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Abstract 

The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. 

Modulation of the glutamatergic signaling pathway, including N-methyl-D-aspartate (NMDA) 

receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A 

(PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes 

both cAMP and cGMP, which play pivotal roles as intracellular second messengers 

downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of 

a selective and brain penetrant PDE2A inhibitor, 

(N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-di

hydropyrido[2,3-b]pyrazine-4(1H)-carboxamide) (TAK-915) as a novel treatment for 

schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased 

cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg 

significantly upregulated the phosphorylation of 

a-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat 

hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits 

induced by the NMDA receptor antagonist MK-801 in the rat passive avoidance test. 

TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 

in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic 

phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 
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did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or 

methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has 

a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia. 
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Introduction  

Schizophrenia is a severe psychiatric disorder characterized by three domains: positive 

symptoms, negative symptoms, and cognitive impairments. Current antipsychotic 

medications are effective in managing positive symptoms, but are limited in their ability to 

alleviate cognitive impairments and negative symptoms. Cognitive impairments are present at 

the onset of illness and persistent through the course of the disease, and appear to be strong 

predictors of functional outcome (Shamsi et al., 2011; Torgalsboen et al., 2015). Negative 

symptoms range from diminished expression such as blunted affect and poverty of speech, to 

motivational deficits characterized by avolition, anhedonia, and social withdrawal (Messinger 

et al., 2011; Foussias et al., 2014). Taken together, cognitive impairments and negative 

symptoms lead to a reduced quality of life and increased functional disability. Therefore, 

there remains an unmet clinical need and new therapeutic drugs are required for patients with 

cognitive impairments and negative symptoms in schizophrenia. 

 

The pathophysiology of schizophrenia has been associated with dysfunction of glutamatergic 

neurotransmission (Goff and Coyle, 2001; Lin et al., 2012). Postmortem brain studies have 

shown changes in pre- and postsynaptic markers for glutamatergic neurons in patients with 

schizophrenia (Meador-Woodruff and Healy, 2000). Inhibition of glutamatergic transmission 

by N-methyl-D-aspartate (NMDA) receptor antagonists such as ketamine and phencyclidine 
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(PCP) causes schizophrenia-like symptoms in humans (Javitt and Zukin, 1991; Olney and 

Farber, 1995; Coyle, 1996). In line with these clinical observations, reduction of nitric oxide 

(NO) and cGMP levels acting downstream of NMDA receptor has been observed in 

schizophrenia (Lee and Kim, 2008; Nakano et al., 2010). Interestingly, administration of the 

NO donor sodium nitroprusside (SNP) has shown a rapid improvement of multiple symptoms 

in schizophrenia (Hallak et al., 2013). These findings suggest that the modulation of 

glutamatergic transmission, which includes NMDA receptor/NO/cGMP pathway, can provide 

a new therapy for schizophrenia. 

 

Phosphodiesterase 2A (PDE2A) is a dual substrate enzyme that hydrolyzes both cAMP and 

cGMP. PDE2A is abundant in the brain relative to peripheral tissues, and highly expressed in 

the forebrain, including the frontal cortex, hippocampus, and striatum, which are relevant to 

cognition (Stephenson et al., 2009; Stephenson et al., 2012). PDE2A is localized in axons and 

nerve terminals of principal neurons, suggesting that PDE2A plays an important role in the 

modulation of cyclic nucleotide-mediated signal transduction, synaptic neurotransmission, 

and plasticity in the forebrain. Thus, the role of PDE2A on cognition under physiological and 

pathological conditions has been investigated. Some PDE2A inhibitors, such as BAY 60-7550, 

have enhanced recognition memory in the novel object recognition task in rodents (Boess et 

al., 2004; Rutten et al., 2007; Reneerkens et al., 2013; Bollen et al., 2014; Redrobe et al., 
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2014; Bollen et al., 2015; Lueptow et al., 2016). However, these findings have not fully 

shown the relationship between brain PDE2A inhibition and pro-cognitive activities in 

rodents. Most of the studies using PDE2A inhibitors lack adequate evidence in terms of 

pharmacokinetics and pharmacodynamics. For example, there are no reports that investigate 

brain cyclic nucleotide levels after BAY-60-7550 administration. This compound does not 

show sufficient brain penetrant properties in rodents after oral administration (Reneerkens et 

al., 2013). Therefore, a PDE2A inhibitor with better pharmacokinetic profiles would be 

required to elucidate the role of PDE2A inhibition in the brain and clarify the relationship 

between brain cyclic nucleotide levels and behavioral outcomes. 

 

We recently discovered a potent and selective PDE2A inhibitor TAK-915 (Mikami et al., 

2017). TAK-915 inhibited human PDE2A3 enzyme activities with a 50% inhibitory 

concentration of 0.61 nmol/L, which exhibited more than 4100-fold selectivity against other 

phosphodiesterase (PDE) family members. In in vitro autoradiography studies in rodents, 

[3H]TAK-915 was accumulated in the frontal cortex, hippocampus, and striatum in rodents 

(Ito et al., manuscript in preparation), where PDE2A expression levels are high (Stephenson 

et al., 2009; Stephenson et al., 2012). This selective accumulation of [3H]TAK-915 was not 

observed in brain slices from Pde2a conditional knockout mice (Ito et al., manuscript in 

preparation). These findings indicate that TAK-915 selectively binds to a native PDE2A 
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under physiological conditions. 

 

In this report, we show in vivo pharmacological profile of a selective and brain penetrant 

PDE2A inhibitor TAK-915, as a potential treatment for schizophrenia. Firstly, to examine 

whether TAK-915 acts as a PDE2A inhibitor in vivo, we measured cyclic nucleotide contents 

and their downstream signaling in the brain. Secondly, we characterized the pro-cognitive 

properties of TAK-915 in NMDA receptor antagonist-induced deficit models. Thirdly, to 

investigate the potential of TAK-915 on social withdrawal, we evaluated social interaction in 

a subchronic PCP model. Finally, we performed psychostimulant-induced hyperlocomotion 

tests to predict the effect of TAK-915 on antipsychotic-like activity.  

 

 

Materials and Methods 

 

Animals. The care and use of the animals and the experimental procedures performed at 

Takeda Pharmaceutical Company Limited (Fujisawa, Japan) were approved by the 

Experimental Animal Care and Use Committee of Takeda Pharmaceutical Company Limited. 

Experiments performed at Biotrial (Rennes, France) were approved by the Biotrial Ethical 

Committee. Specific details of strain and species are given within each section. The animals 
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were housed in groups of 2-4 per cage under a 12-h light-dark cycle (lights on at 7:00 AM) 

with ad libitum food and water. After at least a 1-week habituation period, the animals were 

used for the experiment. 

