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Abstract 

 

 Idiosyncratic, drug-induced liver injury (IDILI) typically occurs in a small fraction 

of patients and has resulted in removal of otherwise efficacious drugs from the market. 

Current preclinical testing methods are ineffective in predicting which drug candidates 

have IDILI liability.  Recent results suggest that immune mediators such as tumor 

necrosis factor-alpha (TNF) and interferon-gamma (IFN) interact with drugs that cause 

IDILI to kill hepatocytes. This proof-of-concept study was designed to test the 

hypothesis that drugs can be classified according to their ability to cause IDILI in 

humans using logistic regression modeling with covariates derived from concentration-

response relationships that describe cytotoxic interaction with cytokines.  Human 

hepatoma (HepG2) cells were treated with drugs associated with IDILI or with drugs 

lacking IDILI liability and cotreated with TNF and/or IFN.  Detailed concentration-

response relationships were determined for calculation of parameters such as the 

maximal cytotoxic effect, slope and EC50 for use as covariates for classification 

modeling using logistic regression. These parameters were incorporated into multiple 

classification models to identify combinations of covariates that most accurately 

classified the drugs according to their association with human IDILI. Out of 14 drugs 

associated with IDILI, almost all synergized with TNF to kill HepG2 cells and were 

successfully classified by statistical modeling.  IFN enhanced the toxicity mediated by 

some IDILI-associated drugs in the presence of TNF. In contrast, of 10 drugs with 

little/no IDILI liability, none synergized with inflammatory cytokines to kill HepG2 cells 

and were classified accordingly.  The resulting optimal model classified the drugs with 

extraordinary selectivity and specificity. 
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Introduction 

Idiosyncratic, drug-induced liver injury (IDILI) is a typically rare reaction that 

occurs at drug doses that are safe in the majority of patients. Cases of IDILI can be 

severe, leading to liver transplantation or death (Ostapowicz et al., 2002). In addition to 

public health concerns, IDILI is a common cause of removal of drugs from the 

pharmaceutical market due to the occurrence and severity of these reactions and to the 

poor ability of standard toxicity tests to identify drug candidates with IDILI liability before 

they reach the market (Watkins, 2005; Aithal et al., 2011). The causes of IDILI are 

unknown, but it is thought that genetic and/or environmental factors predispose patients 

to toxicity from an otherwise safe dose of a drug (Roth and Ganey, 2011). Because 

these reactions are usually rare, drugs with IDILI potential are often not identified during 

clinical trials that employ limited numbers of human subjects. More effective preclinical 

strategies to identify drug candidates with IDILI potential could inform decisions about 

whether to allow a drug candidate to proceed through the development process. An 

approach in vitro that uses cells that are readily available and easily grown in culture, 

requires little compound, employs a single, relevant endpoint and is amenable to high-

throughput format would be highly desirable. 

Development of such an approach has been challenging due to the limited 

knowledge about mechanisms underlying IDILI.  Several attempts have been made 

based on direct effects of drugs on hepatocellular biochemistry and/or on physical-

chemical characteristics of drugs (Aleo et al., 2014; Chen et al., 2013 and 2014; Choi et 

al., 2015; Khetani et al., 2013; Low et al., 2011; Morgan et al., 2013; Sakatis et al., 

2012; Schadt et al., 2015; Susukida et al., 2015; Thompson et al., 2012; Usui et al., 

2009; Ware et al., 2015; Zhang et al., 2016 a and b; Zhu et al., 2014). For the most part, 
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the performance of these (selectivity and/or specificity) has not been ideal, and, 

although it is commonly believed that activation of the immune system underlies IDILI, 

the results of such activation are typically not considered in the design.  Such 

consideration could lead to an improved approach. 

Activation of immune cells culminates in the release of immune mediators such 

as cytokines. Some recently developed animal models as well as human genetic 

association studies suggest that adaptive immunity plays a role in the precipitation of 

IDILI responses to some drugs (Chakraborty et al., 2015; Lucena et al., 2011). Mice that 

have impaired immune tolerance developed liver injury after several administrations of 

IDILI-associated drugs such as halothane and amodiaquine (Chakraborty et al., 2015; 

Pardoll et al., 2012). Although these models involving activation of the adaptive immune 

system resulted in only mild liver injury, they could represent an advance in 

understanding IDILI pathogenesis. So far, very few animal models of IDILI have been 

developed that recapitulate the severity of hepatocellular injury observed in humans. 

Most of these are based on the interaction of drugs with an activated innate immune 

system (Roth and Ganey, 2011).  Among the models based on the interaction between 

drugs and the innate immune system, the inflammatory mediators tumor necrosis factor-

alpha (TNF) and/or interferon-gamma (IFN) were critical to the pathogenesis of liver 

injury (Dugan et al., 2011; Hassan et al., 2008; Lu et al., 2012; Shaw et al., 2009a; 

Shaw et al., 2009b; Zou et al., 2009).  

Both innate and adaptive immune responses culminate in the release of these 

potentially cytotoxic, pro-inflammatory cytokines. Findings from the animal studies 

raised the possibility that IDILI-associated drugs sensitize hepatocytes to cell death 
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signaling from cytokines such as TNF and IFN (Roth and Ganey, 2011).  Indeed, using 

a series of drugs Cosgrove et al. (2009) found a correlation between IDILI liability and 

ability of drugs to synergize with cytokines to kill primary human hepatocytes in vitro. 

Using a smaller subset of drugs, they also found that their results in primary human 

hepatocytes could be reproduced using HepG2 cells, suggesting that the latter cells 

hold promise in classifying drugs according to IDILI liability. These and other studies 

suggest that IDILI-associated drugs act in part by causing stress to hepatocytes, such 

that they become susceptible to killing mediated by cytokines (Beggs et al., 2014; 

Beggs et al., 2015; Cosgrove et al., 2009; Fredriksson et al., 2011; Fredriksson et al., 

2014; Maiuri et al., 2015; Zou et al., 2009; for review, see Roth et al., 2017).  

Using HepG2 cells, we recently studied the cytotoxic interaction of TNF/IFN with 

a series of nonsteroidal anti-inflammatory drugs (NSAIDs) with various IDILI liabilities 

and also with an antibiotic, trovafloxacin (Beggs et al., 2014; Beggs et al., 2015; Maiuri 

et al., 2015).  In studies presented here, we expand on those findings with a larger set 

of drugs. Importantly, elucidation of detailed concentration-response relationships 

permitted calculation of various parameters (e.g. EC50, maximal response, slope, etc.) 

that we then incorporated into statistical models to evaluate the ability of this approach 

to classify drugs according to their association with IDILI. The results suggest a highly 

promising, in vitro approach to predict IDILI liability. 
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Materials and Methods 

Materials 

 All drugs were purchased from Sigma-Aldrich (St. Louis, MO) or Santa Cruz 

Biotechnology (Dallas, TX) unless otherwise noted. Recombinant human TNF and IFN 

were purchased from R & D Systems (Minneapolis, MN) or Millipore (Billerica, MA). 

