017). Also, not all proteases activate 

PAR2, some inhibit through cleaving at non-canonical sites that remove the tethered 

sequence or prevent protease-mediated activation of PAR2.  

 

There are various reported synthetic PAR2 agonists, the most widely studied are derivatives 

of the canonical human TL peptide sequence. However, the rodent TL sequence (SLIGRL-

NH2 (Nystedt et al., 1995)) is two- to five-fold more potent than the human TL sequence 
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(SLIGKV-NH2 (Huang, 2007)) in mammalian cell-based assays (Hollenberg et al., 1996; 

Maryanoff et al., 2001). One of the most commonly used PAR2 peptide agonists, 2-furoyl-

LIGRLO-NH2, is a modified version of SLIGRL-NH2 that shows 10-fold or more greater 

agonist potency, selectivity and stability and has been widely used to activate PAR2 in 

cultured cells and in vivo models (McGuire et al., 2004; Barry et al., 2010). The advantage of 

such a peptide is that it is more receptor selective than proteases, which are promiscuous in 

their actions. The less peptidic compound GB110 is equipotent with 2-furoyl-LIGRLO-NH2 

and has comparable PAR2-activating agonist properties (Suen et al., 2012). A more potent 

PAR2 agonist is the synthetic ligand, AY254 (Isox-Cha-Chg-AR-NH2), which induces MDA-

MB-231 breast cancer cell migration (Yau et al., 2016) and cytokine release from colon 

cancer cells via ERK phosphorylation (Jiang et al., 2017). 

 

PAR2 signaling  

PAR2 can activate two independent signaling pathways: one transduced by “classical” G 

protein coupled signaling and the other by G-protein independent signaling (Badeanlou et al., 

2011). G protein dependent signaling (Figure 3) involves the heterotrimeric G protein 

complex that is comprised of Gα subunits coupled to a combination of Gβ and Gγ subunits 

(Heuberger and Schuepbach, 2019). Activation of a GPCR leads to changes in the 

conformation of the receptor, activating the Gα subunit through exchange of phosphate from 

guanosine diphosphate (GDP) to guanosine-5'-triphosphate (GTP), resulting in the 

disassociation of Gβγ dimer that activates downstream signaling pathways via effector 

proteins (Heuberger and Schuepbach, 2019). In PAR2 activation, G protein dependent 

signaling is activated via coupling with Gα proteins subtypes namely G12/13, Gs, Gi and Gq/11 

(Katritch et al., 2013). The G12/13 pathway activates cytoskeletal and other associated proteins 

via Rho guanine nucleotide exchange factor/Ras homologue gene family member A 
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(RhoGEF/RhoA) cascade, which influences muscle contraction, gastrointestinal (GI) 

function, cancer cell migration and invasion (Katritch et al., 2013; Jiang et al., 2021a).  

 

The Gs pathway leads to stimulation of adenylyl cyclase which increases cyclic adenosine 

monophosphate (cAMP) levels (Yau et al., 2013). In contrast, Gi activation leads to inhibition 

of adenylyl cyclase which in turn reduces cAMP and protein kinase A (PKA) levels, but is 

also involved in upregulating tyrosine kinase Src/mitogen-activated protein 

kinase/extracellular-signal regulated kinase (Src/MEK/ERK) and mitogen-activated protein 

kinase (MAPK) pathways (Katritch et al., 2013). The Gq/11 pathway triggers release of the 

secondary messengers diacyl glycerol (DAG) and inositol 1,4,5-triphosphate (IP3) by 

activating phospholipase C- β (PLC- β) (Katritch et al., 2013). The main role of IP3 is to 

mobilize Ca
2+

 efflux from the endoplasmic reticulum into the cytoplasm, leading to activation 

of protein kinase C (PKC) and phosphorylation of downstream proteins (Katritch et al., 2013; 

Jiang et al., 2021a). Activation of these secondary messenger pathways by G protein subunits 

controls many cellular processes including tumor growth, cell migration and invasion, 

inflammation and cytokine production (Lim et al., 2013).  

 

G protein-independent signaling (Figure 3) was identified more recently. PAR2 is known to 

activate several G protein-independent signaling pathways by inducing recruitment of β-

arrestins or scaffolding proteins that enhance PAR2 desensitization and internalization to 

activate distinct signaling pathways (Adams et al., 2011). In response to PAR2 agonist, β-

arrestins forms a multimolecular complex in the cytosol with PAR2 and its upstream 

signaling module rapidly accelerates fibrosarcoma-1 (Raf-1) (Terrillon and Bouvier, 2004). 

