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Abstract 

Hepatic drug disposition is different in normal and diseased livers.  Different disease types alter disposition 

differently.  What are the responsible micromechanistic changes and how do they influence drug movement 

within the liver?  We provide plausible, concrete answers for two compounds, diltiazem and sucrose, in 

normal and two different types of cirrhotic rat livers: chronic pretreatment of rats with CCl4 and alcohol 

caused different types of cirrhosis.  We started with simulated disposition data from normal, multilevel, 

physiologically based, object-oriented, discrete event In Silico Livers (normal ISLs) that validated against 

diltiazem and sucrose disposition data from normal livers.  We searched the mechanism’s parameter space 

and found three parameter vectors that enabled matching the three wet-lab data sets.  They specified 

micromechanistic transformations that enabled converting the normal ISL into two different types of 

diseased ISLs.  Disease caused lobular changes at three of six levels.  The latter provided in silico disposition 

data that achieved a prespecified degree of validation against wet-lab data.  The in silico transformations 

from normal to diseased ISLs stand as concrete theories for disease progression from the disposition 

perspective.  We also developed and implemented methods to trace objects representing diltiazem and 

sucrose during disposition experiments.  So doing enabled providing heretofore-unavailable insight into 

plausible disposition details in normal and diseased livers.  We posit that changes in ISL micromechanistic 

details may have disease-caused counterparts.   
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Introduction 

Liver cirrhosis alters hepatic drug disposition complicating drug therapy management (Dourakis, 2008; 

LaCouteur et al., 2005).  The nature of alterations is dependent on both the cause and the extent of disease.  

Improved mechanistic insight is needed on two fronts.  We need supported, concrete theories for 1) how a 

drug’s interaction with the hepatic micro-architecture contributes to overall measures of disposition and 2) 

how disease progressively alters those micro-architectural features.  Achieving both is complicated by the 

heterogeneity of hepatic micro-architectural features (for examples and a discussion, see (Liu et al., 2007)), 

and differences in cirrhosis.  We focus on two standard rat models of cirrhosis: chronic treatment with 1) 

carbon tetrachloride (CCl4) and 2) ethanol (Hung et al. 2002a,b).  In advanced stages, CCl4 treatment 

produces acute hepatocellular injury with centrilobular necrosis and stenosis.  In contrast, chronic alcohol 

treatment produces hepatocellular injury with inflammation and perivenular macrovesicular steatosis (fatty 

degeneration).  Both treatments cause fibrosis.   

We report significant progress in achieving both objectives by developing, refining, validating, and 

experimenting on discrete, object and agent-based In Silico Livers (ISLs).  ISLs are works in progress.  

Observable micromechanisms in ISLs map directly to wet-lab counterparts, which facilitates the falsification 

of hypotheses about those mechanisms.  See Hunt et al. (2009) for complete descriptions of the modeling 

method.  We matched disposition profiles from ISLs and from in situ perfusion experiments in normal rat 

livers for diltiazem and sucrose.  Matches were achieved through cycles of iterative ISL refinement that 

narrowed the space of plausible, spatially distributed, micromechanisms.  Many future ISL iterations are 

likely.  Nevertheless, we discovered a limited set of ISL changes that produced profiles that acceptably 

matched in situ experiments on the two types of diseased livers (Hung et al., 2002a,b).  Diseased ISLs were 

created independently.  

Parameterizing detailed multi-zone versions of familiar physiologically based pharmacokinetic models 

has proven challenging because of hepatic heterogeneity coupled with interindividual variability (Liu et al., 

2007).  We pursued a fundamentally different approach.  A dictum of the physicist Richard Feynman was 

“what I cannot create, I do not understand.”  Uncertainty is large and detailed data are limited for  

micromechanisms that are responsible for differences in hepatic disposition profiles.  Hence, it follows that 

to gain insight, we need to build extant (actually existing, observable), working mechanisms that exhibit 
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some of those same phenomena.  We must construct, validate, and explore analogue mechanisms and tissues 

in order to better understand the biological counterparts.  We built extant biomimetic mechanisms and tissues 

using object-oriented software tools.  In doing so, we were not building a model using published biological 

facts, ideas, and assumptions.  Rather, we constructed reasonably realistic, biomimetic mechanistic 

hypotheses.  We then explored and shrank the space of the resulting disposition profiles to achieve a 

prespecified similarity to wet-lab profiles. 

Our focus was on constructing and falsifying plausible biomimetic mechanisms at multiple levels.  We 

argue that the causative, mechanistic details executed in ISLs may have wet-lab hepatic counterparts during 

diltiazem disposition, as diagrammed in pair A of Fig. 1.  Differences in mechanistic details between normal 

and the two “diseased” ISLs (pair B in Fig. 1) are hypotheses about corresponding differences between the 

normal and diseased livers.  Simulation enables testing those hypotheses.  Achieving a degree of profile 

matching is evidence supporting those hypotheses.  The differences in dynamic, multilevel details during 

execution provide plausible explanations of differences between the two disease models.  Simulations of 

transformations of normal into diseased ISLs stand as abstract theories for disease progression: similar 

transformations may have occurred in rats during disease progression.   

An important advantage of this class of models is that micromechanistic details are observable, unlike 

real livers.  Methods were implemented to trace, measure, and record changes in dynamic spatiotemporal 

details.  So doing provided a heretofore-unavailable view of how and where micromechanistic events 

combine to influence disposition within ISLs.  We posit that changes in micromechanistic details from 

normal to diseased ISLs may have disease-caused hepatic counterparts.  These methods are extensible to 

whole organisms and, eventually, patients.  Hence, they open a door to new experimental means of testing 

the plausibility of mechanistic explanations.  That is expected to facilitate translation of research results to 

benefit patients.   

Methods 

Rationale for modeling and simulation approach.  Classical physiologically based PK modeling 

(Hung et al., 2001, 2002a,b) provide examples and the approach used herein, although fundamentally 

different, are complementary approaches to gaining insight into plausible mechanisms responsible for PK 

data.  The former provides a conceptual generalization, a global description of flow, influx, efflux, binding, 
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sequestration, and metabolism, and relates the resulting parameter values conceptually to observed changes 

in liver pathophysiology and biochemistry.  Neither the model nor its parameters can be made realistic and 

similar to hepatic features (Rescigno, 2001).  The synthetic method of modeling and simulation is 

fundamentally different (Hunt et al., 2009).  The method enables ISLs to use actual mechanisms—events 

occurring within specified spaces—in a manner that is more consistent with the actual intralobular 

arrangements, normal and pathological, than is possible using traditional mathematical models.  An ISL 

instantiates a hypothesis (Fisher and Henzinger, 2007; Hunt et al., 2008).  Execution and comparison of 

results to referent counterparts tests the hypothesis.  The relationship between ISL spaces, components, 

mechanisms, and phenomena—mappings 1–3 in pair A of Fig. 1—can be made increasingly realistic and 

similar to hepatic counterparts.  Doing so is facilitated by grounding the internals of the ISL relative to each 

other rather than to absolute metric units like seconds or meters.  Relative grounding makes the causal effects 

of changes to any one component evident as they ripple through the entire model and are measured by an 

observer.  This capability dramatically increases the extent to which a model can be refined and translated to 

other contexts.  For a discussion of Grounding, see (Hunt et al., 2009).  For convenience a brief discussion of 

how grounding influences differences between differences between traditional, inductive, equation based PK 

models (left side of Fig. 1) and synthetic, internally grounded analogues like ISLs In provided in 

Supplementary Discussion in Supplementary Material.   