 

Drugs. TAK-915 

(N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-di

hydropyrido[2,3-b]pyrazine-4(1H)-carboxamide) and MP-10 succinate (MP-10, 

2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethy]-quinoline succinate) were 

synthesized at Takeda Pharmaceutical Company Limited (Grauer et al., 2009; Verhoest et al., 

2009; Mikami et al., 2017). TAK-915 and MP-10 were suspended in 0.5% (w/v) 

methylcellulose in distilled water and administered orally (p.o.). Methamphetamine 

hydrochloride (METH, Dainippon Sumitomo Pharma Co. Ltd., Osaka, Japan) and 

(+)-MK-801 hydrogen maleate (MK-801, Sigma Aldrich, Inc., St. Louis, MO) were dissolved 

in saline, and were administered subcutaneously (s.c.). Phencyclidine hydrochloride (PCP, 

Sigma Chemical Co., Saint Quentin Fallavier, France) was dissolved in saline, and was 

administered intraperitoneally (i.p.). The dosages of compounds were expressed as salt forms. 

The volume of administration was 2 mL/kg for p.o. and s.c., 5 mL/kg for i.p. 

 

Pharmacokinetics Study. Eight-week-old male Long-Evans rats (Japan SLC Inc., 
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Hamamatsu, Japan) and male Sprague-Dawley (SD) rats (Charles River Laboratories Japan, 

Inc., Yokohama, Japan) were used for sample collection. Blood and brain tissues were 

collected at 0.5, 1, or 2 h after administration of TAK-915. The plasma or brain homogenate 

samples were deproteinized with acetonitrile containing an internal standard and then 

centrifuged. The supernatant was diluted with solvents consisting of 10 mM ammonium 

acetate-acetonitrile-formic acid and centrifuged again. An LC-MS/MS system (API5000 or 

QTRAP5500, AB Sciex, Foster City, CA) was used to measure TAK-915 concentrations in 

the supernatant. 

 

In Vivo Measurement of Cyclic Nucleotide Contents. This assay was performed as 

previously described (Suzuki et al., 2015; Suzuki et al., 2016) with some modifications. 

Nine-week-old male Long-Evans rats were euthanized using a microwave irradiation system 

MMW-05 (Muromachi Kikai Co. Ltd., Tokyo, Japan) 2 h following oral administration of 

vehicle or TAK-915 (1, 3, or 10 mg/kg). Brain tissues were sampled, immediately frozen on 

dry ice, and stored at -80°C until use. To measure cyclic nucleotide contents, microwaved 

brain tissues were isolated and then homogenized in 0.5 N HCl followed by centrifugation. 

Cyclic nucleotide concentrations in supernatant were measured using enzyme immunoassay 

kits (Cayman Chemical Company, Ann Arbor, MI) in accordance with the manufacturer’s 

protocol. Values were expressed as pmol per mg tissue weight.  
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In Vivo Measurement of Protein Phosphorylation. Seven-week-old male Long-Evans rats 

were used for collecting the brain tissues. The hippocampus was immediately sampled 2 h 

after oral administration of vehicle or TAK-915 (1, 3, or 10 mg/kg) and put into 1.5-mL tubes. 

Samples were rapidly frozen in liquid nitrogen, and stored at -80°C until use. Whole 

hippocampus tissues were homogenized in ice-cold cell extraction buffer (Invitrogen, 

Carlsbad, CA) with protease inhibitor cocktail (Sigma-Aldrich) and phosphatase inhibitor 

cocktail (Thermo Fisher Scientific, Waltham, MA). After clarification by centrifugation, the 

supernatant fraction was collected and boiled in sample buffer solution with 

3-mercapto-1,2-propanediol (Wako, Osaka, Japan). The protein content (0.5 μg) of each 

sample was loaded onto 7.5 to 15% SDS-PAGE gels (DRC, Tokyo, Japan). After 

electrophoresis, the proteins were transferred to PVDF membranes. Total protein levels and 

phosphorylation of (±)-α-amino-3-hydroxy-5-methylisoxasole-4-proprionic acid (AMPA) 

receptor subunit at serine 845 (pGluR1) proteins were probed by immunoblotting with 

anti-total glutamate receptor subunit 1 (GluR1) antibody (diluted 1:5000, Millipore, Temecula, 

CA) and anti-pGluR1 (diluted 1:2000, Phosphosolutions, Aurora, CO), and were visualized 

with horseradish peroxidase-conjugated second antibodies (diluted 1:5000, GE Healthcare 

UK Ltd., Buckinghamshire, UK) followed by ECL prime western blotting detection reagents 

(GE Healthcare UK Ltd.). The membranes were scanned on a lumino-image analyzer, 
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ImageQuant LAS4000 (Fujifilm, Tokyo, Japan). The amounts of total and pGluR1 proteins 

were quantified by measuring the density of blots using ImageQuant TL software (Fujifilm, 

Tokyo, Japan). The band densities of pGluR1 were normalized by those of total GluR1. 

 

Step-Through Passive Avoidance Task. This task was conducted using 7-8-week-old male 

Long-Evans rats as previously described (Mikami et al., 2017). The task was carried out in an 

apparatus consisting of an illuminated ("light") compartment (25 × 10 × 25 cm) connected to 

a non-illuminated ("dark") compartment (30 × 30 × 30 cm) by a guillotine door (8 × 8 cm) 

(Brain Science idea, Osaka, Japan). In a habituation trial, each animal was gently placed in 

the light compartment. After 30 s, the guillotine door was opened and the rat was allowed to 

enter the dark compartment. Once the animal entered the dark compartment with all four 

paws, the door was closed. The animal was allowed to remain in the dark compartment for 

30s before being taken to its home cage. An acquisition trial was conducted 4-6 h after the 

habituation trial. The rat was put into the light compartment, and the guillotine door was 

opened. Once the rat crossed into the dark compartment with all four paws, the door was 

closed and an electric shock (0.5 mA, 3 s) was delivered from the grid floor. After 30 s, the 

rat was removed from the dark compartment, and then returned to its home cage. One day 

after the acquisition trial, a retention test was performed to evaluate memory. After each rat 

was again put into the light compartment for 30 s, the door was opened. The retention test 
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was terminated when the rat entered the dark compartment or remained in the light 

compartment for 300 s. During the retention trials, no electric shock was delivered from the 

grid floor. The time between the door being opened and the rat entering the dark compartment 

was defined as latency time. The maximum latency time for which the rat did not enter the 

dark compartment was 300 s. Vehicle or TAK-915 (1, 3, or 10 mg/kg, p.o.) was administered 

2 h prior, and saline or MK-801 (0.1 mg/kg, s.c.) was administered 30 min prior to the 

acquisition trial. 