Phosphate-buffered saline (PBS), Dulbecco’s Modified Eagles Medium (DMEM), fetal 

bovine serum (FBS), Antibiotic-Antimycotic (ABAM) and 0.25% Trypsin-EDTA were 

purchased from Life Technologies (Carlsbad, CA).  

 

Cell culture 

 Human hepatoma HepG2 cells (American Type Culture Collection, Manassas, 

VA) were grown in 25-cm2 tissue culture flasks, maintained in DMEM supplemented 

with 10% FBS and 1% ABAM in a humidified incubator at 37°C under 95% air and 5% 

CO2. Cells were passed or used for experiments when they reached approximately 80% 

confluence. Cells were used at passage 6-16; at higher passage number, the responses 

became less consistent and, in some cases, less robust. 

 

IDILI classification 

 The set of 24 drugs evaluated in this study were classified as being associated 

with (IDILI+) or not associated with IDILI (IDILI−). Classification was based on a set of 

criteria established by Xu et al. (2008). Table 1 lists the drugs evaluated in this study, 

their maximal plasma concentration (Cmax) after pharmacologic dosing in human 

patients and their IDILI classification. The drugs that were used span several 
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therapeutic classes (i.e., antibiotics, anti-cancer, anti-epilepsy, anti-diabetes, 

anxiolytic/neuroleptic/antidepressant/antipsychotic, and nonsteroidal anti-inflammatory 

drugs). Most of the IDILI+ drugs we chose have caused hepatocellular injury in people, 

although some (flucloxacillin, chlorpromazine, flutamide, clavulanate) have been 

associated with mixed or cholestatic liver damage. Some of the IDILI+ drugs 

(chlorpromazine, diclofenac and trovafloxacin) produced liver injury in experimental 

animals when coupled with an inflammatory stimulus (Buchweitz et al., 2002; Deng et 

al., 2006; Shaw et al. 2009b).  

 

Cytotoxicity assessment 

HepG2 cells were plated at a density of 4 X 104 cells per well in black-walled, 96-

well, tissue culture plates and were allowed to attach overnight before being treated with 

compounds. Drugs were reconstituted in vehicles consisting of sterile water or DMSO 

(concentration less than 0.5%). Cells were treated with various concentrations of the 

drug or its vehicle (control) alone or in combination with the cytokines TNF (10 ng/ml) 

and/or IFN (10 ng/ml) or their PBS vehicle (VEH). Cytotoxicity was evaluated as lactate 

dehydrogenase (LDH) activity released from the cells into culture medium using the 

Homogeneous Membrane Integrity Assay kit from Promega (Madison, WI). A 

spectrophotometric method was used to measure percent LDH release in cases in 

which the drug interfered with the fluorescence-based assay, (Vanderlinde, 1985).  

Concentration-response curves were generated for 24 drugs, 14 of which are 

associated with human IDILI and 10 of which are not.  Cells were treated with drug 

concentrations generally ranging from 0 to 100 times the Cmax observed in human 
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patients. This range of concentrations is based on scaling factors described in Xu et al., 

(2008) and accounts for variability in Cmax as well as exposure of the liver to greater 

concentrations. The cytokine concentrations used in this study are within 10-fold of the 

concentrations found in serum of human patients undergoing an inflammatory response 

(Pinsky et al., 1993; Taudorf et al., 2007). If a cytotoxic response was observed but did 

not reach a plateau by the 100 X Cmax concentration, further testing was performed 

with larger concentrations of drug to generate a complete (sigmoidal) concentration-

response curve. Typically, the range of drug concentrations included at least two that 

were without effect, two defining the maximal effect and two surrounding the EC50.  

This was necessary because four-parameter logistic modeling used in the statistical 

analysis requires well defined, sigmoidal concentration-response curves. Cells were 

exposed to drug/cytokine combinations for 24 hours. This time was chosen based on 

previous results demonstrating that cytotoxicity from drug/cytokine exposure begins 

within 24 hours (Beggs et al., 2014; Maiuri et al., 2015). For analysis of drug 

concentration-response data, concentrations of each drug were expressed as a fraction 

of its Cmax.  

 

Statistical analysis 

 The statistical approach used in this study can be divided into three phases:  

1) drug concentration-response determination and covariate development using four-

parameter logistic models, 2) classification model development using logistic regression 

models, and 3) analysis of classification accuracy with receiver operating characteristic 

(ROC) curves. 
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Defining covariates: four-parameter logistic concentration-response model.  In 

the first phase, variables (potential covariates) for use in the classification analysis were 

defined from the analysis of drug concentration-response data. Initially, a one-way 

analysis of variance (ANOVA) was used as an omnibus test to determine if a particular 

treatment (e.g. drug alone or in combination with TNF and/or IFN) caused a significant 

change in LDH release relative to baseline (i.e., LDH release in the absence of drug, 

hereafter designated “min”). The criterion for significance for the ANOVA was set at 

α=0.01. A 1% level of significance was used to rule out more vigorously marginal 

relationships between concentration and response.  For treatments that did not result in 

a significant change in LDH above min (p > 0.01), the following was assumed for the 

purpose of concentration-response modeling: the minimum LDH response (min) = the 

maximum LDH response (max). For drug/cytokine treatment combinations that did 

result in a statistically significant LDH response, the concentration-response data were 

modeled using a four parameter logistic function: 

 

LDH(x) = min +
max − min

1 + (x
EC50⁄ )slope

  

 

where LDH(x) is the percentage of LDH released at a given concentration x; x = 

[drug]/Cmax;  min = the % LDH release at 0 drug concentration (i.e., baseline); and max 

= the maximal LDH response (i.e., maximum % LDH release).  From this equation, the 

drug concentration associated with 50% maximal response (EC50) and the slope of the 

concentration-response curve were calculated. The four-parameter logistic models were 
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generated using R statistical software (R package “drc”) (R Core Team, 2015; Ritz and 

Streibig, 2005). 

 In addition to slope and EC50, several other “base covariates” were calculated 

from the concentration-response curves for use in further analyses.  These were 

calculated for each of the 96 drug/cytokine treatment combinations evaluated in this 

study (24 drugs X 4 cytokine combinations) (Supplemental tables 1-9). Delta was 

defined as max minus min.  In addition to the covariates determined from concentration-

response curves, Cmax was considered as another base covariate. 