This multimolecular complex is responsible for Ras-dependent activation of ERK1/2 forming 

the MAPK module (Raf-1, MEK1/2 and ERK1/2) (Terrillon and Bouvier, 2004). The 
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activated ERKs translocate to the nucleus, where they phosphorylate transcription factors 

leading to gene expression and cell proliferation (Terrillon and Bouvier, 2004). β-arrestins 

mediated activation of transcription factors such as nuclear factor kappa B (NF-B) leads to 

expression of genes involved in innate immune responses, cell proliferation and 

differentiation (Macfarlane et al., 2005). Hence, PAR2 activation by either G proteins or β-

arrestins leads to activation of different signaling pathways such as ERK1/2, cAMP, Rho, 

intracellular Ca
2+

, NF-B and MAPK that are associated with different disease conditions 

(Roychoudhury et al., 2020).  

 

Among the PAR family, PAR2 has emerged as a significant player in cancers. When activated 

within the tumor microenvironment, PAR2 initiates a cascade of downstream signaling events 

that contribute to the hallmark characteristics of cancer. Activation of PAR2 facilitates tumor 

progression through mechanisms such as increased cell survival, and resistance to apoptosis 

via MEK1/2 and PI3K pathways (Iablokov et al., 2014), thereby promoting tumor growth. 

Further, PAR2 activation induces cytoskeletal rearrangements, promoting cancer cell 

migration and invasion via RhoA (Zhu et al., 2011; Stahn et al., 2016), PKC and ERK (Hu et 

al., 2013) pathways in cancer cells. PAR2 activation stimulates angiogenesis by releasing 

vascular endothelial growth factor A via MEK-ERK signaling pathway, supporting formation 

of new blood vessels to sustain tumor growth (Chang et al., 2013). Moreover, PAR2 

activation leads to NF-B signaling (Johnson et al., 2016; Kawaguchi et al., 2020) and 

triggers release of pro-tumor mediators (Xu et al., 2015; Mussbach et al., 2016), creating a 

microenvironment that supports tumor progression. Importantly, PAR2 activation induces 

epithelial-mesenchymal transition, a critical process in metastasis (Tsai et al., 2019), while 

inhibition of PAR2 prevents ERK-induced epithelial-mesenchymal transition (Jiang et al., 

2022).  
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PAR2 antagonists  

A few PAR2 synthetic antagonists have been developed to investigate the role of PAR2 in 

mammalian cells and in rodent models of human diseases. Among reported PAR2 antagonists 

are weak inhibitory peptides (e.g. FSLLRY-NH2 (Wei et al., 2016), LSIGRL-NH2 (Al-Ani et 

al., 2002)), peptidomimetics (e.g. K-14585 (Goh et al., 2009), K-12940 (Kanke et al., 2009), 

C391 (Boitano et al., 2015)), small molecules (e.g. GB88 and GB83 (Barry et al., 2010; Suen 

et al., 2012), AZ8838 (Cheng et al., 2017), AZ3451 (Huang et al., 2019), I-191 (Jiang et al., 

2018), I-287 (Avet et al., 2020)) and antibodies (e.g. SAM11 (Asaduzzaman et al., 2018)). 

Apart from targeting the ectodomains of PAR2, cell-permeable pepducins (e.g. P2pal-18S 

(Asaduzzaman et al., 2015)) bind to the ICLs of PAR2 and cyclic peptides (e.g. Pc(4-4) 

(Kancharla et al., 2015; Nag et al., 2022)) bind to the pleckstrin homology domain within the 

cytoplasmic C-terminal tail of PAR2. Some of these reported antagonists have been shown to 

reduce PAR2 activation in a range of disease models. However, many of these antagonists 

show only weak inhibitory potency, and some are biased in only inhibiting one of a few 

PAR2 signaling pathways. Furthermore, about half of the antagonists only inhibit activation 

by non-proteolytic synthetic agonists and do not inhibit PAR2 activation by endogenous 

proteases, so they have limited value for drug development. Currently, there is no PAR2 

antagonist approved for human use. AstraZeneca has taken the first PAR2 monoclonal 

antibody therapy MEDI0618 to Phase I clinical trials for assessment of its safety for treating 

chronic pain (McIntosh et al., 2020).  