 

Radial Arm Maze Task. This task was assessed using 9-week-old male Long-Evans rats as 

previously described (Shiraishi et al., 2015; Nishiyama et al., 2017). An 8-arm radial maze 

with arms (50 x 10 x 40 cm) was mounted on platform, which was elevated 50 cm above the 

floor. Animals were fasted for 1 day before habituation of the maze. During the experimental 

period after the first day of habituation, animals were food-restricted to 85-90 % of 

free-feeding body weight for training. Reinforcement consisted of 3 food pellets (Dustless 

Precision Pellets, 45 mg, Bioserv Inc., Frenchtown, NJ), which were placed in a food cup at 

the end of each arm. Habituation: On the first day, three rats were placed in the maze and 

allowed to freely explore and retrieve the food pellets, which were placed near the entrance 

and at the mid-point of each arm for 8 min. On the second day, a single rat was allowed to 

explore and retrieve the pellets, which were then placed at the mid-point and in the food cup 
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at the end of each arm for 5 min. Training: From the third day, reinforcement was placed in 

the food cup at the end of each arm. Each rat was allowed to explore until 5 min had elapsed, 

or the rat completed one entry in each arm. Entry into an arm previously chosen, and failure 

to get the pellets were counted as errors. Rats were trained until they achieved a criterion of ≤ 

2 errors for 2 consecutive days. Vehicle or TAK-915 (1 or 10 mg/kg, p.o.) was administered 2 

h, and saline or MK-801 (0.08 mg/kg, s.c.) was administered 30 min prior to the test. 

 

Social Interaction Test. This experiment was carried out at Biotrial (Rennes, France) using 

male Long-Evans rats (JANVIER, Saint Berthevin, France) as previously described (Cayre et 

al., 2016). The experimental arena was a square wooden box (90 × 90 × 40 cm) painted dark 

blue, with black painted squares (15 × 15 cm). The arena was cleaned using water between 

each trial to avoid odor trails left by rats. The arena was placed in a dark room illuminated 

only by halogen lamps oriented towards the ceiling, which provided uniform dim light in the 

box. The day before the test, rats were placed in the box and allowed to habituate for 10 min. 

On experimental day, treated animals were placed with an unfamiliar animal in the 

experimental arena for a 10-min experimental session to allow them to interact freely. The 

experimenter then scored the time spent in social interaction for the treated rat. For each 

treated-rat, the total amount of time spent in active social behavior was recorded during the 

10-min session. Active social behaviors were defined as sniffing, grooming, kicking, 
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following, mounting, jumping on, boxing, wrestling, and crawling. The experimenter scoring 

the behavior was not aware of the animal treatment. Saline or PCP (5 mg/kg, i.p.) was 

administered twice daily (morning and afternoon) from day 1 to day 7. During the wash-out 

period from day 8 to day 15, animals were housed in their home cages without any treatment. 

On day 15, habituation was conducted. On day 16, vehicle or TAK-915 (3 or 10 mg/kg, p.o.) 

was administered 2 h before testing.  

 

Hyperlocomotion Test. This test was assessed using 8-week-old male SD rats as previously 

described (Suzuki et al., 2015; Suzuki et al., 2016). A SUPERMEX spontaneous motor 

analyzer (Muromachi Kikai Co., Ltd., Tokyo, Japan) was used to measure locomotion. Rats 

were placed in locomotor chambers (24 × 37 × 30 cm) for more than 60 min for habituation. 

Thereafter, rats were injected with either vehicle or TAK-915 (1, 3, or 10 mg/kg, p.o.) and 

then quickly returned to the chamber. After 2 h, rats were again taken out of the chambers and 

injected with either saline, MK-801 (0.3 mg/kg, s.c.), or METH (0.5 mg/kg, s.c.) and then 

quickly returned to the chamber. Activity counts were recorded every 1 min during 2 h after 

administration of psychostimulant. 

 

Gene Expression Assay. This assay was conducted as previously described (Suzuki et al., 

2015; Suzuki et al., 2016). Seven-week-old male SD rats were euthanized 3 h after oral 
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treatment of vehicle, TAK-915 (10 or 100 mg/kg), or MP-10 (30 mg/kg). Striatum was 

collected and frozen on dry ice immediately and then stored -80°C until use. Total RNA from 

the striatum was extracted using Isogen (Nippon Gene Co., Ltd., Toyama, Japan) and an 

RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's protocol. The 

RNA was reverse-transcribed to cDNA using High-capacity cDNA Reverse Transcription Kit 

(Life Technologies). Real-time quantitative polymerase chain reaction expression analysis 

was conducted using TaqMan reagents (Eurogentec, Seraing, Belgium) and ABI PRISM 

7900HT sequence detection system (Life Technologies). In accordance with the 

manufacturer's instruction, quantities of RNA were normalized using 

glyceraldehydes-3-phosphate dehydrogenase (GAPDH) TaqMan probes. The rat enkephalin 

(Enk) analysis was conducted using the following primers: forward primer, 5 ′

-GGACTGCGCTAAATGCAGCTA-3 ′ ; reverse primer, 5 ′

-GTGTGCATGCCAGGAAGTTG-3 ′ ; TaqMan probe (MGB probe), 5 ′

-CGCCTGGTACGTCCCGGCG-3′. The rat substance P (SP) was conducted using the 

following primers: forward primer, 5′-CGCAAAATCCAACATGAAAATC-3′; reverse 

primer, 5′-GCAAACAGTTGAGTGGAAACGA-3′; TaqMan probe (MGB probe), 5′

-CGTGGCGGTGGCGGTCTTTTT-3′. The rat GAPDH analysis was conducted using the 

following primers: forward primer, 5 ′ -TGCCAAGTATGATGACATCAAGAAG-3 ′ ; 

reverse primer, 5′-AGCCCAGGATGCCCTTTAGT-3′; TaqMan probe (MGB probe), 5′
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-TGGTGAAGCAGGCGGCCGAG-3′.  

 

Statistical Analysis. The Aspin-Welch test (for nonhomogeneous data) or Student's t-test (for 

homogeneous data) was used for pairwise group comparison. In dose-response experiments, 

homogeneity of variances was using Bartlett's test, and then two-tailed Williams' test (for 

parametric data) or two-tailed Shirley-Williams test (for non-parametric data) was conducted. 

In the step-through passive avoidance test, two-tailed Wilcoxon’s test was conducted. Value 

of P ≤ 0.05 was considered significant. 

 

 

Results 

 

Effects of TAK-915 on cAMP and cGMP Levels in the Frontal Cortex, Hippocampus, 

and Striatum in Rats.  