Similar to EC50, the covariate EC10 represents the [drug]/Cmax value 

associated with a 10% increase above min relative to max and was determined by the 

equation: 

 

EC10 = D10 ∙ EC50 ∙ 9
1

slope⁄
 

 

where D10 is a categorical variable related to reaching a threshold LDH response 

above which a drug is classified as positively associated with IDILI.  D10 is defined as 0 

if Delta < 10 % LDH release and as 1 if Delta > 10 % LDH release.  

The base covariate R10 represents the [drug]/Cmax value associated with an 

increase in 10 LDH percentage points above min for a particular treatment condition 

and was determined by the equation:  

 

R10 = EC50 ∙ [
Delta

10
− 1]

1
slope⁄
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R10 was considered to be 0 when the Delta < 10 % LDH (i.e. when D10 = 0).  

From the base covariates defined above, several other covariates were derived.  

These included EC50 quotient, EC10 quotient, R10 quotient, Deltadiff and TNF change. 

Each of these “derived” covariates is explained in more detail below. 

EC50 quotient, EC10 quotient and R10 quotient represent the ratio between the 

EC50, EC10 or R10 of the drug/cytokine concentration-response curve and the 

respective value for the drug/VEH concentration-response curve. In some instances, the 

value derived from this calculation is indeterminate (i.e. when the denominator = 0). In 

order to incorporate the quotient values into the classification models described below, 

the categorical variable “Q” was used to eliminate the possibility of the quotient being 

indeterminate. Q is defined as 0 if Delta VEH and/or Delta cytokine is < 10% LDH and 1 

if both Delta VEH and Delta cytokine are ≥ 10% LDH. For the purpose of calculating 

EC50 quotient the following condition was applied: if Q = 0, then EC50 quotient = 0 and 

if Q = 1, then EC50 quotient = EC50 VEH/EC50 cytokine. The same condition was 

applied for calculation of EC10 quotient and R10 quotient.  

 Deltadiff represents the difference between the Delta of the drug/cytokine 

concentration-response curve and the Delta of the drug/VEH curve. In other words, 

Deltadiff = (Delta cytokine) – (Delta VEH). Figure 1 graphically illustrates several of the 

covariates defined above. Supplemental Tables 1-9 list the values of all of the 

covariates computed in this study.  In addition to the covariates derived from the 

concentration-response curves, the maximal therapeutic plasma drug concentration 

(Cmax) in human patients was used in some models (Table 1).   
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 TNF change is a categorical variable related to the alteration in the drug-induced 

cytotoxic response in the presence and absence of TNF, determined as: 

TNF change = D10TNF − D10VEH 

Recall that D10 is defined as 0 if Delta ≤ 10 % change in LDH release, and D10 is 

defined as 1 if Delta > 10 % change in LDH release. Accordingly, TNF change = 1 if the 

TNF curve has a Delta > 10% LDH release and the VEH curve has a Delta ≤ 10 % LDH 

release; TNF change = 0 in all other situations. 

 Classification modeling using defined covariates.  In the second phase of 

analysis, classification models were developed using logistic regression with covariates 

as independent variables in the analysis and known IDILI classification as the 

dependent variable.  Ability to classify drugs accurately was evaluated using the known 

IDILI classifications shown in Table 1.  A model selection process was used to 

determine if a covariate or set of covariates is associated with IDILI liability. Covariates 

were first evaluated individually to determine how well a particular covariate classified 

drugs according to IDILI liability, and then covariates were evaluated in combination. 

Combinations of covariates were selected to maximize the ability of the model to 

distinguish between drugs associated or not with IDILI. Specifically, covariates that 

describe changes in efficacy (Delta, Deltadiff, etc.) were paired with covariates that 

describe changes in potency (EC50, EC10, R10, etc.) to find covariate combinations 

that led to models that most accurately discriminated between drugs that are and are 

not associated with IDILI. The best-fit logistic regression models were used as 

classification models to compute a probability that a given drug is associated with IDILI. 

The logistic regression models follow the equation: 
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𝑦̂𝑖 = prob(IDILI = 1|𝐱𝒊) =  
eβ0+ Σβi𝐱i

1 + eβ0+ Σβi𝐱i
 

 

where 𝑦̂𝑖 is the calculated (predicted) probability that drug i with a vector of covariates xi 

is associated with IDILI. The β coefficients (β0, the regression intercept; and βi, the 

regression slopes for model covariates, xi) were derived from the logistic regression 

models using 1) combinations of the covariates (xi) generated by concentration-

response modeling for each of the 24 drugs evaluated in this study, and 2) the true IDILI 

classification for the dependent variable yi (i.e., 1 for IDILI+ drugs and 0 for IDILI- 

drugs). For treatments that did not result in a significant change in LDH above min (p > 

0.01), a value of 0 was assigned for covariates derived from EC50 for purposes of 

calculating βi.  The regression coefficients (βi) were calculated using Firth’s method, 

which eliminates bias when estimating the value βi (Firth 1993). Firth’s method was 

necessary since many of the covariates used in this study exhibited quasi-complete 

separation. This occurs when a covariate almost perfectly separates observations into 

the appropriate categories. In this study, several covariates almost completely 

separated drugs according to their IDILI liability. When separation or quasi-complete 

separation occurs, use of the standard method (i.e., maximum likelihood estimation) 

provides biased, unreliable estimates of βi. Firth’s method uses a penalized likelihood 

regression to rectify this and is an appropriate method to use for estimating βi when 

quasi-complete separation of data occurs (Firth, 1993). All logistic regression models 

were computed using R statistical software (R package “logistf”) (R Core Team, 2015; 

Heinze et al., 2013).  
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Receiver operating characteristic (ROC) analysis.  In the third phase of the 

statistical approach, the classification models, generated as logistic regression models 

using single covariates or combinations of covariates, were evaluated by ROC analysis 

to determine which model and corresponding sets of covariates led to the most accurate 

classification of drugs according to their potential to cause IDILI. An ROC curve was 

created for each model by graphing the true positive rate (sensitivity; i.e., proportion of 

drugs correctly classified as associated with IDILI) against the false positive rate (1- 

specificity; i.e., proportion of drugs incorrectly classified as associated with IDILI) at 

various probability cutoff thresholds (k). ROC curves were generated using the R 

package, pROC (R Core Team, 2015; Robin et al., 2011). An area under the curve 

(AUC) and confidence interval was computed for each ROC curve (where each logistic 

regression model has one ROC curve). Plots depicting the AUCs and 95% confidence 

intervals of the ROC curves were generated for the purpose of comparing multiple 

logistic regression models using the R package, Metafor (Viechtbauer et al., 2010). 

Corresponding to each ROC curve is an optimal threshold value (k*), the threshold 

yielding the highest point of accuracy on the curve (i.e., the point nearest the point (1,1) 

on the curve).  Thus, each ROC curve has a corresponding AUC and an optimal cutoff 

(k*) that corresponds to the highest point of accuracy on that ROC curve.   