 

Evidence for PAR2 modulation in combination with chemotherapeutic drugs 

PAR2 inhibition has been recently reported to modulate chemotherapeutic drug functions, 

and this may be possible to exploit through combination therapies for the treatment of 

cancers. Combination therapies offer a range of advantages such as decreasing toxic effects 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 6, 2024 as DOI: 10.1124/jpet.124.002176

 at A
SPE

T
 Journals on D

ecem
ber 22, 2024

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


 15 

on normal cells, enhancing selectivity, reducing chemoresistance compared to a monotherapy, 

increasing cytotoxicity to cancer cells and improving efficacy of treatment (Bayat Mokhtari 

et al., 2017). In previous work, we showed that PAR2 was overexpressed in colon 

adenocarcinoma tissues (n=331) compared to normal colon tissues (n=308), and that PAR2 

activation via an endogenous protease agonist or a synthetic peptide agonist significantly 

reduced doxorubicin-induced cell death in HT29 human colon cancer cells. PAR2 inhibition 

fully restored doxorubicin-mediated effects, suggesting PAR2 antagonism as a possible 

strategy for enhancing doxorubicin chemotherapy with fewer toxic side effects (Shah et al., 

2023).  

 

Another study reported PAR2 inhibition or PAR2 depletion causes colorectal cancer cell 

migration suppression and reduction in epithelial-to-mesenchymal transition signaling 

sensitizing cells to 5-fluorouracil chemotherapy treatment. PAR2 activation also causes 

decrease in apoptosis of colorectal cancer cells suggesting a possible new strategy for 

improving 5-fluorouracil resistance and improving therapy performance in colon cancer 

patients (Quan et al., 2019). PAR2 has also been reported to cause resistance to chemotherapy 

drug gefitinib in NSCLC cells. PAR2 was reported to be expressed on NSCLC cells or tissues 

after gefitinib resistance. Combination of P2pal-18S PAR2 antagonist and gefitinib were 

responsible in blocking ERK phosphorylation in NSCLC cells. The resistance to gefitinib 

was reversed via inhibition of PAR2 by β-arrestin-EGFR-ERK signaling pathway. (Jiang et 

al., 2021b) This promise of PAR2 modulation in the treatment of cancer remains to be 

demonstrated for specific women’s cancers.   

 

Conclusions and future perspectives  
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Since the discovery of PARs in the 1990’s, there have been a number of reports of their 

prominent roles in various types of cancers. Multiple studies have indicated overexpression 

of the PAR2 gene, including in cancer tissues of women, and association with cancer 

progression. Publicly available databases show significant upregulation of the PAR2 gene 

(F2RL1) in breast cancer patient tissues compared to normal mammary tissues, with high 

PAR2 expression being linked to poor prognosis in patients. PAR2 gene expression was also 

found to be significantly overexpressed in uterine, ovarian, endometrial and cervical cancer 

tissues of female cancer patients compared to corresponding normal tissues in healthy 

women. This clinical data for high PAR2 expression in female cancer patients has been linked 

to poor prognosis, cancer cell migration and invasion, angiogenesis and tumor progression. 

Further research is needed to better document and correlate PAR2 expression with cancer 

development and progression before it can be concluded that PAR2 is a reliable biomarker for 

diagnosis of women’s cancers.  

 

A greater understanding of how PAR2 modulates oncogenic processes in women can be of 

potential benefit in developing potent new drugs with a higher safety profile, minimal side 

effects and anti-cancer therapeutic efficacy. This information can elaborate links between 

PAR2, immunometabolism and cancer biology, and point to the best PAR2-mediated 

strategies for treating women’s cancers. It is well established that PAR2 is activated by many 

different endogenous but pleiotropic proteases, which in their own right have been linked to 

cancers. To date there are no known endogenous agonists other than proteases, but synthetic 

peptide and nonpeptide exogenous agonists have been developed as more selective PAR2-

activating tools to better understand its activation mechanisms and signaling outcomes. PAR2 

activation by proteases involves a unique mechanism in which the extracellular N-terminus 

of PAR2 is pruned to unmask a unique ligand sequence that folds back to self-activate the 
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receptor. This activates coupling to intracellular G proteins and recruitment of β-arrestins, 

leading to activation of multiple downstream signaling pathways and stimulation of, for 

example, RhoA, MEK-ERK, PKC or Ca
2+

 signaling. These signaling pathways regulate a 

wide range of cellular functions ranging from metabolism, obesity, motility, infection and 

inflammation to tumor progression, but the latter assumes great importance due to high 

expression of PAR2 in and on cancer cells. A few PAR2 antagonists have been identified and 

shown to inhibit the activation of PAR2-mediated intracellular signaling and downstream 

cellular, physiological and pathophysiological responses. There is current promise for PAR2 

antagonists and antibodies as new treatments for women’s cancers, and for combination 

therapies with existing chemotherapeutic drugs with some evidence that PAR2 antagonism 

may reduce the cardiotoxicity and side effects of chemotherapies. PAR2 antagonism thus 

promises a new approach to modulate certain cancer signaling pathways, thereby providing 

new opportunities for the treatment of women’s cancers. 
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PAR2- Protease-activated receptor 2 