Most ISL form and function details used herein are the same as used earlier (Park et al., 2009).  A 

dense, abridged description follows.  Some of the tracing features, detailed in Supplementary Material, are 

new.  Included is a discussion and example of technical issues related to the granularity of the tracing and the 

granularity of the computation.  For convenience, parameter descriptions are also provided in the Appendix.  

Detailed descriptions of ISL design considerations, including ISL-to-liver mappings are available (Hunt et 

al., 2006; Yan et al., 2008a,b; Park et al, 2009).  ISL mechanistic details are presented as plausible 

approximations of what actually occurred.  To avoid conflating ISL details with the biology, and to clearly 

distinguish in silico components and processes from hepatic counterparts, hereafter we use SMALL CAPS 

when referring to the ISL counterparts.   

In Situ Liver perfusion studies.  Full details of the original single-pass, liver perfusion experiments 

along with an explanation for the choice of compounds studied are provided by Hung et al (2001, 2002a,b).  

Included are descriptions of two established methods to induce fibrotic, hepatic cirrhosis in rats (150g male 
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Wistar).  Normal and two types of diseased livers were studied.  Similar pretreatment protocols were used to 

create the eight diseased livers for each group: one group was produced by chronic CCl4 treatment; the other 

by chronic alcohol (ethanol) treatment.  Both protocols induced acute hepatocellular injury, but their 

histologies were different.  Each model type reflects different aspects of human disease.  Control, normal 

pharmacokinetic (PK) profiles were obtained using livers from matched rats treated identically, absent either 

CCl4 or alcohol treatment.  Several histopathology measures characterized the nature and extent of disease.  

Nine outflow profiles of coadministered diltiazem and sucrose were analyzed individually using established 

PK methods.  The referent data are presented in Fig. 1 of Hung et al. (2002b) 

An ISL is a simulation framework: an in silico counterpart to an entire wet-lab experimental system 

(analytical instrumentation and all).  It comprises an experiment agent, a data management module, a 

statistical observer module (used to analyze data), a parameter manager, plus data from the perfusion 

experiments (and interpolations, when needed), RefModel, and LOBULE.  RefModel is the parameterized, 

classical PK model, which was fit by Hung et al. (2002a) to the wet-lab data.  Concurrent execution of it and 

an ISL enabled judging similarities or lack thereof during iterative ISL refinement (discussed below).  

RefModel is a two-phase stochastic liver model (stochastic PK model hereafter): it predicts the time course of 

diltiazem in liver effluent during a perfusion experiment that follows a standardized dosing protocol.  Its 

implementation is provided in Supplementary Material.  

A LOBULE is one Monte Carlo variant of the complete system illustrated in Fig. 2.  Three LOBULE 

variants (NORMAL and two DISEASED) were developed in parallel.  For simplicity, we began by assuming 

that anatomical, physiological, and PK characteristics of all hepatic lobules within a specific liver, normal 

and diseased, are somewhat similar (Hunt et al, 2006; Yan et al., 2008a).  Pooled and averaged results from 

ISL executions of 48 Monte Carlo variants of a single, parameterized LOBULE represents a single wet-lab 

outflow profile; those results comprise one ISL experiment.   

Figure 2 shows that LOBULES are abstractions: they are not intended to be accurate, precise descriptions 

of hepatic physiology.  ISL components can be modified and plugged together in different ways as needed to 

represent different lobular properties or the consequences of disease.  ISL experiments help reduce 

uncertainties about hepatic mechanisms by enabling  the formulation and testing of fine-grained mechanistic 

hypotheses about plausible, fine-grained mechanistic details that may be occurring during drug disposition 

(Hunt et al, 2009).  Software objects represent spatiotemporal aspects of hepatic organization and function.  
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The consequences following execution are measured and studied simultaneously, analogous to how wet-lab 

experiments are conducted.  An ISL—NORMAL or DISEASED—achieves a degree of validation when the 

similarity between its outflow profile and a referent perfusion profile is judged adequate based on some 

quantitative comparison.  Once that has been achieved, we state that the mappings marked 2 in pair A of Fig. 

1 are plausible.  As recently discussed (Hunt et al, 2009), a LOBULE should be no more complicated than is 

needed to achieve the stated objective.  For this study, the objective has been to discover a minimal set of 

NORMAL ISL parameter changes that will lead to DISEASED ISLs that achieve a degree of validation against 

referent outflow profiles.   

When ISL components and their arrangement are judged acceptable, the detailed micromechanisms 

causing traceable events may correspond to the hepatic micromechanisms; i.e., mappings 1 in Pair A of Fig. 

1 are plausible.  At that stage, the traced DILTIAZEM and SUCROSE dynamics within and between an ISL’s six 

levels provide heretofore-unavailable insight into plausible drug disposition details.   

A LOBULE is a network of sinusoidal segments.  The relative arrangement of hepatic function and 

blood flow is represented at the LOBULE level using a directed graph called a SINUSOID network.  Each 

Monte Carlo variant maps to a distinct arrangement of flow paths from portal vein tracts (PV) to the central 

vein (CV) within a portion of an acinus.  A SINUSOID network is subdivided into three zones.  Zonation 

enables mimicking quantitative and functional differences between periportal and perivenous lobular regions 

(Miller et al., 1979; Gumucio and Miller, 1982; Gaudio, 1992).  It is a means of achieving an adequate 

variety of PV-to-CV flow paths.  SINUSOID network structure properties are specified as a topology of nodes 

and edges.  The number of nodes per Zone is always Zone 1 > Zone 2 > Zone 3.  A graph edge specifies a 

flow connection from a Sinusoidal Segment (SS) exit to a downstream SS entrance.  Having edges assigned 

pseudo-randomly at the start of each ISL experiment simulates lobular variability within and between livers.  

A SS is a software agent (an autonomous object that schedules its own events and interacts with other 

agents and objects in its environment) that represents all aspects of sinusoid function that can influence drug 

disposition.  One SS is assigned to each graph node.  Each is somewhat different and the stochastic 

differences are parameter controlled.  SSs per zone were Zone 1 = 45, Zone 2 = 20, and Zone 3 = 5.  As 

previously explained (Yan et al. 2008a), those numbers were needed to have sufficient PV-to-CV path 

variety to reduce fluctuations within outflow profiles.  They were connected using a minimum of 109 edges: 

39 intra-Zone 1 edges, 8 intra-Zone 2 connections (but no intra- Zone 3 connections), 37 Zone 1-to-Zone 2, 
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and 25 Zone 2-to-Zone 3 connections.  All Zone 3 nodes were connected to CV.  There were two constraints: 

no self-self edges and no two-node cycles (a restriction that was not imposed earlier (Hunt et al., 2006;Yan et 

al., 2008a,b)), and if any node was, by chance, not assigned an outgoing edge, it was connected directly to 

CV.  Two SS types were used: direct (larger, shorter; controlled by the DirSin parameters in Table 1) and 

tortuous (thinner, longer; controlled by the TortSin parameters in Table 1).   