Combinations of covariates were strategically selected for evaluation based on 

what was deemed to lead to the most accurate classification of drugs. ROC curves and 

corresponding whisker plots were generated to illustrate graphically the ability of each 

classification model to classify drugs accurately.  This allowed for selection of optimal 

set(s) of covariates for accurate drug classification according to IDILI liability. Our goal 
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was to achieve a classification model and a corresponding set of covariates with an 

AUC as close to 1 as possible with the narrowest 95% confidence interval.  A model 

that is able to classify drugs perfectly according to their potential to cause IDILI would 

have an ROC curve with an AUC = 1.  DeLong’s method was used to determine if there 

were statistically significant differences among ROC curves (DeLong et al., 1988).  

A separate classification analysis was also performed to evaluate the ability of 

Cmax to classify a larger set of drugs with known IDILI potential. Cmax values were 

obtained for 272 drugs from a study conducted by Xu et al. (2008) and evaluated using 

ROC analysis. 
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Results 

 

Drug/cytokine cytotoxicity: concentration-response in vitro 

 HepG2 cells were treated with various concentrations of a drug alone or in 

combination with TNF and/or IFN, and cytotoxicity was assessed 24 hours later as 

increased LDH activity in the culture medium. Detailed cytotoxicity concentration-

response curves were generated for 24 drugs (Table 1): 14 drugs that are associated 

with IDILI and 10 that are not (negative comparators) (Figure 2, Supplemental Figure 4). 

Of the 14 drugs associated with IDILI, almost all synergized with cytokines in causing 

cell death (Figure 2). Four of these (diclofenac, bromfenac, nimesulide and clavulanate) 

caused no cytotoxicity on their own but synergized with TNF to cause cytotoxicity. Nine 

IDILI-associated drugs led to a statistically significant increase in LDH release (relative 

to no drug) in the absence of cytokines (valproic acid, doxorubicin, telithromycin, 

ibuprofen, naproxen, chlorpromazine, flutamide, trovafloxacin and isoniazid). 

Interestingly TNF significantly enhanced the cytotoxicity mediated by eight of these 

drugs (valproic acid, doxorubicin, telithromycin, ibuprofen, naproxen, chlorpromazine, 

trovafloxacin and isoniazid).  In contrast to TNF, IFN did not interact with any drug to 

cause cytotoxicity.  However, coexposure to IFN enhanced the cytotoxic interaction 

between TNF and several of the drugs (diclofenac, bromfenac, trovafloxacin, valproic 

acid, chlorpromazine, telithromycin and isoniazid). Two of the 14 IDILI-associated drugs 

(flutamide and flucloxacillin) did not synergize with cytokines to kill HepG2 cells. Of the 

10 negative comparators, pioglitazone was the only drug that caused cytotoxicity on its 

own; however, this effect was not enhanced by the addition of cytokines. With the 
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exception of azithromycin, which was modestly cytotoxic in the presence of TNF/IFN, 

none of the remaining negative comparator drugs synergized with cytokines to kill 

HepG2 cells (Figure 2).  

 

Classification models and ROC analysis 

 Data used in the classification models consisted of covariate data generated as 

described above (i.e., parameters of the concentration-response curves for each of the 

24 drugs and additional variables derived from these parameters) in addition to daily 

dose and Cmax for each drug.  Daily dose and Cmax values are shown in Table 1.  

Supplemental Tables 1 – 9 summarize parameters of the concentration-response 

curves for each drug and all derived covariates. Numerous logistic regression models 

were constructed beginning with models employing each covariate alone and then with 

models populated with combinations of covariates (Supplemental Table 10).  All 

classification models were evaluated for their ability to classify the 24 drugs using ROC 

analysis.  Findings are described below.  

 

Cmax is moderately associated with IDILI potential 

 IDILI reactions were once thought not to be dose-related; however, the 

observation that most drugs that have been withdrawn from the market or have received 

a black box warning due to IDILI were prescribed at doses greater than 50 mg/day 

suggested that daily dose plays some role in the propensity of a drug to cause IDILI 

(Uetrecht, 1999). Based on this observation, we evaluated how accurately the daily 

dose or the Cmax of a drug classifies drugs listed in Table 1 according to their potential 
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to cause IDILI.  Logistic regression modeling and ROC analysis as described in 

Methods were used.  The AUC of the ROC curve generated for the model incorporating 

daily dose was 0.64 with a 95% confidence interval of [0.37, 0.9] (Figure 3). Since the 

95% confidence interval for the ROC curve from the daily dose model contained the 

value 0.5, representing no better than random classification, it cannot be concluded that 

the magnitude of the daily dose is predictive of IDILI for this drug set. A larger set of 

drugs may be needed to determine if daily dose can predict IDILI.  

The AUC of the ROC curve generated for the model employing Cmax for our set 

of 24 drugs was 0.80, with a 95% confidence interval of [0.61, 0.98] (Figure 3). Similar 

results were obtained by Shah et al. (2015) for a set of 125 drugs. These results 

suggest that Cmax is associated with IDILI.  

 To determine if our set of 24 drugs is representative of a larger set of drugs and 

to evaluate further the ability of Cmax to predict IDILI liability, Cmax values were 

obtained for 272 drugs from a study conducted by Xu et al. (2008) and converted to μM 

units. Cmax is significantly associated with IDILI for this larger dataset (βCmax= 0.044, 

p<0.001). The AUC of the ROC curve generated from this larger set of drugs is 0.70 

with a confidence interval of [0.64, 0.76]. The ROC curves derived from the set of 24 

drugs and from the set of 272 drugs are depicted along with their 95% confidence 

intervals in Supplemental Figure 2. The confidence interval corresponding to the ROC 

curve derived from the set of 272 drugs (shaded red) is contained within the confidence 

interval for the ROC curve derived from the set of 24 drugs (shaded grey).  This 

suggests that the smaller set of drugs adequately represents the relationship between 

Cmax and IDILI potential seen in a much larger set of drugs.   
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ROC analysis of models incorporating the base covariates 

 Almost all of the 14 IDILI-associated drugs synergized with TNF to cause death 

of HepG2 cells, and some of them were cytotoxic by themselves (Figure 2). These 

results suggested that cytotoxic synergy with TNF might be associated with IDILI 

liability. Accordingly, classification models were constructed using base covariates from 

the concentration-response curves to determine whether the presence of TNF improved 

a model’s ability to classify drugs according to IDILI liability. The base covariates were 

modeled for each drug individually; base covariates that were at least moderately 

associated with IDILI liability included Delta VEH, Delta TNF, EC50 VEH, EC50 TNF, 

EC10 VEH, EC10 TNF, R10 VEH and R10 TNF. AUCs and 95% confidence intervals 

are shown in Figure 4A for each of these covariates. It can be seen that the confidence 

interval for each of these covariates does not contain the value 0.5, indicating a 

significantly better than random ability to classify the 24 drugs according to IDILI 

potential. The model incorporating Delta TNF produced the ROC curve with the greatest 

AUC (0.93) and narrowest 95% confidence interval (0.83, 1.00) suggesting that, of 

these models, it provided the most accurate classification of the drugs (Figure 4A). 