GPCR- G protein-coupled receptor 

UCSC- University of California Santa Cruz 

TCGA- The cancer genome atlas  

GTEx- Genotype-tissue Expression 

BRCA - Breast invasive carcinoma  

UCS- Uterine carcinosarcoma  

OV- Ovarian cancer  

UCEC- Uterine corpus endometrial carcinoma  

CESC- Cervical squamous cell carcinoma and endocervical adenocarcinoma 

TNBC - Triple negative breast cancer 

ER - Estrogen receptor 

CSF2 - Granulocyte colony-stimulating factor 2 

TM- Transmembrane  

ECL- Extracellular loop 

ICL - Intracellular loops 

TL- Tethered ligand  

GDP- Guanosine diphosphate  

GTP- Guanosine-5'-triphosphate  

cAMP- Cyclic adenosine monophosphate  
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PKA - Protein kinase A  

ERK- Extracellular-signal regulated kinase  

MAPK- Mitogen-activated protein kinase  

DAG- Diacyl glycerol  

IP3- Inositol 1,4,5-triphosphate  

PLC- β- Phospholipase C- β  

PKC- Protein kinase C  

NF-B- Nuclear factor kappa B 
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Figure Legends 

Figure 1 - PAR2 regulates various oncogenic processes in women’s cancers.  

PAR2 over expression and activation in women’s cancers causes apoptosis, cancer cell 

proliferation, metastasis, angiogenesis, invasion, cytokine production, recurrence of cancer 

and poor prognosis in patients. Figure created with Biorender.com.  

 

Figure 2 - PAR2 gene expression in women’s cancers.  

PAR2 (F2RL1) expression (log2) between normal and cancer tissue from TCGA and GTEx 

databases (January 2024) in a- breast invasive carcinoma (BRCA) (normal n=290, cancer 

n=1098), b- uterine carcinosarcoma (UCS) (normal n=78, cancer n=57), c- ovarian cancer 

(OV) (normal n=88, cancer n=426), d- uterine corpus endometrial carcinoma (UCEC) 

(normal n=23, cancer n=180) and e- cervical squamous cell carcinoma and endocervical 

adenocarcinoma (CESC) (normal n=13, cancer n=306). All human patient data was obtained 
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via UCSC Xena server and expressed as a scatter plot with means indicated by red lines. P 

value was calculated using Mann-Whitney test, **** p < 0.0001.  

 

Figure 3 - Schematic of PAR2 mediated signaling.   

PAR2 activation can lead to coupling of G protein subunits: G12/13, Gs, Gi and Gq/11. G12/13 can 

activate RhoA via RhoGEFs. Gi inhibits adenylate cyclase causing inhibition of cAMP, Gs 

coupling leads to increase in cAMP accumulation, Gq/11 induces activation of PLC- β which 

activates IP3 and DAG downstream resulting in Ca
2+

 release and activation of PKC. 

Coupling via β-arrestins leads to activation of MEK-ERK signaling pathway. All the various 

signaling mechanism, post PAR2 activation, can modulate a range of biological functions 

such as inflammation, tumor progression, cell migration and invasion and gene expression. 

Figure created with Biorender.com. 

 

Table 

Table 1 - Some PAR2-cleaving proteases involved in women’s cancers.  

PAR2-cleaving protease Significance in women’s cancers 

Factor Xa/VIIa 

- FVIIa causes transcription of various genes involved in 

breast cancer metastasis and angiogenesis (Albrektsen et al., 

2007).   

Mast cell tryptase 

 -Tryptase promotes breast cancer cell angiogenesis via PAR2 

mediated activation of ERK and Akt signaling pathways 

(Qian et al., 2018). 

Matriptase 

- Matriptase induces breast cancer cell migration and invasion 

in MCF-7 cells (Kim et al., 2021).   

Trypsin 

-Trypsin induces tumor proliferation in cervical cancer cell 

lines (Sánchez-Hernández et al., 2008). 

-Trypsin causes MAPK signaling and increased proliferation 

of ovarian cancer cell lines (Kim et al., 2020). 

-Trypsin induces migration and invasion of OV90 ovarian 

cancer cell line through activating Gαq/11, Gα12/13 and β-

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 6, 2024 as DOI: 10.1124/jpet.124.002176

 at A
SPE

T
 Journals on D

ecem
ber 22, 2024

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


 27 

arrestin1/2 signaling pathway (Jiang et al., 2021a).  
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