A SS consists of a Core and three identically sized layered toroidal spaces as illustrated in Fig. 2.  

Spaces A–C within a SS are identical, but SS sizes (Table 1) are Monte Carlo specified.  The spaces are 

subdivided into a parameter specified number of square grid spaces.  The Core maps to blood flow.  It 

provides a direct PV-to-CV path through which COMPOUNDS (mobile objects) can traverse.  Space A maps to 

the interface between vascular flow and the endothelial layer.  Space B is called the ENDOTHELIAL layer.  It 

maps to easily accessible spaces and cells presumed to be primarily endothelial cells and fenestrae.  Space C 

is called the HEPATOCYTE layer.  It maps to less accessible spaces and cells, primarily the space of Disse, 

hepatocytes, and bile canaliculi.  CELLS in Space B are called ENDOTHELIAL CELLS; those in Space C are 

called HEPATOCYTES.  Parameters allow the resolution of the spaces to be changed as needed.  A Bile Space, 

not illustrated in Fig. 2, can be added when needed. 

CELLS contain whatever objects are needed to represent required intracellular processes, such as drug 

binding, metabolism, transport, and sequestration.  Because the in situ perfusions had short durations (less 

than one hour), we assume that cell biology and biochemistry were relatively constant.  Consequently, details 

not needed are abstracted away, but can be added easily when needed (Hunt et al., 2006; Yan et al., 2008a; 

Park et al., 2009).  It is known that basic compounds such as diltiazem are sequestered in organelles such as 

lysosomes and mitochondria, as well as being bound to intracellular material (Hung et al., 2002a; Siebert et 

al., 2004).  However, motivated by parsimony, sequestration and binding are not resolved: everything within 

a cell that can bind or sequester diltiazem is conflated and represented by some number of identical binding 

objects (hereafter, simply BINDERS).  Within hepatocytes, we do not resolve binding to metabolic enzymes, 

such as the CYP450 isozymes, and binding to or sequestration by other cell components.  BINDERS called 

ENZYMES handled BINDING inside HEPATOCYTES.  They use a parameter (metabolizeProb) to determine 

which of their BINDING events ends with release of METABOLITE.  When needed, several different objects 

that produce the same net event sequence can replace a BINDER ENZYME.   

ISL parameters.  As in Park et al. (2009), ISLs were iteratively refined (Hunt et al., 2009) to achieve a 
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set of targeted attributes along with a rigorous degree of prespecified similarity with referent outflow 

profiles. An illustration of iterative parameter adjustment is provided in Supplementary Material.  No new 

attributes, other than the additional disease-altered outflow profiles were added.  ISL parameters specify 

structural and functional properties, experiment configuration, and DOSE.  The ISL and its components from 

earlier work were re-used (Yan et al., 2008a; Park et al., 2009).   

MonteCarloRuns: An ISL experiment averages 48 Monte Carlo trials (LOBULE).  Execution duration in 

simulation cycles is specified by cycleLimit.  The number of steps executed each cycle is stepsPerCycle.  

DRUG disposition is observed at cycle resolution; spatiotemporal activities are traced at step resolution.  One 

simulation cycle maps to 0.5 seconds and a step maps loosely to 0.25 seconds.  CycleLimit and 

stepsPerCycle were set to 200 and 2, respectively.  ExperAgent is absolutely grounded, whereas LOBULES are 

not.  A technical issue dealing with how time is discretized at the simulation cycle and step levels in 

discussed in Supplementary Material.   

Parameters named in this paragraph govern structural and spatiotemporal properties.  GraphSpecFile is 

used to create a LOBULE’S sinusoidal network at the start of each simulation.  DirSinRatio and TortSinRatio 

specify the ratio of the two SS types.  SS circumference and length are generated using the values of 

DirSinCircMin/Max, TortSinCircMin/Max, DirSinLenAlpha/Beta/Shift, and TortSinLenAlpha/Beta/Shift 

(Hunt et al., 2006; Yan et al., 2008a,b).  A2B/B2A/B2C/C2BJumpProb governs probabilistic COMPOUND 

movement.  Simulated blood flow (in the Core) and local, biased random walk (Spaces A-C) are controlled 

by CoreFlowRate and SinusoidTurbo; their values can depend on the COMPOUND’S physicochemical 

properties.  ECDensity and HepDensity specify the fractions of Spaces B and C occupied by ENDOTHELIAL 

CELLS and HEPATOCYTES, respectively.  The numbers of BINDERS and ENZYMES within each CELL is Monte 

Carlo drawn within the range specified by BindersPerCellMin/Max.  SoluteBindingProb designates the 

probability that a DRUG will be bound.  Each binding event lasts SoluteBindingCycles.  The latter two 

parameters also depend on the COMPOUND’S physicochemical properties (Hung et al., 2001; Mager and 

Jusko, 2006).   

MetabolizeProb is the probability that a METABOLITE, rather than DILTIAZEM, will be released from an 

ENZYME-DILTIAZEM complex.  ISLWetLabScaling is a scaling factor used to map COMPOUNDS exiting CV 

directly to drug concentration (in perfusate).  MembraneCrossing (valued 0,1) specifies whether a particular 

COMPOUND is allowed to enter CELLS.   
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Differences between NORMAL and DISEASED ISLs.  The histopathology data showed that within both 

CCl4-treated and alcohol-treated livers, significant cirrhotic change occurred at cellular and subcellular levels 

(Hung et al., 2002a,b).  Microscopy evidence showed that microvascular and microcirculation changes 

occurred (Gaudio and Onori, 1997).  For simplicity, many of the details known about liver fibrosis, including 

the principal role played by hepatic stellate cells, for example, were not added to the list of targeted 

attributes.  It is tempting to assume that those visible changes must have contributed in important ways to the 

observed alterations in outflow profiles.  Yet, we do not know the dispositional significance of such changes 

for specific compounds.  We elected to make no inferences but seek one of the simpler sets of changes that 

could provide a plausible explanation.  It may be possible, for example, that two different SINUSOID 

networks, with all cellular and subcellular details being unchanged, can provide an explanation for the 

differences.  However, Hung et al. showed significant correlations between measures of histopathology and 

changed PK parameter values (Hung et al., 2002a,b).  We therefore elected to begin by re-using the validated 

NORMAL LOBULE network structure the DISEASED LOBULE network structure.  We then looked for 

explanatory change at the SS level and below.  Note that when required, a validated simpler 

micromechanism can be made more complicated.   

Starting with the validated NORMAL ISL (Park et al., 2009), the protocol of each refinement cycle 

followed three steps.  That ISL provided a Similarity Measure (SM) > 0.8, discussed below.  1) We 

identified a subset of parameters to be changed (everything except the zonation, primary flow paths and their 

arrangement), and then sought focused changes in SS component parameterizations that would alter the 

outflow profile in ways consistent with the diseased outflow profile.  More detail is provided in the ISL 

implementation and execution subsection.  2) We tested the hypothesis that a new valuation of the subset, in 

combination with unchanged values of all other parameters, would yield a ISL that could achieve SM > 0.8.  