Two hours after oral administration of TAK-915, the concentration of TAK-915 in the brain 

of Long-Evans rats was 0.030 ± 0.021 μg/g at 1 mg/kg, 0.160 ± 0.016 μg/g at 3 mg/kg, and 

0.331 ± 0.095 μg/g at 10 mg/kg (Table 1). The brain concentration of TAK-915 

dose-dependently increased, and the exposure was sustained for at least up to 2 h after dosing 

in rats. To assess the effect of PDE2A inhibition by TAK-915 in the brain, we measured 
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cyclic nucleotide contents in the frontal cortex, hippocampus, and striatum in rats at 2 h after 

oral administration. Oral administration of TAK-915 dose-dependently increased cGMP 

levels in these brain regions. Significant increase in cGMP levels was observed at 10 mg/kg 

of TAK-915 in the frontal cortex (0.063 ± 0.004 pmol/mg, P ≤ 0.01; Fig. 1A), at 3 and 10 

mg/kg in the hippocampus (0.037 ± 0.002, P ≤ 0.05, at 3 mg/kg; 0.042 ± 0.002 pmol/mg, P ≤ 

0.01, at 10 mg/kg; Fig. 1B), and at 10 mg/kg in the striatum (0.047 ± 0.003 pmol/mg, P ≤ 

0.01; Fig. 1C). On the other hand, TAK-915 did not affect cAMP levels in the rat brain even 

at 10 mg/kg, p.o. In addition, TAK-915 at 30 mg/kg increased cGMP levels not only in the 

brain parenchyma, but also in the cerebrospinal fluid (CSF), and the time-dependent changes 

of cGMP levels in brain and CSF were well accorded with the changes of pharmacokinetics 

of TAK-915 (Supplemental Fig. 1). 

 

Effects of TAK-915 on pGluR1 Levels in the Rat Hippocampus. 

An increase in intracellular cyclic nucleotide levels induces the activation of protein kinase A 

(PKA) and protein kinase G (PKG) and results in upregulation of pGluR1 level (Wang et al., 

2005; Serulle et al., 2007; Serulle et al., 2008). To assess the effect of TAK-915 on the 

downstream pathway of cyclic nucleotide signaling, we investigated the phosphorylation 

levels of GluR1 in the hippocampus following oral administration of TAK-915 at 1, 3, and 10 

mg/kg. As shown in Figure 2, TAK-915 dose-dependently increased pGluR1 in the rat 
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hippocampus, in the same dose range of TAK-915 that increased hippocampal cGMP levels; 

the relative phosphorylation levels at 1, 3, and 10 mg/kg of TAK-915 were 96 ± 14%, 130 ± 

17%, and 148 ± 10%, respectively. Significant increase in the pGluR1 levels was observed at 

10 mg/kg, p.o. (P ≤ 0.05; Fig. 2B). 

 

Effects of TAK-915 on MK-801-Induced Episodic Memory Deficits in the Step-Through 

Passive Avoidance Task in Rats. 

Among several cognitive domains, patients with schizophrenia have shown larger 

impairments in episodic memory (Schaefer et al., 2013). The NMDA receptor antagonist 

MK-801 has produced schizophrenia-like symptoms including episodic memory deficits in 

rodents (Neill et al., 2010; van der Staay et al., 2011). To assess the effects of TAK-915 on the 

episodic memory deficits induced by the NMDA receptor antagonist, we performed the 

passive avoidance task in MK-801-treated rats. As shown in Figure 3, subcutaneous treatment 

with MK-801 at 0.1 mg/kg significantly decreased the avoidance time in retention test 

compared with saline (P ≤ 0.01). TAK-915 at 3 and 10 mg/kg significantly attenuated the 

MK-801-induced deficits in the avoidance time (P ≤ 0.01 at 3 mg/kg; Fig. 3B, P ≤ 0.05 at 10 

mg/kg; Fig. 3C).  

 

Effects of TAK-915 on MK-801-Induced Spatial Working Memory Deficits in Radial 
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Arm Maze Task in Rats. 

To evaluate the effect of TAK-915 on spatial working memory deficits, which are observed in 

patients with schizophrenia (Piskulic et al., 2007), we performed the radial arm maze task in 

rats with an MK-801-induced deficit. In the control group, all pellets in the 8 arms were 

effectively consumed within 2 errors (Fig. 4). Treatment of MK-801 at 0.08 mg/kg, s.c. 

significantly increased the number of errors (5.6 ± 0.8, P ≤ 0.01; Fig. 4). Pretreatment with 

TAK-915 at 10 mg/kg, p.o. significantly reduced the number of errors induced by MK-801 

(3.4 ± 0.5, P ≤ 0.05; Fig. 4).  

 

Effects of TAK-915 on Subchronic Phencyclidine-Induced Social Withdrawal in the 

Social Interaction Test in Rats. 

Rodents treated subchronically with PCP have been used for investigating social withdrawal, 

a key sub-domain of negative symptoms (Wilson and Koenig, 2014). To assess the potential 

of TAK-915 for the treatment of negative symptoms, we evaluated the effect of TAK-915 on 

subchronic PCP-induced social withdrawal by using social interaction test in rats. Time spent 

in social interactions was significantly decreased in subchronic PCP-treated rats (30 ± 10 s) 

compared to control group rats (83 ± 10 s) (P ≤ 0.01, Fig. 5). TAK-915 (3 or 10 mg/kg, p.o.) 

dose-dependently attenuated subchronic PCP-induced deficits in social interaction test (49 ± 

6 s at 3 mg/kg, 72 ± 9 s at 10 mg/kg; Fig. 5). Significant effect in this test was observed at 10 
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mg/kg, p.o. (P ≤ 0.05; Fig. 5).  

 

Effects of TAK-915 on MK-801 or METH-Induced Hyperlocomotion, and on Activation 

of Direct and Indirect Pathway Medium Spiny Neurons in Rats. 

MK-801- or METH-induced hyperlocomotion test has been commonly used as an animal 

model for positive symptoms in schizophrenia (Andine et al., 1999; Jones et al., 2011). 

Current antipsychotics such as aripiprazole, olanzapine, and haloperidol, have attenuated 

psychostimulant-induced hyperlocomotion (Suzuki et al., 2015). As shown in Figure 6A, 

TAK-915 did not affect the MK-801-induced hyperlocomotion in rats even at 10 mg/kg. 

Likewise, TAK-915 did not suppress the METH-induced hyperlocomotion in rats (Fig. 6B). 