Furthermore, the base covariates that described the response to drug/TNF (labeled 

‘TNF’) led to models that produced ROC curves that had improved AUCs with narrower 

confidence intervals than those that described the response to drug alone (i.e., labeled 

‘VEH’) (Figure 4A, B).   
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ROC analysis of models incorporating derived covariates 

 Probability models were also generated using the individual covariates that were 

derived from the base covariates: EC50 quotient, EC10 quotient, R10 quotient, and 

Deltadiff.  In Figure 5A and B, the EC50, EC10 and R10 quotient covariates represent 

the ratio of the drug/TNF concentration-response curve to the drug/VEH curve, and 

Deltadiff represents the difference between the Deltas from the drug/TNF concentration-

response curve and the drug/VEH curve. Each of these covariates (except Deltadiff) 

was moderately associated with IDILI liability (Figure 5A, B); however, the ROC curves 

generated based on these models did not have greater AUCs or narrower confidence 

intervals than the models produced by incorporating the base covariates (compare 

Figures 4 and 5).   

 

Addition of IFN data did not improve the classification of drugs 

 None of the drugs synergized with IFN in the absence of TNF to cause 

cytotoxicity, but several IDILI-associated drugs synergized with IFN in the presence of 

TNF (Figure 2).  Accordingly, we examined whether incorporation of the TNF/IFN 

responses would improve the performance of models that employed only TNF 

responses. The drug/TNF/IFN models tended to have smaller AUCs and larger 

confidence intervals than the drug/TNF models (Supplemental Figure 3), indicating that 

the addition of data describing the IFN response did not enhance the ability of models to 

classify drugs.    

 

 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on July 7, 2017 as DOI: 10.1124/jpet.117.242354

 at A
SPE

T
 Journals on A

pril 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #242354 
 

22 
 

ROC analysis of models incorporating combinations of the base and derived covariates 

 Although it was illustrative to evaluate the base and derived covariates 

individually, we hypothesized that incorporation of several covariates into a model would 

lead to more accurate classification of drugs than incorporation of a single covariate. 

Accordingly, various combinations of the base and derived covariates were evaluated to 

identify a set of covariates that led to the most accurate drug classification. Combining 

base and derived covariates led to several models with greater AUCs and narrower 

confidence intervals than the models incorporating only a single covariate.  A 

representative set including the best performing models is presented in Figure 6. 

Furthermore, when Cmax was added as a covariate, it improved the performance (AUC 

and confidence interval) of some models but not others (Figure 6). Supplemental Table 

10 shows the coefficients (beta values) and their p-values for the models shown in 

Figure 6. 

Some of the combination models were associated with remarkably high AUCs, 

and some of these were associated with small confidence intervals.  There were no 

statistically significant differences among the models with an AUC > 0.95 as determined 

by DeLong’s method for comparing ROC curves (p > 0.05).  The ROC curves that met 

this criterion (AUC > 0.95) are shown in Figure 7.  
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Discussion 

 The purpose of this proof-of-concept study was to develop and evaluate an in 

vitro approach combined with statistical modeling to classify drugs according to their 

potential to cause IDILI. The overall hypothesis tested was that the ability of a drug to 

synergize with the cytokines TNF and/or IFN to kill HepG2 cells is associated with the 

drug’s propensity to cause IDILI in humans. Detailed concentration-response curves 

were generated, and this proved to be critical for development of a statistical 

classification model with the capacity to classify drugs correctly.  

 Since it has been suggested that the daily dose of a drug might be associated 

with its potential to cause IDILI and since dose is often related to Cmax, we evaluated 

how well daily dose or Cmax classifies drugs according to their IDILI liability. Daily dose 

was not effective at classifying the set of 24 drugs according to their potential to cause 

IDILI (Figure 3). Plasma drug concentration is used as a surrogate for tissue or 

intracellular concentration, which is difficult to obtain. The relationship between Cmax 

and the concentration of free drug in liver cells can differ among drugs. The 

intrahepatocellular concentration of drugs can be affected not only by physicochemical 

properties of the drug, but also by uptake and efflux mechanisms and metabolism as 

well as binding to cellular or acellular components (Chu et al., 2013).  Accordingly, the 

intrahepatocellular drug concentration can for some drugs be many times the plasma 

concentration.  Despite this potential disconnect Cmax was somewhat effective at 

classifying the set of 24 drugs, suggesting that the magnitude of plasma drug 

concentration is a contributor to IDILI.  However, it is clear that the use of Cmax as the 
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sole covariate did not lead to a model with great classification ability (Supplemental 

Figure 2).  

 We then determined whether cytotoxicity induced by treatment with drugs in the 

absence of cytokines could produce a high performing model. Models employing only 

individual base covariates describing cytotoxicity in the absence of TNF performed no 

better than Cmax (compare Figures 3 and 4). In contrast, the models incorporating TNF 

performed significantly better in classifying the drugs.    

The derived covariates, when evaluated individually, did not produce more 

desirable ROC curves than the base covariates (compare Figure 5 with Figure 4). 

However, when covariates that account for TNF-induced changes in potency and/or 

efficacy were combined with those derived from drug alone, much better models 

resulted (Figure 6, Figure 7). Furthermore, incorporating Cmax into these models led to 

the ROC curve with the greatest AUC (0.99) and narrowest confidence interval [0.97, 1] 

(Figure 6, Figure 7). The coefficients and test statistic values for this best performing 

classification model, which incorporated Deltadiff, EC50VEH, EC50TNF, DeltaVEH and 

Cmax as covariates, are listed in Table 2.  A cutoff value is an estimated probability 

above which a drug would be classified as associated with IDILI (1 = associated with 

IDILI) and below which a drug would be classified as not associated with IDILI (0 = not 

associated with IDILI). The optimal cutoff threshold is the probability cutoff that permits 

the most accurate classification of drugs according to IDILI liability for a given model, 

i.e., the point on the ROC curve closest to the coordinate (1,1). Table 3 shows the 

sensitivity and specificity of the best performing model when the optimal cutoff threshold 

was applied. Based on this model, the estimated probability that a specific drug from the 
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set of 24 drugs is associated with IDILI is shown in Table 4.  As can be seen in the 

Table, this classification model led to almost complete separation between IDILI-

associated drugs and drugs that are not associated with IDILI. If this model were to be 

used in a preclinical safety evaluation setting to predict IDILI potential of a set of drugs, 

the user could either select the optimal cutoff threshold or choose a cutoff threshold that 

is either more or less sensitive depending on what false positive rate is deemed 

acceptable. 