When falsified, we returned to step one.  3) We fine-tuned the DISEASED ISL parameter vectors with the 

objective of achieving SM > 0.9 (within a factor of 0.33 of the referent value, as discussed below).  When 

that failed, we returned to step one or two.   

ISL parameter influences are not independent (Hunt et al., 2006)  More than one parameter vector can 

give essentially indistinguishable outflow profiles (Yan et al., 2008a)  Although every effort was made to 

construct a minimal model, the requirement that LOBULAR structures be derived or inferred from published 

hepatic knowledge rather than induced from particular data sets provides some complexity and overlapping 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on April 20, 2010 as DOI: 10.1124/jpet.110.168526

 at A
SPE

T
 Journals on D

ecem
ber 22, 2024

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


 JPET 168526 

 12 

phenomena.  

Drug input, dosage time management, and Similarity Measure.  ISL experiments followed the same 

dosing protocol used in situ (Yan et al., 2008a,b; Park et al., 2009).  As illustrated in Fig. 2, a bolus dose of 

SCUROSE and/or DILTIAZEM was injected into a simulated catheter that feeds into PV.  COMPOUNDS were 

collected as they entered CV, simulating collection by a fraction collector.  Details of dosing within the ISLs 

are provided in (Park et al., 2009) and for convenience in Supplementary Material.  

An ISL outflow profile was accepted as valid—as being indistinguishable experimentally from a profile 

obtained from a repeat wet-lab experiment—when SM > 0.8.  Once that was achieved, it was increased to 

SM > 0.9.  ISL outflow profiles were compared with referent profiles using the quantitative SM used 

previously (Hunt et al., 2006; Yan et al., 2008a,b; Park et al., 2009).  For convenience, details are provided in 

Supplementary Material.  An ISL profile was acceptable as being experimentally indistinguishable when the 

fraction specified by the SM was within the ± 33% band around the referent values (Fig. 3).  

ISL implementation and execution.  ISLs were implemented within the high performance, computing 

infrastructure diagrammed in Supplementary Fig. S1 online.  Its methods were designed to provide improved 

lifecycle management, execution efficiency, tracing quality, and analysis of traced results (Ropella et al., 

2003).  Each parallel mode was associated with one of the six ISL levels illustrated in Fig. 2 or an 

experimental requirement.  Heterogeneity in parallel execution helped achieve improved performance along 

with efficient resource management.  ISL parallel mode (Fig. S1), was supported at group and experiment 

levels.  Group Level Parallel mode enabled executing multiple experiments in parallel by segregating each 

and allowing each to run concurrently without interaction.  Parallel batch processing and analysis of local 

execution results were performed using that mode.  Experiment Level Parallel mode enabled executing 

single experiments in parallel as separate LOBULE Monte Carlo variants. 

Parallel parameter sweeping (Supplementary Fig. S1 online) was used to construct and explore regions 

of ISL parameter space for vectors that enabled the ISL outflow profile to meet or exceed the specified SM.  

The location of such a region was deduced by coupling prior ISL parameterization experience with 

physiologically based heuristics.  The latter helped identify regions that contain abiotic parameterizations: 

the resulting ISL cannot map to a liver.  Occasionally, a region was selected randomly.  A global search of 

the entire parameter space was impractical.  

Within the experiment framework, a simulation coordinator managed the overall simulation life cycle by 
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controlling the top-level agent, ExperAgent.  It also supervised system components including the parallel 

parameter sweeper, parallel batch processor, parallel model partitioner, and model deployer.  Their 

integration provided a fully automated, high-performance simulation environment within which all 

experiments were conducted.  We built the environment using the tools specified in Supplementary Material.   

Multiscale event tracing within ISLs during simulations.  Tracing disposition events within and 

between ISL levels was divided into two phases: generating tracing data and then evaluating the data using 

quantitative measures.  First, all spatiotemporal events involving COMPOUNDS (of the same type) across all 

ISL levels were stored.  Tracing measures were then derived to include temporal changes within a SS, the 

LOBULAR components each COMPOUND encountered plus the path each COMPOUND traversed, the length of 

each traversed path, and each COMPOUND’S resident time within an ISL or one of its features.  

During the first phase, two types of raw tracing data were generated.  A trace data file was generated for 

each SS including PV and CV.  It recorded the temporal order of events experienced by all COMPOUNDS that 

resided within a particular SS.  To trace METABOLIC events, each SS NODE also generated a tracing file that 

listed the COMPOUND’S identification and type along with the TIME METABOLISM occurred.   

Collected data were evaluated during phase two.  The tracing process and steps within are diagrammed 

in Supplementary Fig. S2 online.  We started by tracing changes at Levels 1 and 2 (Fig. 2): changes 

associated with ENDOTHELIAL CELLS, HEPATOCYTES, ENZYMES, and BINDERS at level 1 and within the four 

SS spaces.  Tracing results at higher levels were deduced by aggregating results from lower levels.  A 

traverse path provided an image of each SS node visited by a COMPOUND during its course through a 

LOBULE.  Not all injected COMPOUNDS reached the CV.  Some were METABOLIZED.  Others were retained 

because of multiple binding events.  All paths started at PV; they ended at either CV or with the SS where 

the COMPOUND was METABOLIZED or remained when the run terminated.  Traverse length summed the 

length of each SS entered.  The fine-grain paths taken by a COMPOUND within Levels 5 and 6 were ignored.  

Regardless of path taken by a COMPOUND within a SS, its traverse length was simply the length (in grid 

spaces) of that SS.  Residence time was the TIME spent within the ISL before exiting, being METABOLIZED, 

or having the run terminate.  Each component that encountered a COMPOUND recorded the number and type 

of COMPOUND with which it interacted.  
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Results 

Initial iterative ISL refinement.  We sought outflow profiles produced by NORMAL and two types of 

DISEASED ISLs, derived from that NORMAL ISL, that would achieve SM > 0.9.  We named the latter two 

DISEASEDCCl4 and DISEASEDALC.  Absent evidence that major features of lobular anatomy (zonation, primary 

flow paths and their arrangement) were meaningfully different between the three liver types, we specified 

that in the ISLs they would be essentially the same.  Earlier (Park et al., 2009), we described a DISEASEDCCl4 

ISL that validated against a diltiazem outflow profile from a diseased, CCl4-treated liver.  It was achieved by 

adjusting ten parameters of a NORMAL ISL that had validated against a diltiazem outflow profile from a 

normal liver.  Adhering to the parsimony guideline, we sought an alternative parameterization (limited to the 

same ten parameters) of that NORMAL ISL that would also produce a DISEASEDALC ISL that could achieve 

SM > 0.9.  We sampled ISL parameter space many times and found alternative NORMAL ISLs that could be 

transformed to either a DISEASEDCCl4 or DISEASEDALC ISL (for which a SM > 0.9 could be achieved), but not 

both.  That failure falsified that earlier, NORMAL ISL as a starting model for achieving both DISEASEDCCl4 and 

DISEASEDALC ISLs.  An alternative, validated NORMAL ISL was needed.  Note, however, that earlier, 

NORMAL ISL remained valid when outflow profiles from only normal and CCl4-treated livers were targeted.  