Activation of the indirect pathway medium spiny neurons (MSNs) by the blockade of 

dopamine D2 receptors is thought to be a common mechanism of action of current 

antipsychotics (Kapur and Mamo, 2003; Agid et al., 2008; Kehler and Nielsen, 2011; Suzuki 

et al., 2015). To evaluate the effect of TAK-915 on the activation of direct and indirect 

pathway MSNs, we measured striatal mRNA expression levels of SP (a direct pathway 

marker) and Enk (an indirect pathway marker). MP-10, developed by Pfizer Inc., has been 

reported to be a potent and selective PDE10A inhibitor (Grauer et al., 2009; Verhoest et al., 

2009). As a positive control, we used MP-10 which has been reported to activate both direct 

and indirect pathway MSNs (Suzuki et al., 2016). As previously reported, MP-10 at 30 mg/kg 
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significantly increased the expression of both SP and Enk mRNA (P ≤ 0.01 for SP and P ≤ 

0.01 for Enk; Fig. 6C). In contrast, TAK-915 did not affect the expression of either SP or Enk 

mRNA even at 100 mg/kg (Fig. 6C). Additionally, we examined whether TAK-915 causes 

side effects of antipsychotic medication such as hyperprolactinemia, hyperglycemia, or 

cataleptic response. TAK-915 did not increase prolactin (Supplemental Fig. 2A) or glucose 

levels (Supplemental Fig. 2B) in the rat plasma even at 100 mg/kg. Cataleptic response was 

assessed by the bar test at 2 h following administration of TAK-915. TAK-915 at 10 and 100 

mg/kg did not significantly increase cataleptic response in this test (Supplemental Fig. 3). 

 

 

Discussion 

In the present study, we showed that TAK-915 works as a brain penetrant PDE2A inhibitor in 

vivo. Significant increases in cGMP levels in hippocampus were observed at 3 mg/kg and 10 

mg/kg of TAK-915 (Fig. 1B). The PDE2A occupancy levels of TAK-915 in the hippocampus 

at 3 mg/kg and 10 mg/kg were 46.6% and 63.0%, respectively (Ito et al., manuscript in 

preparation). These results suggest that more than ~45% occupancy of PDE2A by TAK-915 

would be sufficient to produce a significant increase in cGMP levels in the hippocampus. In 

contrast, TAK-915 did not affect cAMP levels in the brain under our experimental conditions 

(Fig. 1). There is a possibility that we could not detect a significant effect on cAMP levels by 
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TAK-915 because of the high baseline for cAMP contents in brain tissues (Fig. 1). However, 

these observations are in accordance with previous reports that PDE2A inhibition mainly 

influences cGMP levels rather than cAMP levels (Suvarna and O'Donnell, 2002; Boess et al., 

2004). Additionally, TAK-915 dose-dependently increased cGMP levels in rat primary 

neurons whereas a significant change of cAMP levels was not observed (Supplemental Fig. 4). 

These findings suggest that PDE2A plays an important role in degrading cGMP levels in the 

brain although PDE2A can hydrolyze both cAMP and cGMP. Other PDE family members 

with higher affinities for cAMP such as PDE4 and PDE10 might be responsible for degrading 

cAMP in the brain. 

 

Cyclic AMP and cGMP are differentially involved in distinct phases of memory processing 

such as acquisition, and consolidation (Bernabeu et al., 1996; Rutten et al., 2007; Bollen et al., 

2014; Akkerman et al., 2016; Lueptow et al., 2016). Cyclic GMP-PKG signaling mediates 

acquisition and early consolidation, whereas cAMP-PKA signaling mediates acquisition and 

late consolidation. In the passive avoidance task, oral administration of TAK-915 at 2 h prior 

to acquisition trial attenuated MK-801-induced episodic memory deficits (Fig. 3). As 

TAK-915 increased cGMP levels in the rat brain at 2 h after administration (Fig. 1), the 

enhancement of memory acquisition mediated by cGMP could contribute to the improvement 

of episodic memory observed in retention trial. Additionally, it has been reported that 
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cGMP-PKG signaling mediates early consolidation, and late consolidation requires 

cAMP-PKA signaling (Bollen et al., 2014). Taking into account the PK profile of TAK-915, it 

is possible that TAK-915 affects not only early consolidation mediated by cGMP-PKG 

signaling, but also late consolidation mediated by cAMP-PKA signaling. Further experiments 

would be required to investigate the effects of TAK-915 on cyclic nucleotides during 

behavior tasks and to clarify the temporal contribution of cyclic nucleotides on memory 

formation. 

 

Cyclic nucleotides play important roles in regulating various signal cascades including the 

NMDA receptor pathway, which are involved in synaptic plasticity such as long-term 

potentiation (Kleppisch and Feil, 2009). The hippocampal synaptic plasticity is known to be a 

key element of the neurobiological bases of cognitive function (Akhondzadeh, 1999). 

Elevated cAMP and/or cGMP lead to activation of several sequential cascades which 

phosphorylate target proteins (Lucas et al., 2000; Esteban et al., 2003; Kleppisch and Feil, 

2009). Phosphorylation of GluR1 at serine 845 has been linked to AMPA receptor trafficking 

to the plasma membrane, which is thought to influence synaptic plasticity and cognition 

(Derkach et al., 2007; Serulle et al., 2007; Shepherd and Huganir, 2007; Citri and Malenka, 

2008). Synaptic GluR1 delivery in the hippocampus has been reported to be required for the 

hippocampus-dependent learning in the passive avoidance task (Mitsushima et al., 2011). We 
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investigated the effect of TAK-915 in the hippocampal pGluR1 levels which are associated 

with activation of downstream pathway of cyclic nucleotide signaling. TAK-915 at 10 mg/kg 

significantly increased hippocampal pGluR1 in rats (Fig. 2), indicating that TAK-915 

activates the downstream pathway of cyclic nucleotide signaling in the hippocampus. The 

increased levels of pGluR1 by TAK-915 could enhance cognitive function via modulation of 

synaptic plasticity. 

 

Among several cognitive domains that are commonly disrupted in schizophrenia, deficits in 

episodic memory have shown some of the largest effect size (Schaefer et al., 2013). Deficits 

in spatial working memory also have been consistently reported in schizophrenia patients 

(Piskulic et al., 2007) and emphasized as one of the key impairments in schizophrenia by the 

Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) 

initiative (Marder and Fenton, 2004). To explore the potential of TAK-915 on episodic 

memory and spatial working memory, we investigated the effects of TAK-915 on the 

performance of the passive avoidance task and radial arm maze task in MK-801-treated rats. 

In both tasks, TAK-915 attenuated memory deficits induced by MK-801 (Fig. 3 and 4). Based 

on in vitro autoradiography studies with rat brain slices, [3H]TAK-915 accumulated to high 

levels in CA3 mossy fibers and subiculum, a structure located between the hippocampus 

proper and entorhinal cortex (Ito et al., manuscript in preparation). These brain regions play 
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pivotal roles in spatial and episodic information processing (O'Mara et al., 2009; Cerasti and 

Treves, 2010). In addition, TAK-915 significantly induced c-Fos protein expression, a marker 

of neuronal activity, in the subiculum and entorhinal cortex (Ito et al., manuscript in 

preparation). These results suggest that the pro-cognitive activities of TAK-915 in the passive 

avoidance task and radial arm maze task might be associated with neuronal activation in these 

brain regions. 