 IFN contributed to hepatotoxicity in several animal models of IDILI and was 

therefore of interest to include in our examination (Shaw et al., 2009; Hassan et al., 

2008; Dugan et al., 2011; Roth et al., 2017). Interestingly, IFN did not synergize with 

any of the drugs in the present study to cause cell death (Figure 2); however, as we 

showed previously for diclofenac (Maiuri et al., 2015), IFN enhanced the cytotoxic 

interaction between several IDILI-associated drugs and TNF. What underlies this 

pattern of response to IFN is not known; however, IFN can increase expression of TNF 

receptors (Wang et al., 2006) and conversely, TNF can increase IFN signaling (Han et 

al., 1999; Robinson et al., 2003). These actions could explain why IFN had an effect 

only in the presence of TNF. 

 We evaluated whether a change in the concentration-response curves due to 

exposure to IFN could improve the classification of drugs. The classification model 

developed from the covariates that described the response to drug/TNF/IFN produced 

ROC curves that were not improved from those incorporating covariates that describe 

the response to drug/TNF (Supplemental Figure 3).  These results indicate that 

cytotoxic synergy between IDILI-associated drugs and TNF is sufficient to produce a 
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statistical model that accurately classifies drugs irrespective of the presence of IFN. 

They also suggest that the cell killing activity of IFN depends on the presence of TNF.  

It is worth considering the possibility that other cytokines play a role in the 

pathogenesis of IDILI, and it would be interesting to examine whether other cytokines 

could interact with drugs to cause cytotoxicity in vitro and/or synergize with TNF to 

enhance cytotoxicity. Cosgrove et al. (2009) performed a study examining drug/cytokine 

interactions in vitro and found that IL-1β in combination with TNF and IFN interacted 

with some drugs to cause cytotoxicity. It is unclear to what extent IL-1β contributed to 

this interaction. However, Shaw et al. (2009) demonstrated that IL-1β levels are 

elevated in mice cotreated with trovafloxacin and LPS, raising the possibility that IL-1β 

plays a role in the hepatotoxicity observed in these mice. Whether or not the presence 

of IL-1β or other immune mediators would improve the ability of the models presented 

herein to classify drugs is unknown but worth considering in future studies.   

We reported recently that IFN-mediated enhancement of NSAID/TNF-induced 

cytotoxicity occurs with some IDILI-associated NSAIDs but not others, and this effect 

was related to chemical structure and to the magnitude of clinical concern about IDILI 

for specific NSAIDs (Maiuri et al. 2015). Specifically, several acetic acid derivatives that 

are associated with IDILI of greatest clinical concern synergized with TNF to cause 

HepG2 cell death, and IFN enhanced this effect.  In contrast, two propionic acid 

derivatives, which are associated with IDILI that is of less clinical concern, also 

synergized with TNF, but IFN was without effect. In the analysis presented here, we 

were seeking a binary answer – IDILI potential yes or no – and inclusion of IFN did not 

affect the outcome. It would be interesting if the ability of drugs to sensitize cells to the 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on July 7, 2017 as DOI: 10.1124/jpet.117.242354

 at A
SPE

T
 Journals on A

pril 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #242354 
 

27 
 

harmful effects of IFN could distinguish drugs of greater concern clinically for IDILI from 

those of less concern.  Clearly, a larger number of drugs would need to be analyzed to 

evaluate this.   

 A potential challenge that might be faced when employing this assay during 

preclinical safety evaluation is the inability to generate complete concentration-response 

relationships due to solubility limitations of the drug or other factors. Computing 

covariates using the four-parameter logistic model requires complete concentration-

response curves; however, we defined several covariates that can be computed without 

the need to generate a complete concentration-response curve. One of these is R10, or 

the drug concentration at which there is an increase of 10% LDH activity above min. 

Another covariate that could be computed without the need to generate a complete 

concentration-response curve we defined as “TNF change.” TNF change identifies 

those drugs only cytotoxic in the presence of TNF without the need for complete 

concentration-response curves. Interestingly, combining the covariates R10quotient 

(i.e., R10TNF/R10VEH) and TNF change resulted in an ROC curve with an AUC = 0.88 

and a 95% confidence interval of [0.75, 1] (Supplemental Figure 1). This suggests that a 

model that leads to good classification of drugs according to their potential to cause 

IDILI can be generated without the need to delineate complete concentration-response 

relationships. This model might be useful for predicting IDILI-potential of drug 

candidates when availability of compound is limited or when solubility limitation prevents 

generation of a complete concentration-response curve. 

 Although HepG2 cells are human-derived, their use for drug toxicity evaluation 

has been criticized because they have limited capacity to bioactivate drugs to toxic 
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metabolites via cytochrome P450-mediated pathways.  Despite this potential limitation, 

Cosgrove et al. (2009) found that HepG2 cells behave similarly to primary human 

hepatocytes in their cytotoxic responses to drug-cytokine combinations.  We have also 

observed comparable responses in primary murine hepatocytes (Zou et al., 2009; 

Beggs et al., 2014; Maiuri et al., 2015).  These findings suggest either that (1) metabolic 

activation of drugs by HepG2 cells, although limited, is sufficient to stress cells so that 

they respond to cytokine exposure by dying or (2) metabolism is not generally needed 

for the cytotoxic interaction of drugs with cytokines.   

Visual inspection of Figure 2 revealed three IDILI-positive drugs for which there 

was modest (flutamide, clavulanate) or no (flucloxacillin) response. Despite this, 

statistical modeling classified flutamide and clavulanate as IDILI positive. In the case of 

flucloxacillin, analysis of variance of the concentration-response data determined that 

there was no statistically significant increase in LDH alone or in the presence of TNF. 

As a result, covariates were set to zero with the exception of Cmax, and the calculated 

probability for flucloxacillin was low (0.154; see formula in Methods). In contrast, 

analysis of variance applied to the concentration-response data for flutamide alone and 

in combination with TNF detected very small but statistically significant increases in 

LDH release relative to baseline (Figure 2, Supplemental Figure 1). Consequently, 

nonzero covariates were generated from the concentration-response data. Similarly for 

clavulanate, there was an interaction with TNF that was small but statistically significant, 

resulting in nonzero covariates. These nonzero covariates led to calculated probabilities 

that, at the optimal cutoff, identified flutamide and clavulanate correctly as IDILI-positive.  

The pronounced reproducibility of even small changes using HepG2 cells and the 
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apparent sensitivity of the model in these two cases may be a strength of this approach 

to classification. 