Again, adhering to the parsimony guideline, we increased the number of parameters available to adjust from 

ten to eleven and subsequently to the twelve, which proved adequate.  The two additional parameters that 

were available for adjustment were ENDOTHELIAL CELL density (ECDensity) and SinusoidTurbo, which 

biases COMPOUND random walk in the direction of the CV.   

Validation of disposition in NORMAL and DISEASED ISLs.  As described in Methods, we specified 

that achieving SM > 0.9 within a factor of 0.33 of referent data was an acceptable target: an outflow profile 

that meets that SM was accepted as being experimentally indistinguishable from its referent profile.  

Through use of the new parameter sweeping capability (Supplementary Fig. S1 online), we iteratively 

adjusted the new NORMAL ISL parameter values (Table 1) to move outflow profile properties toward those of 

diltiazem and sucrose from CCl4-treated livers.  We continued that process until the outflow profile achieved 

SM > 0.9.  We then repeated that protocol with outflow profiles from an alcohol-treated liver to obtain 

validated DISEASEDALC ISLs.  Parameter adjustments that enabled achieving SM > 0.9 are diagrammed in 

Fig. 4.  DILTIAZEM outflow profiles from each of the three ISLs are graphed in Fig. 3.  SM values for 

unsmoothed profiles were 0.92 (NORMAL), 0.92 (DISEASEDCCl4), and 0.91 (DISEASEDALC).  
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The ISL is nonlinear.  Consequently, linear sensitivity studies are less informative and less meaningful 

than are location changes in LOBULE parameter space.  Individually, the parameter changes in Fig. 4 did not 

cause statistically distinguishable changes in outflow profiles.  In general, a 5% change in any one of the 

twelve adjusted parameters will produce an imperceptible change in an outflow profile and no change in SM 

value.  However, a 5% change in all twelve parameters can cause a noticeable change in outflow profile.   

Note that the DISEASEDALC ISL was simpler than the DISEASEDCCl4 ISL in two ways.  1) Whereas twelve 

lobular parameter adjustments were needed to achieve DISEASEDCCl4 ISLs, only six were needed to achieve 

DISEASEDALC ISLs.  2) Except for the C2BJumpProb adjustments, the magnitude of the adjustments needed 

for DISEASEDALC ISL was smaller than those of DISEASEDCCl4 ISL.  The fact that DISEASEDALC ISLs exhibit 

fewer, smaller magnitude changes relative to NORMAL ISLs is consistent with less profound and fewer 

observed pathological changes caused by alcohol pretreatment (Hung et al., 2002a,b).   

Hereafter, all results are reported in the order NORMAL, DISEASEDCCl4 and, DISEASEDALC, when values for 

all three are provided, and in the order DISEASEDCCl4 and DISEASEDALC when only DISEASED ISL values are 

provided.   

Changes in LOBULE properties at three levels can account for CIRRHOSIS-caused differences in 

disposition.  CELL density in Spaces B and C were controlled by ECDensity and HepDensity.  The value of 

ECDensity (0.65) was unchanged for DISEASEDALC ISLs, but was smaller (0.6) for DISEASEDCCl4 ISLs.  The 

values of HepDensity reflect the same change: 0.7, 0.65, and 0.7 (Fig. 4).  The latter difference maps to the 

observed, CCl4-induced changes in hepatocyte quantitative ultrastructure (Hung et al., 2002b).  Acceptable 

SM values were obtained without having to change the probability that a DILTIAZEM released from an 

ENZYME (in HEPATOCYTES) would be a METABOLITE.  

Four parameters control COMPOUND movement between Spaces (Fig. 4, top row).  Lower values 

relative to NORMAL for the first two mean that DISEASE reduced COMPOUND access to ENDOTHELIAL CELLS 

and HEPATOCYTES.  The magnitude and direction of those changes map to and are consistent with fibrotic 

changes (Hung et al., 2002a).  The effective ability of Space C to retain COMPOUNDS 

(B2CJumpProb/C2BJumpProb) is a major determinant of the METABOLIC event rate.  That ratio in 

DISEASEDALC ISLs (2.6) was larger than that in NORMAL (1.2) or DISEASEDCCl4 (0.62) ISLs.  The larger ratio 

reduced the total number of DILTIAZEMS reaching CV thereby increasing METABOLIC events within Space C.  

HepDensity’s value was smaller in DISEASEDCCl4 (0.65) than in NORMAL or DISEASEDALC (0.70) ISLs, and 
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that contributed to decreased METABOLIC events and diminished DILTIAZEM retention in Space C.  

The graphs in Fig. 5A,B show how stochastic COMPOUND movements within the three spaces 

influenced average COMPOUND resident TIMES within LOBULES.  The bar graphs specify the DOSE fraction 

having resident TIMES within the indicated ten-SECOND range.  The three curves specify the fraction of dose 

having a LOBULE resident TIME equal to or less than the indicated TIME.  SUCROSE (Fig. 5A) did not enter 

CELLS.  The bar graphs (a.1 and a.2) indicate that there were few differences in the spaces accessed and 

dwelt in by SUCROSE in NORMAL and DISEASEDALC ISLs.  However, SUCROSES dwell TIMES in the 

DISEASEDCCl4 ISLs were different in two ways.  There was a dramatic reduction in SUCROSES having longer 

and also 0–10 SECOND dwell TIMES.   

Dwell TIME patterns were quite different for DILTIAZEM (Fig. 5B).  For both DISEASED ISLs, there was a 

reduction in DILTIAZEMS having 0–10 SECOND dwell TIMES, and an increase in DILTIAZEMS having 10–20 

SECOND dwell TIMES.  The net effect was an increase in DILTIAZEMS having longer dwell TIMES: disease 

makes it harder for diltiazem to move through and exit a diseased liver.  DISEASE type altered dwell TIME 

patterns differently (b.2 and b.3).  Surprisingly, there were no significant differences in mean (and SD) 

DILTIAZEM resident TIMES: 47.8 (26.0), 48.8 (25.2), and 45.9 (26.5) SECONDS.  Several factors influenced the 

differences between resident TIMES.  Differences in A2BJumpProb between the three ISL types (0.38, 0.21, 

and 0.35) caused fewer DILTIAZEMS to move into Space B in DISEASED relative to NORMAL LOBULES.  

Similarly, differences in B2CJumpProb (0.55, 0.34, and 0.65) caused fewer of the DILTIAZEMS that did reach 

Space B in DISEASEDCCl4 relative to DISEASEDALC to move on to Space C.   

Changes in dwell TIME patterns coupled with changes in access to Spaces A–C influence METABOLISM 

appreciably.  The fraction of dose that was METABOLIZED (that underwent a METABOLIC event) by a given 

TIME is graphed in Fig. 5C.   

Tracing COMPOUND path lengths and spatiotemporal binding patterns.  The path length curves in 

Fig. 6A,B measure cumulative lengths of all SSs entered by each COMPOUND.  All three ISL types had 70 

SSs distributed among the three zones.  A small subset of both DILTIAZEM and SUCROSE path lengths in 

NORMAL and DISEASEDALC ISLs were long (second peak in Fig. 6A,B), but they were essentially absent in 

the DISEASED ISLs.  The SSs in Zone 1, in combination with intra-zone edges map to the interconnections 

between sinusoids that are most numerous in the periportal region, yet are absent in the perivenous region of 
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normal lobules.  Microscopy evidence suggests that some of those interconnections are lost in CCl4-treated, 

cirrhotic lobules (Gaudio and Onori, 1997).  