 

Social withdrawal is one of the key components of negative symptoms in schizophrenia that 

generally persists through the course of the illness and contributes to poor psychosocial 

functioning (Pogue-Geile and Harrow, 1985; Morrison and Bellack, 1987; Puig et al., 2008). 

To investigate the potential for the efficacy of TAK-915 in social withdrawal, we used a 

subchronic PCP model. PCP is known to produce schizophrenia-like symptoms in humans 

(Allen and Young, 1978; Morris et al., 2005) and social interaction deficits produced by 

subchronic treatment with PCP in rodents resemble the negative symptoms, particularly 

social withdrawal (Jenkins et al., 2008; Neill et al., 2014). As shown in Figure 5, subchronic 

PCP treatment (5 mg/kg, i.p., twice daily for 7 days) to rats significantly reduced the time 

spent in social interaction followed by at least 8-day washout, indicating that this treatment 

may cause abnormalities in neural system and/or structures associated with social behaviors. 

TAK-915 at 10 mg/kg significantly attenuated this reduction of time spent in social 
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interaction (Fig. 5). These results suggest that TAK-915 prevents social withdrawal in the 

subchronic PCP model relevant to schizophrenia. 

 

Current clinically used antipsychotic drugs with dopamine D2 blockade such as haloperidol 

lead to an activation of the indirect pathway in the striatal MSNs, which is thought to be the 

mechanism of their antipsychotic effects (Kapur and Mamo, 2003; Agid et al., 2008; Kehler 

and Nielsen, 2011; Suzuki et al., 2015). TAK-915 did not affect MK-801- or METH-induced 

hyperlocomotion, even at doses that produced a significant increase in cGMP levels in the 

striatum (Fig. 6A and 6B), and did not activate either direct or indirect pathway MSNs in the 

striatum (Fig. 6C). Our findings coincide with the observation that a PDE2A inhibitor, Lu 

AF64280, did not produce antipsychotic-like effects in PCP-induced hyperlocomotion in 

mice, or in the conditioned avoidance response in rats (Redrobe et al., 2014). In contrast to 

PDE2A inhibitors, a PDE10A inhibitor, MP-10, which showed antipsychotic-like effects in 

rodents (Grauer et al., 2009), activated both direct and indirect pathway MSNs in the striatum 

(Fig. 6C). Behavioral outcomes of PDE2A inhibition are different from those of PDE10A 

inhibition although PDE2A as well as PDE10A is highly expressed in striatal MSNs, and its 

inhibition increases cGMP levels in the striatum. As the cyclic nucleotides and their 

appropriate PDEs are confined to distinct cellular compartments (Francis et al., 2011), the 

specific PDEs may be regulating the distinct pools of cyclic nucleotides and different roles in 
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the striatal MSNs.  

 

Although the mechanism by which TAK-915 attenuates cognitive impairments and social 

withdrawal induced by NMDA receptor antagonists is still unclear, our findings suggest that 

TAK-915 provides a strategy for ameliorating these behavioral deficits through upregulation 

of cyclic nucleotides, mainly cGMP. Previous studies suggest that PDE2A inhibition can 

enhance the NMDA receptor/NO/cGMP pathway (Suvarna and O'Donnell, 2002; Boess et al., 

2004). TAK-915 attenuated cognitive deficits and social withdrawal in rats at similar dosage 

that upregulated cGMP and pGluR1 levels in the rat brain. In line with this, Lu AF64280 also 

increased cGMP levels in the hippocampus, and attenuated cognitive deficits in animal 

models of schizophrenia (Redrobe et al., 2014). These findings support the potential of 

PDE2A inhibitors to impact cognitive function and social behavior through modulation of the 

NMDA receptor/NO/cGMP pathway in the forebrain. A single infusion of SNP which 

augments the levels of NO, a key molecule downstream of the NMDA receptor, significantly 

improved multiple symptoms of schizophrenia, with effects that lasted for up to 4 weeks 

(Hallak et al., 2013). These findings support the hypothesis that the modulation of the cGMP 

signaling pathway by TAK-915 may provide beneficial clinical effects in schizophrenia. 

 

In conclusion, TAK-915 ameliorates cognitive impairments and social withdrawal induced by 
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NMDA receptor antagonists in rodents. This selective PDE2A inhibitor has therapeutic 

potential for cognitive impairments and negative symptoms in schizophrenia. 
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Figure Legends 

Figure 1. Effects of TAK-915 on cAMP and cGMP levels in the frontal cortex, hippocampus 

and striatum in rats. Vehicle or TAK-915 (1, 3, or 10 mg/kg, p.o.) was administered 2 h before 

sampling. Cyclic nucleotide contents in the frontal cortex (A), hippocampus (B), and striatum 

(C) were measured using enzyme immunoassay kits. Data are expressed as mean + S.E.M., n 

= 9 per each group. *P ≤ 0.05, **P ≤ 0.01 (versus vehicle by two-tailed Williams’ test), ††P ≤ 

0.01 (versus vehicle by two-tailed Shirley-Williams’ test). 

 

Figure 2. Effects of TAK-915 on pGluR1 levels in the rat hippocampus. Vehicle or TAK-915 

(1, 3, or 10 mg/kg, p.o.) was administered 2 h before collecting the rat hippocampus. (A) 

Representative blots were probed with primary antibodies for pGluR1, GAPDH, and total 

GluR1. (B) The intensity of the pGluR1 band for each sample was normalized to the 

corresponding GluR1 band density. Data are expressed as mean + S.E.M., n = 6 per each 

group. *P ≤ 0.05 (versus vehicle by two-tailed Williams’ test). 

 

Figure 3. Effects of TAK-915 on MK-801-induced episodic memory deficits in the 

step-through passive avoidance task in rats. Vehicle or TAK-915 (A: 1 mg/kg, p.o., B: 3 

mg/kg, p.o., C: 10 mg/kg, p.o.) was administered 2 h prior, and saline or MK-801 (0.1 mg/kg, 

s.c.) was administered 30 min prior to the acquisition trial. The latency to dark compartment 
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was measured until the rat entered the dark compartment with all four paws or remained in 

the illuminated compartment for 300 s. One day after acquisition trial, retention trial was 

conducted. Data are expressed as mean + S.E.M., n = 19 for control group in the experiment 

of 3 mg/kg, n = 20 for other groups. **P ≤ 0.01 (versus control by two-tailed Wilcoxon's test), 

†P ≤ 0.05, ††P ≤ 0.01, (versus vehicle-MK-801 by two-tailed Wilcoxon’s test). 