Flutamide is metabolized in vivo to 2-hydroxyflutamide, which is more potent 

pharmacologically as an anti-androgen (Brogden et al., 1989) and is thought to 

contribute to IDILI responses (Ball et al., 2016).  To strengthen this proof-of-concept 

study and to evaluate further the modest cytotoxic effect of flutamide, we investigated 

the performance of 2-hydroxyflutamide in the assay.  Concentration-response curves 

were generated (Supplemental Figure 5), and covariates derived from the curves were 

used in the best performing classification model. A high probability for association with 

IDILI was calculated (0.999) for 2-hydroxyflutamide. Further, we replaced the flutamide 

covariate data in the best-performing model with the 2-hydroxyflutamide covariates. 

Recalculation of the best-performing classification model yielded coefficients similar to 

those presented in Table 2 (Supplemental Table 11), the same AUC for the ROC curve, 

and no change in classification of drugs as IDILI positive or negative. These results 

strengthen the conclusions based on the modest cytotoxic response to flutamide and 

support the approach to classifying IDILI-associated drugs. 

 The observation that flucloxacillin was incorrectly classified as not associated 

with IDILI suggests that the best-performing model, although seemingly promising, has 

limitations. It is worth noting that flucloxacillin typically produces liver injury in humans 

that is classified as cholestatic rather than hepatocellular (Moseley et al., 2013; Enat et 

al., 1980; Williams et al., 1981; Bengtsson et al., 1985). Clavulanate is also associated 

predominately with a cholestatic pattern of injury in human patients (Sánchez-Ruiz-

Granados et al., 2012; Beraldo et al, 2013) and interacted only weakly with TNF.  
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Accordingly, it is possible that the approach described herein is more robust in 

classifying drugs that cause hepatocellular rather than cholestatic patterns of injury.  

 In summary, the results add to evidence that drug-induced stress can sensitize 

hepatocytes to the killing actions of cytokines such as TNF and IFN (reviewed in Roth et 

al., 2017).  Moreover, this could be requisite for the pathogenesis of IDILI, since 

numerous IDILI-associated drugs show cytotoxic synergy with cytokines in vitro at drug 

concentrations near those that occur in patients.  Currently, effective assays to screen 

preclinically for IDILI potential are lacking.   A method that accurately identifies drug 

candidates with the potential to cause IDILI could revolutionize preclinical testing 

strategies.  Our results suggest an in vitro assay that could do just that, i.e., by 

delineating drug concentration-response curves in the absence and presence of TNF 

and employing resulting covariates in an appropriate statistical model for classification. 

One of the strengths of this approach is that the user would have discretion to choose a 

level of risk tolerance guided by the results of ROC analysis. That choice could depend 

on a variety of factors, including risk tolerance in the context of the therapeutic use, 

other drug candidates that are in contention for going forward into development, etc. For 

example, if several potentially effective compounds with no apparent toxicity were 

identified in early preclinical screens but some returned an “IDILI+” result in a drug-

cytokine assay, this might prompt a decision to pursue other candidates for 

development.  The magnitude of interaction with TNF assessed by direct inspection of 

concentration-response curves (Figure 2) might also be useful to inform such decisions.  

Overall, this classification approach is attractive because it (1) uses a cell type that is 

easily obtained and maintained in culture and yields consistent results, (2) requires 
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minimal amounts of test compound, (3) employs a single, easily and inexpensively 

measured phenotypic endpoint that is directly relevant to IDILI (hepatocellular death), 

(4) is based on interaction between drug and a product of immune system activation 

likely to be relevant to IDILI pathogenesis and (5) is adaptable to high throughput 

technology.  Validation of this approach as a screening tool will require the evaluation of 

additional drugs, but the results presented herein are quite promising.    
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Figure Legends 

 

Figure 1. Depiction of base covariates considered for evaluation.  Blue curve 

represents hypothetical response to drug alone; red curve represents response to drug 

in the presence of cytokine.  Min = LDH release in the absence of drug. Max = maximal 

LDH release. Delta = max(LDH) – min(LDH) for each curve.  Although not depicted in 

the figure, Deltadiff = Delta cytokine - DeltaVEH. EC50 is the [drug]/Cmax value at 50% 

Delta. R10 is not depicted but it represents the [drug]/Cmax value associated with a 

10% increase in LDH release above min(LDH). 

 

Figure 2. Drug/cytokine-induced cytotoxicity: concentration-response.  

HepG2 cells were treated with 14 drugs associated with IDILI and 10 drugs not 

associated with IDILI, alone (VEH) and in combination with TNF and/or IFN. Cytotoxicity 

(% LDH release) was evaluated 24 hours after treatment. The numbers listed on the x-

axis represent the concentration of drug relative to Cmax (fold Cmax). Refer to Table 1 

for the Cmax information and IDILI classification for each drug and to the methods 

section for the rationale concerning the range of drug concentrations evaluated. Each 

data point represents the mean ± standard error of the mean (S.E.M.) of at least 3 

separate experiments. The dotted curves indicate that the treatment condition (i.e. VEH, 

TNF, IFN or TNF/IFN) resulted in a statistically significant change in LDH from baseline 

(no drug) at one or more drug concentrations (ANOVA p<0.01). Solid lines indicate that 

the treatment condition did not result in a statistically significant change in LDH relative 

to baseline at any drug concentration (ANOVA p ≥ 0.01). The dotted curves were 

modeled using a four-parameter logistic function as described in Methods in order to 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on July 7, 2017 as DOI: 10.1124/jpet.117.242354

 at A
SPE

T
 Journals on A

pril 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #242354 
 

42 
 

compute parameters describing curve characteristics (minimum cytotoxic effect, 

maximum cytotoxic effect, EC50, etc.). 

 

 Figure 3. Comparison of the model incorporating daily dose to that incorporating 

Cmax.  A) AUCs and 95% confidence intervals are depicted for the ROC curves derived 

from the models incorporating either daily dose or Cmax. The covariates are listed on 

the left, and the AUC for each one is shown on the right next to the 95% confidence 

interval, which is shown in brackets. B) The ROC curves for the model incorporating 

daily dose and Cmax are indicated by red line and blue lines, respectively. The 95% 

confidence intervals for the model incorporating daily dose and Cmax are shaded red or 

blue, respectively. Overlap between the confidence intervals for the two ROC curves 

appears violet. 

 

Figure 4. Evaluation of models incorporating the base covariates. 

A) AUCs and 95% confidence intervals are illustrated for the ROC curves derived from 

the models incorporating the base covariates Delta VEH, Delta TNF, EC50 VEH, EC50 

TNF, EC10 VEH, EC10 TNF, R10 VEH or R10 TNF. The covariates are listed on the 

left, and the AUC for each is shown on the right next to the 95% confidence interval, 

which is in brackets. *denotes a statistically significant difference as determined by 

DeLong’s test (p<0.05). B) ROC curves were generated and indicate for each model the 

95% confidence interval shaded in grey. The covariates incorporated in the model are 

listed on the bottom right corner of each ROC curve. 
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Figure 5. Evaluation of models incorporating the derived covariates.  