There are no wet-lab methods to measure which lobular subspaces are visited by a compound passing 

through the liver.  We recorded each COMPOUND’S traverse path (in grid spaces) for 100 SECONDS, until it 

either exited the LOBULE, was METABOLIZED, or the run ended.  SUCROSE had shorter path lengths because it 

did not enter CELLS and so was more likely to reach CV before the run terminated.  The shorter mean path 

for DISEASED ISLs shows that both DISEASE types made it easier for COMPOUNDS to move closer to CV as 

TIME advanced.  It is evident from Fig. 6A,B inserts that DISEASEDCCl4 ISLs had a more narrowly distributed 

variety of path lengths.  Note also that the DISEASEDCCl4 ISLs had fewer of the shortest paths (0–25 grid 

spaces) than either NORMAL or DISEASEDALC ISLs.   

Each component type that encountered and interacted with DILTIAZEMS and SUCROSE was recorded.  

The TIME DILTIAZEMS spent associated with components was in the order ENZYMES > BINDERS > (unbound 

in) HEPATOCYTES > (unbound in) ENDOTHELIAL CELLS.  For all components, influential factors included the 

population density of DILTIAZEMS in each space, traverse lengths, and the values of these three parameters in 

Fig. 4: SoluteBindingProb, SoluteBindingCycles, and BindersPerCell.  Despite those differences, the data in 

Fig. 6C,D show that the fraction of COMPOUNDS that was in a LOBULE at a particular TIME and attached to a 

BINDER eventually reached a similar steady state ratio of about 0.8 in DISEASEDCCl4 and DISEASEDALC 

LOBULES.  However, the relative fractions BOUND in ENDOTHELIAL (Space B) and HEPATOCYTE layers 

(Space C) were different.   

COMPOUND dynamics within and between zones.  Observing DILTIAZEMS percolating through 

individual SS within different zones provides an informative perspective.  A video recording of COMPOUNDS 

percolating through SSs in an earlier ISL is provided as a Supplement by Yan et al. (2008a) Selected results 

are graphed in Fig. 7 and Supplementary Fig. S3 online for one similar sized SS in each of the three zones.  

Figure 7 shows the fraction of DILTIAZEM dose within Core and Spaces A–C of the selected SS, regardless 

DILTIAZEM’S state or location.  The differences in relative trends between zones are striking.  Zone 2 peaks 

occur later than those in Zone 1.  The amount of DILTIAZEM trickling through Zone 3 was still increasing at 

40 SECONDS for all three ISLs.  The relative patterns for NORMAL and DISEASEDALC SS within the same zone 

are similar and clearly different from those in the DISEASEDCCl4 SS.  More DILTIAZEM was in Spaces A and B 

of all three DISEASEDCCl4 SS compared to NORMAL and DISEASEDALC SS, and that may map to fibrosis 
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retarding diltiazem’s access to spaces more distant from blood flow.   

A portion of the data in Fig. 7 is shown subdivided further in Supplementary Fig. S1 online into bound 

and unbound DILTIAZEM within the ENDOTHELIAL and HEPATOCYTE layers (Spaces B and C).  The dramatic 

increase in the binding of DILTIAZEM within ENDOTHELIAL layers (keeping it away from the HEPATOCYTE 

layer) maps to the observed fibrotic changes.  

Discussion 

Tracing multiscale events facilitated identifying plausible micromechanistic differences regarding where 

and how NORMAL and DISEASED ISLs interacted differently with DILTIAZEM and SUCROSE.  It is currently 

infeasible to obtain comparable wet-lab data, but advances in intravital microscopy methods are moving us 

closer.  The outflow profiles in Fig. 3 achieved a degree of validation against wet-lab counterparts.  That 

achievement allows us to conjecture that mappings exists between micromechanistic causes determining 

DILTIAZEM disposition in the three types of ISLs (mappings 1 and 2 in Fig. 1) and corresponding causes in 

normal and diseased perfused livers.  DILTIAZEM and SUCROSE dynamics within and between ISL levels 

provide heretofore-unavailable insight into plausible disposition details.  However, the ISLs are not yet 

sufficiently refined to make precise predictions.  With additional rounds of refinement and validation, their 

progeny can be expected to provide increasingly useful scientific predictions, as well as deeper insight into 

causal micromechanisms.   

Similarity was achieved without having to use different NORMAL and DISEASED SINUSOID networks.  

However, it is premature to assign biological significance to that lack of difference.  The three ISLs are 

specific examples of a number of similar ISLs that would also validate (analogous to how livers from 

matched rats are different, but for experimental purposes can be treated as being the same).  To emphasize 

that we are early on the path to strong validation and trust, we have confined our rhetoric to describing and 

contrasting what occurred during ISL executions, and have drawn attention when those phenomena were 

consistent (or not) with reported wet-lab observations.  Additional, more detailed observations on results are 

included in Supplementary Material.   

The take-home message has five parts.  1) Multilevel ISL changes provide plausible mechanistic 

explanations for differences in compound disposition between normal and diseased livers.  2) LOBULES 

changed at three levels: SS geometry; CELL density and COMPOUND movement between SS spaces; and 
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INTRACELLULAR processes.  3) As illustrated in Fig. 8, those changes may have counterparts during disease 

progression.  Twelve (of 29) ISL parameters were involved in NORMAL-to-DISEASEDCCl4 translation.  

However, six of those were invariant for NORMAL-to-DISEASEDALC translation.  4) Counterintuitively, three of 

the parameter changes required for translation changed in opposite directions.  5) Tracings of 

micromechanistic events below the validation level were required for a meaningful discussion of the results.  

So doing increased the heuristic value of ISL models.   

All of the wet-lab data in Fig. 4 are coarse-grained, end-of-experiment, whole liver measures.  Each ISL 

parameter, on the other hand, influences fine-grained, spatiotemporal events occurring during simulation.  

Consequently, the two sets of data are not easily compared.  For convenience, descriptions of all measures, 

along with conjectures on how ISL parameter values may relate to them, are provided under Supplementary 

Discussion in Supplementary Material.  None of the wet-lab measures in Fig. 4 were included as targeted 

attributes.  There were two reasons.  1) We do not know if or how the phenomena measured might actually 

influence the disposition of diltiazem or sucrose.  2) With the exception of extent of DILTIAZEM 

METABOLISM, which can map to intrinsic clearance and CYP450, there were no measurable ISL features that 

map logically to the other six histopathology measures.  Nevertheless, neither the wet-lab data in Fig. 4 nor 

other histopathology data reported in the original citations (Hung et al., 2002a,b) falsify any ISL parameter 

changes in Fig. 4.   

ISL METABOLIC events map to intrinsic clearance.  The ratio of METABOLIC events in Fig. 5 for 

DISEASED and NORMAL ISLs maps to differences in intrinsic clearance for the different livers.  No ISL 

parameter maps to CYP450.  BindersPerCell does not; it maps to all cellular material that binds or sequesters 

diltiazem including the metabolizing enzymes.  However, it is not surprising that wet-lab CYP450 and 

intrinsic clearance changes correlate.  We can thus say that the ratio of METABOLIC events in DISEASED to 

NORMAL ISL also maps to CYP450 changes.  Because DISEASED ISL parameterizations were iteratively 

refined starting from the NORMAL ISL, without regard to metabolism, the METABOLISM data in Fig. 5 can be 

taken as predictions that validated.   