 

Figure 4. Effects of TAK-915 on MK-801-induced working memory deficits in the radial 

arm maze task in rats. Vehicle or TAK-915 (1 or 10 mg/kg, p.o.) was administered 2 h prior to 

testing and saline or MK-801 (0.08 mg/kg, s.c.) was administered 0.5 h prior to testing. The 

numbers of errors are expressed as mean + S.E.M., n = 6 for control group, n = 17 for other 

groups. **P ≤ 0.01 (versus control by Aspin-Welch test). †P ≤ 0.05 (versus vehicle-MK-801 

by two-tailed Williams’ test). 

 

Figure 5. Effects of TAK-915 on subchronic phencyclidine-induced social withdrawal in the 

social interaction test in rats. Saline or phencyclidine (PCP, 5 mg/kg, i.p.) was administered 

twice daily (b.i.d.) from day 1 to day 7. After an 8-day wash-out period, vehicle or TAK-915 

(3 or 10 mg/kg, p.o.) was administered 2 h before testing. Time spent in active 

non-aggressive social behavior during the 10-min session of the test was recorded. Data are 

expressed as means + S.E.M., n = 12 per each group. **P ≤ 0.01 (versus control group by 
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Student’s t-test). †P ≤ 0.05 (versus vehicle-PCP by two-tailed Williams’ test). 

 

Figure 6. Effects of TAK-915 on MK-801- or METH-induced hyperlocomotion, and on 

activation of direct and indirect pathway medium spiny neurons in rats. (A and B) Effects of 

TAK-915 on MK-801 (A) or methamphetamine (METH) (B) induced hyperlocomotion in 

rats. Vehicle or TAK-915 (1, 3, or 10 mg/kg, p.o.) was administered 2 h before the 

administration of MK-801 (0.3 mg/kg, s.c.) or METH (0.5 mg/kg, s.c.). Activity counts 

during the 2 h following the administration of MK-801 or METH were calculated. Data are 

expressed as mean + S.E.M., n = 3 for control, n = 6 for 1 mg/kg, n = 7 for other groups. **P 

≤ 0.01 (versus control by Student’s t-test). (C) Vehicle, TAK-915 (10 or 100 mg/kg, p.o.), or 

MP-10 (30 mg/kg, p.o.) was administered 3 h prior before sampling. The rat striatal mRNA 

expression levels of substance P (SP, a direct pathway marker) and enkephalin (Enk, an 

indirect pathway marker) were analyzed using gene expression assays. Data are expressed as 

mean + S.E.M., n = 4 for MP-10 treated group, n = 6 for other groups, **P ≤ 0.01 (versus 

vehicle by Student’s t-test). 
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Table 1. Plasma and brain concentrations of TAK-915 in rats 0.5, 1 and 2 h following the 

administration of TAK-915 (1, 3, or 10 mg/kg, p.o.). Data are expressed as mean ± S.D., n = 

3 each group. 

 

Rat Strain 
Dose  

(mg/kg, p.o.) 

Time 

(h) 

Plasma concentration 

(μg/mL) 

Brain concentration 

(μg/g) 

Long-Evans 

1 

0.5 0.033 ± 0.002 0.028 ± 0.003 

1 0.038 ± 0.025 0.037 ± 0.019 

2 0.023 ± 0.013 0.030 ± 0.021 

3 

0.5 0.065 ± 0.022 0.063 ± 0.017 

1 0.098 ± 0.053 0.114 ± 0.055 

2 0.121 ± 0.013 0.160 ± 0.016 

10 

0.5 0.227 ± 0.067 0.192 ± 0.042 

1 0.282 ± 0.152 0.267 ± 0.120 

2 0.326 ± 0.093 0.331 ± 0.095 

Sprague-Dawley 10 

0.5 0.119 ± 0.040 0.090 ± 0.051 

1 0.141 ± 0.025 0.134 ± 0.038 

2 0.272 ± 0.099 0.280 ± 0.114 

 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on February 13, 2018 as DOI: 10.1124/jpet.117.245506

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #245506 

48 

 

Figure 1 
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Figure 3 
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Figure 6 
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Supplemental Figure 1. Time course of pharmacokinetics profiles and cGMP levels in brain 

following administration of TAK-915 in rats. The concentration of TAK-915 in plasma (A) 

and hippocampus (B), and cGMP levels in the hippocampus (C) and in the CSF (D) are 

shown. Samples were collected 2, 4, 8, 16, and 24 h following the administration of TAK-915 

(30 mg/kg, p.o.). cGMP level was measured using enzyme immunoassay kits. Data are 

expressed as mean + S.E.M., n = 7 per each group.  
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Supplemental Figure 2. Effects of TAK-915 on plasma prolactin and glucose levels in rats. 

Blood samples were collected from the tail vein 2 h after the administration of TAK-915 (10, 

30, or 100 mg/kg, p.o.). (A) The plasma prolactin concentration was determined by enzyme 

immunoassay kits. (B) The plasma glucose concentration was determined by colorimetric 

detection using a chemical analyzer. Data are expressed as mean + S.E.M., n = 5 per each 

group.  
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Supplemental Figure 3. Effects of TAK-915 on cataleptic response in rats. Duration of 

cataleptic response was measured using the bar test 2 h after the administration of TAK-915 

(10 or 100 mg/kg, p.o.) and olanzapine (10 mg/kg, p.o.). Data are expressed as mean + 

S.E.M., n = 8 for each group, **P ≤ 0.01 (versus vehicle by Student’s t-test). †Occurrence of 

animals in a cataleptic position for more than 90 s. 
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Supplemental Figure 4. Effects of TAK-915 on cAMP and cGMP levels in the rat primary 

cortical neurons. (A) Expression of mRNA for PDE2A, PDE1C, PDE4B, PDE4D, PDE8B, 

and PDE10A in the rat cortical neurons on day in vitro (DIV) 11 were measured using 

quantitative real-time PCR. (B and C) cAMP (B) and cGMP (C) levels in TAK-915 (0.0001-1 

μM)-treated neurons were measured using enzyme immunoassay kits. Data are expressed as 

mean + S.E.M., n = 3. **P ≤ 0.01 (versus vehicle by two-tailed Williams’ test).  
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Supplementation Experimental Procedure 

 

Drugs. TAK-915 and MP-10 were suspended in 0.5% (w/v) methylcellulose in distilled water 

and administered orally (p.o.). Olanzapine was extracted from Zyprexa® (Eli Lilly and 

Company, Indianapolis, IN) at KNC Laboratories Co. Ltd. (Kobe, Japan). Olanzapine was 

dissolved in 1.5% (v/v) lactic acid. The pH of this solution was then adjusted to neutral using 

1 M NaOH and administered p.o. (+)-MK-801 hydrogen maleate (MK-801, Sigma Aldrich, 

Inc., St. Louis, USA) was dissolved in saline, and was administered subcutaneously (s.c). The 

dosages of compounds were expressed as a salt. The volume of administration was 2 mL/kg 

for p.o. and s.c. 