A) AUCs and 95% confidence intervals for the ROC curves are depicted for the models 

incorporating the derived covariates individually. The covariates are listed on the left, 

and the AUC for each is shown on the right next to the 95% confidence interval, which 

is in brackets. B) ROC curves were generated and indicate for each model the 95% 

confidence interval shaded in grey.  The covariate incorporated in the model is listed on 

the bottom right corner of each ROC curve. 

 

Figure 6. Evaluation of models incorporating combinations of the base and 

derived covariates with and without Cmax.  

AUCs and 95% confidence intervals for the ROC curves are depicted for the models 

incorporating various combinations of base and derived covariates in the absence 

(upper half) and presence (lower half) of Cmax. The covariates are listed on the left, 

and the AUC for each is shown on the right next to the 95% confidence interval, which 

is in brackets.    

 

Figure 7. ROC curves with an AUC ≥ 0.95. 

ROC curves for which AUC ≥  0.95 are depicted. The 95% confidence interval is 

shaded grey. The covariates incorporated into the model are listed at the bottom right 

corner of each ROC curve. The ROC curves shown were not significantly different from 

each other as determined by DeLong’s test (p > 0.05).  
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TABLES 

Drug IDILI liability Cmax (μM) Daily dose 

(mg) 

Cmax Reference 

Aspirin IDILI− 47 1300 
Brandon et al. 

1986 

Azithromycin IDILI− 0.5 500 Xu et al. 2008 

Buspirone IDILI− 0.005 15 Xu et al. 2008 

Idarubicin IDILI− 0.02 1 Xu et al. 2008 

Levofloxacin IDILI− 15.7 500 Xu et al. 2008 

Moxifloxacin IDILI− 6.2 400 Stass et al. 1998 

Pioglitazone IDILI− 2.67 15 Xu et al. 2008 

Promethazine IDILI− 0.06 25 Xu et al. 2008 

Rofecoxib IDILI− 1 12.5 
Gottesdeiner et al. 

2003 

Sertraline IDILI− 0.06 50 Xu et al. 2008 

Bromfenac IDILI+ 13.5 50 
Gumbhir-Shah et 

al. 1997 

Chlorpromazine IDILI+ 0.84 200 Xu et al. 2008 

Clavulanate IDILI+ 12 125 Hu et al. 2002 

Diclofenac IDILI+ 7.44 100 Xu et al. 2008 

Doxorubicin IDILI+ 1 1 Barpe et al. 2010 

Flucloxacillin IDILI+ 72.6 250 Roder et al. 1995 

Flutamide IDILI+ 0.36 750 Xu et al. 2008 

Ibuprofen IDILI+ 164 800 
Bramlage et al. 

2008 

Isoniazid IDILI+ 77 300 Xu et al. 2008 

Naproxen IDILI+ 300 500 
Setiawati et al. 

2009 

Nimesulide IDILI+ 21.08 200 Xu et al. 2008 

Telithromycin IDILI+ 2.77 800 Xu et al. 2008 

Trovafloxacin IDILI+ 5 300 Xu et al. 2008 

Valproic Acid IDILI+ 175 60 Rha et al. 1993 

 

Table 1. IDILI classification, daily dose, Cmax and references from which the 

Cmax values were taken. IDILI classification was determined by a set of criteria 

described in Xu et al. (2008).  IDILI(−) indicates that the drug is not associated with 

IDILI, whereas IDILI(+) indicates that the drug is associated with IDILI.  
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Covariates Beta Chi square p-value 

Intercept -1.924 7.091 0.008 

Deltadiff 0.108 2.471 0.116 

EC50VEH -0.066 6.215 0.013 

EC50TNF 0.050 4.480 0.034 

DeltaVEH 0.081 11.038 0.001 

Cmax 0.0031 0.129 0.720 

 

Table 2. Logistic regression coefficients and p-values for the optimal 

classification model incorporating the covariates Deltadiff, EC50 VEH, EC50 TNF, 

Delta VEH and Cmax. The coefficients (beta values) were computed using Firth’s 

approach as described in Methods. A p-value <0.05 indicates that the covariate 

contributes significantly to the prediction of outcome (IDILI liability). 
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95% confidence interval 

Optimal cutoff threshold  (k*) 0.46  

True negative rate (specificity) 
using threshold k* 

1 (0.7, 1) 

True positive rate (sensitivity) 
using threshold k* 

0.93 (0.79, 1) 

AUC 0.99 (0.97, 1) 

 

Table 3. Sensitivity and specificity for the optimal classification model 

incorporating the covariates Deltadiff, EC50 VEH, EC50 TNF, Delta VEH and 

Cmax. The optimal cutoff threshold (k*) is shown as is the specificity and sensitivity of 

the model at k*. Also indicated are the area under the ROC curve (AUC) and the 95% 

confidence intervals for the specificity, sensitivity and AUC. 
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Drug Estimated 
probability  

True 
classification 

Buspirone 0.1275 IDILI − 

Idarubicin 0.1275 IDILI − 

Promethazine 0.1275 IDILI − 

Sertraline 0.1275 IDILI − 

Azithromycin 0.1276 IDILI − 

Rofecoxib 0.1278 IDILI − 

Moxifloxacin 0.1296 IDILI − 

Levofloxacin 0.1329 IDILI − 

Aspirin 0.1445 IDILI − 

Flucloxacillin 0.1545 IDILI + 

Pioglitazone 0.2935 IDILI − 

Telithromycin 0.6685 IDILI + 

Flutamide 0.7036 IDILI + 

Trovafloxacin 0.7448 IDILI + 

Isoniazid 0.7562 IDILI + 

Diclofenac 0.8578 IDILI + 

Naproxen 0.8589 IDILI + 

Doxorubicin 0.8839 IDILI + 

Bromfenac 0.9397 IDILI + 

Clavulanate 0.9509 IDILI + 

Chlorpromazine 0.961 IDILI + 

Ibuprofen 0.9733 IDILI + 

Valproic Acid 0.9909 IDILI + 

Nimesulide 1 IDILI + 

 

Table 4. Estimated probabilities that a drug is associated with IDILI computed 

from the best performing logistic regression model employing Deltadiff, EC50 

VEH, EC50 TNF, Delta VEH and Cmax as covariates. With regard to the true IDILI 

classification of drugs, IDILI(−) indicates that the drug is not associated with IDILI and 

IDILI (+) indicates that the drug is associated with IDILI in human patients.  
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Figure 4 continued 
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Figure 5  
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Figure 6  
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Figure 7 
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