Assume that future data shows that sinusoid networks are different between normal and diseased livers 

in specific ways.  Inclusion of that data in the targeted attribute list would invalidate the current DISEASED 

ISLs.  However, it would be straightforward to iteratively revise them until validation is again achieved.  It is 

even feasible to automate that process.  
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Deep tracing of the type presented in Figs. 5-7 can present methodological challenges and problems 

because synthetic models are designed to realize an explicit separation between generators 

(micromechanisms) and phenomena.  ISLs are completely observable, unlike livers.  An asset is the ability to 

reach into the ISL and watch everything that happens.  Doing so, however, may bias a researcher into 

trusting an ISL more than is warranted.  For example, the ISL is relatively grounded in terms of runs, cycles, 

and steps of its various macro-, meso-, and micro-constituents.  The referent data against which we validated 

requires a very coarse measure, the outflow fraction profile.  Hence, any measures, like the tracings in Figs. 

5–7 that are finer-grained, although clearly relevant to the ISL, may not be valid in relation to the referent.  It 

remains an untested hypothesis because we do not have data against which to validate.   

The SS graph is not explicitly spatial.  It is an abstract network of SS nodes that have no concrete 

mapping to the spatial structure of sinusoids within referent liver lobules.  However, in aggregate it performs 

enough like a lobule to produce matching outflow profiles: quantifiable mappings from ISL to referent 

traverse paths may exist.  Because outflow profiles are our validation data, there is no need to make LOBULES 

explicitly spatial.  Adding such a requirement merely for the purpose of making the structure of the LOBULE 

more intuitive or “more like” the referent, absent any fine-grained spatial data against which to validate, runs 

counter to the parsimony guideline.  There is some reasonable pressure to make the lobule spatially explicit, 

however.  Lobular zonation data exists (e.g., Gebhardt, 1992; Jungerman, 1995; Oinonen and Lindros, 1998; 

Christoffels, et al., 1999; Ohno et al., 2008) and is explicitly spatial.  Because current LOBULES can contain 

graphs that cannot be projected onto a 3D vector space, validation against such zonation data is difficult.  

Doing so would be more straightforward if the ISL lobules were spatially explicit.  We are exploring 

strategies for making them so for future experiments.   

We suggest that the incremental parameter changes that are necessary (and sufficient) to transform a 

NORMAL into a DISEASED ISL (the changes on the right side of Fig. 1) may correspond abstractly to 

molecular, cellular, and sinusoid level transformations responsible for the pathogenesis from normal into 

diseased livers during CCl4 and alcohol treatment as illustrated in Fig. 8.  The general consistency noted 

above between DISEASED ISLs during execution and the cited histopathology evidence supports the 

hypothesis.  We thus have a tentative, yet promising, in silico model that enables us to visualize, abstractly 

from the perspective of diltiazem, how the consequences of cirrhosis may have progressed.  That new 

capability represents an important step toward unraveling the complex influences of disease on drug 
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disposition.  Being able to transform one validated model into another is also important: it is evidence that 

the approach can facilitate rational translation of research results to useful applications, and that may open 

doors to development of strategies for tailoring drug choices to help reverse disease conditions.   

Having independently validated NORMAL and DISEASED ISLs allows one to explore plausible drug 

disposition consequences of intermediate levels of disease and even disease that is more advanced.  Because 

of individual differences in disease progression, conducting wet-lab experiments to document the former 

would be problematic, and the latter may be deemed unethical.  By assuming disease progression 

corresponds to gradual change from NORMAL to DISEASED ISL parameterizations, we can simulate a liver 

that has progressed half way, for example, along the path to the currently documented disease state.  We can 

project further parameter changes to explore plausible consequences of more advanced level of disease.  

Corresponding explorations of intermediate and advanced disease states would be infeasible using traditional 

inductive, physiologically based, mathematical models.   

The methods and approach have been designed to enable the eventual development of horizontally and 

vertically integrated whole organism—whole patient—analogues: virtual organs, virtual patients.  Once that 

goal has been achieved, it will be feasible prior to treatment to use in silico experimentation to anticipate 

narrow, plausible ranges of drug PK properties in patients with liver disease.   
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Legends to Figures  

Figure 1.  Shown are relationships between the wet-lab perfused liver models and different computational 

models.  a: During experiments, liver components in their experimental context interact with transiting drug 

molecules causing changes in the compound’s concentration-time profile.  Systemic behaviors at all levels are 

reflected in the data.  b: Illustrated is an induced PK model of data from (a).  The researcher identifies patterns 

in the data.  A mechanistic description is induced, having an abstract, conceptual mapping from that 

description to hepatic disposition mechanisms.  A set of PK equations is offered to describe patterns in the 

data.  A discretized model of the equations in software is constructed and executed to simulate parameterized 

equation output.  Metrics specify the goodness of fit, establishing a concrete mapping from simulated output to 

wet-lab data.  c: The mechanism and component descriptions (quantitative and qualitative) are knowledge-

based.  Abstract, software components are designed, coded, verified, assembled, and connected guided by that 

mechanistic description.  The product of the process is a NORMAL LOBULE (Fig. 2).  Concretizable mapping 1 

exists between LOBULE components and how they plug together, and hepatic physiological and microanatomic 

details.  Compilation and source code execution gives rise to a working analogue; measures of events give the 

traced results.  Dynamics during execution (mapping 2) are intended to represent abstractly plausible 

corresponding dynamics (believed to occur) within the liver during an experiment.  Mapping 2 can also be 

concretized iteratively.  Measures of dynamics provide data intended to mimic counterpart measures.  

Achieving measurable similarities makes mapping 3 quantitative.  d: DISEASED counterparts to NORMAL ISLs: 

simple adjustments (increase or decrease) covert a subset of NORMAL parameter values, mechanisms, and 

events into DISEASED counterparts that validate.  e: The equations from (b) are used to fit PK data from 

perfusion experiments on diseased livers (Hung et al., 2002a), and disease specific PK parameter values are 

obtained.  Conceptual mappings are offered to relate differences in parameter values (NORMAL to DISEASED 

and DISEASEDCCl4 to DISEASEDALC) to measures of histopathology.  However (*), because those conceptual 

mappings cannot be concretized, they cannot be verified or validated.  The parameterized equations, however, 

can be validated based on the quality of their fit to the temporal outflow profiles.   

Figure 2.  Multilevel structure of an In Silico Liver (ISL).  See text for details.  A LOBULE maps to the 

functional unit of the liver, which consists of portal vein tracts (PV), a central vein (CV), and interconnected 

sinusoids.  Flow is PV → CV.  There  are three zones.  A LOBULE network is specified using an inter-
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connected directed graph having 70 nodes organized into three zones.  Intra-zonal connections are possible.  

Three types of inter-zone connections are used: Zone 1 → Zone 2, Zone 1 → Zone 3, and Zone 2 → Zone 3.  