 

In Vivo Measurement of Cyclic Nucleotide Contents. Six-week-old male Long-Evans rats 

(Japan SLC Inc., Hamamatsu, Japan) were used for determination of cGMP levels in the CSF 

and hippocampus. Under pentobarbital anesthesia, CSF was collected from the cisterna 

magna 2, 4, 8, 16 or 24 h after the administration of vehicle or TAK-915 (30 mg/kg, p.o.). 

CSF samples were snap-frozen and maintained at -80°C until use. After collecting CSF 

samples, the animals were euthanized by a focused microwave irradiation system MMW-05 

(Muromachi Kikai Co. Ltd., Tokyo, Japan). Brain tissues were sampled and immediately 

frozen on dry ice. Samples were stored at -80°C until use. To measure cyclic nucleotide 
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contents, microwaved brain tissues were isolated and then homogenized in 0.5 N HCl 

followed by centrifugation. Concentrations of cyclic nucleotides in samples were measured 

using enzyme immunoassay kits (Cayman Chemical Company, Ann Arbor, MI) in accordance 

with the manufacturer’s instructions. Values were expressed as pmol per μL for CSF or pmol 

per mg tissue weight for the brain tissue. 

 

Measurement of Plasma Prolactin Levels. Eight-week-old male SD rats (Charles River 

Laboratories Japan, Inc., Yokohama, Japan) were administered either vehicle or TAK-915 (10, 

30, or 100 mg/kg, p.o.) after a habituation period of >30 min. Two hours after administration, 

blood was collected from tail vein into a 1.5-ml Eppendorf tube containing 25 μL of EDTA. 

Blood was immediately mixed with EDTA, placed on ice, and then centrifuged at 12,000 rpm 

for 15 min at 4°C. The supernatants were collected in another tube as plasma, and were stored 

in a deep-freezer until use. The prolactin concentrations in the plasma samples were 

measured using an ELISA kit (Bertin Pharma, Montigny le Bretonneux, France). 

 

Measurement of Plasma Glucose Levels. Seven-week-old male SD rats were fasted 

overnight and were euthanized 2 h after the administration of vehicle or TAK-915 (10, 30, or 

100 mg/kg, p.o.). Trunk blood was collected into 50-ml centrifuge tubes. Plasma glucose 

levels were measured using a model 7180 Clinical Analyzer (Hitachi High-Technologies Inc., 
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Tokyo, Japan).  

 

Bar Test. The catalepsy-like behavior of 7-week-old male SD rats was measured 2 h after the 

administration of vehicle, olanzapine (10 mg/kg, p.o.), or TAK-915 (10 or 100 mg/kg, p.o.) in 

a blind manner. Forelimbs were placed on a horizontal metal bar at a 13-cm height and the 

length of time during which both forelimbs remained on the bar (cataleptic response) was 

measured with a maximum limit of 90 s. The procedure was repeated 3 times and the 

cataleptic response time was averaged for each rat. 

 

Cell Culture. Primary cortical neurons were prepared from fetuses of rats, which were 

extracted from a mother animal at 17-18 days of gestation. Cells were isolated using 

nerve-cell dispersion solutions (Sumitomo Bakelite, Tokyo, Japan) containing papain, 

following the manufacturer’s instructions. Isolated primary cells were suspended in 

neurobasal medium (Life technologies, CA) with B-27 supplement, Penicillin-Streptomycin 

and L-Glutamine (Life technologies), and plated onto poly-L-lysine-coated 96-well culture 

plates (Sumitomo Bakelite) at a density of 5 × 104 cells/ 100 μL/well. The plates were 

incubated at 37°C under 5% CO2. Medium (100 μL) was added to each well on day in vitro 

(DIV) 3 or 4 and half of the medium was renewed on DIV 6.  
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Gene Expression Analysis. For expression analysis of PDE1C, 2A, 4B, 4D, 8B, and 10A, rat 

cortical primary neurons were isolated on DIV 11. Tissues were homogenized in QIAzol 

Lysis Reagent (QIAGEN, UK), followed by total RNA extraction using RNeasy 96 Kit 

(QIAGEN). Complementary DNA was synthesized from 1000 ng of the total RNA using 

High Capacity cDNA Reverse Transcription Kit (Life technologies). Quantitative real-time 

PCR was performed with an ABI PRISM 7900HT sequence detection system (Life 

technologies) and qPCR MasterMix Plus without UNG (Eurogentec, Belgium). Primers, 

probes and standards for PDE1C, 2A, 4B, 4D, 8B, and 10A were purchased from 

Sigma-Aldrich. All procedures were performed in accordance with the manufacturer's 

instructions. 

 

Measurement of Intracellular Cyclic Nucleotides in Primary Cortical Neurons. TAK-915 

and 3-isobutyl-1-methylxanthine (IBMX) (Sigma-Aldrich) were dissolved in dimethyl 

sulfoxide (DMSO), and were then diluted in neurobasal medium. All the solutions of 

TAK-915 and its vehicle contained 0.1% DMSO. All the solutions and vehicle were 

dispensed in a polypropylene 96-well plate and incubated at 37°C until just before use. For 

evaluating the effects of TAK-915, rat neurons on DIV 11 were rinsed with Hanks' balanced 

salt solution (Life technologies), and were incubated with TAK-915 for 30 min at 37°C. To 

inhibit the activity of other endogenous PDEs, 10 μM of IBMX was also added with 
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TAK-915. Finally, all the solutions were decanted, and the cells were dissolved in 200 

μL/well of lysis buffer. After being shaken on a plate shaker for 30 min, the cell lysates were 

transferred to a new polypropylene plate. Intracellular cyclic nucleotide concentration in the 

lysates was measured using the cAMP/cGMP enzyme immunoassay system (GE healthcare, 

UK), in accordance with the manufacturer’s instructions. 

 

Statistical Analysis. Student's t-test was carried out to assess the statistical significance of 

differences between 2 groups. In the dose-response experiments, statistical significance was 

analyzed using Bartlett’s test, which was used for testing the homogeneity of variances, 

followed by two-tailed Williams’ test (for parametric data, P > 0.05 by Bartlett’s test) or 

two-tailed Shirley-Williams test (for non-parametric data, P ≤ 0.05 by Bartlett’s test). Value 

of P ≤ 0.05 was considered significant. 

 
 