A Sinusoidal Segment (SS) maps to a unit sinusoid structure and function.  One SS is placed at each graph 

node.  It contains a Core and three two-dimensional toroidal grid spaces.  Space A maps to the interface 

between blood flow and cells.  Space B is called the ENDOTHELIAL layer; it contains ENDOTHELIAL CELLS and 

EXTRACELLULAR spaces; ENDOTHELIAL CELLS contain BINDERS.  Space C is called the HEPATOCYTE layer; it 

contains HEPATOCYTES and EXTRACELLULAR spaces; HEPATOCYTES contain BINDERS that function as 

DILTIAZEM METABOLIZING ENZYMES.  Objects representing diltiazem and sucrose move within and between 

spaces; DILTIAZEM can move in and out of CELLS.   

Figure 3.  Outflow profiles of DILTIAZEM in NORMAL and DISEASED ISLs.  Smoothed DILTIAZEM outflow 

profiles are plotted for NORMAL (A), DISEASEDCCl4 (B), and DISEASEDALC (C) ISLs.  They achieved validation 

by having SM > 0.9.  An example of raw, unsmoothed data is shown in (B).  ISL data are averages of 48 runs 

(performed in Experiment Level Parallel mode) using 48 variants of a LOBULE having a specified graph 

structure; the parameter vector for each of the 48 LOBULES is Monte Carlo specified.  Solid lines connecting 

referent perfused liver outflow data are graphed along with the output of the fitted PK model (dotted curves) 

(Hung et al, 2002b); see Supplementary Material for details of the PK models.  In each experiment, equal 

numbers of DILTIAZEM and SUCROSE were co-administered using the dosing function parameterized as 

specified in Table 1.  Parameter sweeping was used to discover for a parameter vector that would produce SM 

> 0.8.  That profile was refined and improved iteratively in Experiment Level Parallel mode until SM > 0.9.   

Figure 4.  Properties of ISLs and experimental livers.  Top: Parameter values are graphed for NORMAL and 

DISEASED ISLs.  Parameter descriptions are provided in the Appendix.  Top row: These parameters control 

probabilistic movement of DILTIAZEM and SUCROSE between the four SS spaces (Fig. 2).  Bottom (Wet-Lab): 

Tissue pathology measures (Hung et al., 2002a) taken at the end of the perfusion are graphed for whole normal 

and diseased livers.  None of these measures were targeted attributes.  Measures of CCl4 and alcohol treated 

livers had separate control values.  To facilitate comparisons, the values graphed are normalized to 

corresponding control values.  Intrinsic clearance is for diltiazem.  CYP-450 (a measure of all isozymes), 

microsomal protein, and cytoskeleton residue are biochemical measures.  Membrane thickness and number of 

fenestrae are from microscopic observations.  Permeability (ability of water to permeate hepatic tissue) and 
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albumin space are derived measures from liver perfusion experiments.  Additional detail is provided in 

Supplementary Material. 

Figure 5.  Results from tracing COMPOUND resident TIMES and DILTIAZEM METABOLIC events within an 

average LOBULE.  A, B: Each curve is the cumulative sum of bar heights from one of a.1–a.3, b.1–b.3, which 

are average LOBULE resident TIME histograms for SUCROSE (A) and DILTIAZEM (B): the average amount of 

TIME a COMPOUND resided in a LOBULE was measured.  A point on each curve designates the dose fraction that 

had resident TIME ≤ the indicated TIME.  Each COMPOUND was traced from initial injection until it was 

METABOLIZED, cleared from the LOBULE through the CV, or the run ended.  Bar heights measure the fraction 

of dose having resident TIMES within the indicated ten-SECOND interval.  C: The TIME of a METABOLIC event 

was recorded.  The curves are the cumulative fraction of DILTIAZEM dose that was METABOLIZED by the 

indicated TIME.   

Figure 6.  Results from tracing COMPOUND traverse path lengths and DILTIAZEM binding.  A: Traverse path 

lengths of DILTIAZEM: each curve is the cumulative sum of bar heights from one of a.1–a.3.  Each traverse 

length is the sum of the lengths (in grid spaces) of each SS visited by a DILTIAZEM prior to collection at the 

CV, being METABOLIZED, or the run’s end.  COMPOUND wandering within SS was ignored.  Histogram bin size 

is 25 grid spaces.  Bar height corresponds to fraction of administered COMPOUND.  B: Data for coadministered 

SUCROSE, measured and graphed the same as in (A).  C, D: Data are fraction of DILTIAZEM dose bound at 

intervals during simulation experiments that used DISEASEDCCl4 ISLs (C) and DISEASEDALC ISLs (D).    

Figure 7.  Fraction of DILTIAZEM dose within different SS spaces in each zone.  A comparable size SS was 

selected from Zone 1 (three left panels), Zone 2 (three center panels), and Zone 3 (three right panels) from a 

NORMAL (three top panels), a DISEASEDALC (three middle panels), and a DISEASEDCCl4 ISL (three bottom 

panels).  In each panel, the dose fraction (regardless of location or state) at indicated times is plotted for Core 

and Spaces A–C.  The curves are approximate trend lines.  The bumps in several are the result of a “wave” of 

compound entering this SS from an upstream SS.  Such variability tends to cancel out as results over many SS 

are summed.   

Figure 8.  Relationships among models and their transformations are illustrated.  Validation establishes 

clear, concretizable mappings from NORMAL ISLs during simulations to normal liver counterparts during 

perfusion experiments.  We can hypothesize that similar mappings exist between validated DISEASED ISLs 
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and wet-lab counterparts.  Left: Upon validation for the attributes targeted, we can use intermediate 

parameterizations to document the incremental transformation of a NORMAL to a DISEASED ISL.  The details 

of such an in silico transformation provide a working, abstract hypothesis for the mechanisms of actual 

disease progression from the perspective of diltiazem.   
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Table 

Table 1.  NORMAL and DISEASED ISL parameters.  Values were obtained following validation against the profile of 

diltiazem co-administered with sucrose.  Parameters marked (•) were different for NORMAL and DISEASED ISLs.  

Parameters marked (§) are sensitive to differences in COMPOUND physicochemical properties.  

Parameter 
Group 

Parameter Normal DiseasedCCI4 DiseasedALC Description 

Simulation 
Execution 

and 
Evaluation 

monteCarloRuns 48 48 48 

Simulation Control 
cycleLimit 200 200 200 

stepsPerCycle 2 2 2 

currentRuns 0 0 0 

runFileNameBase run run run 
Simulation Monitor 

nominalProfile dat dat dat 

SimularityMeasure global_sd global_sd global_sd Result Evaluation 

LOBULE  

GraphInputFile    

SINUSOIDAL Network GraphSpecFile lobule-j301 lobule-j301 lobule-j301 

GraphSpecIterates 1 1 1 

• SSTypeRatio 19 99 19 

Shorter, wider SS 

Specification 

• DirSinCirc 24 22 24 

DirSinLenAlpha 1.0 1.0 1.0 

DirSinLenBeta 0.085 0.085 0.085 

DirSinLenShift 3.0 3.0 3.0 

TortSinCirc 3 3 3 
Longer, thinner SS 

Specification 
TortSinLenAlpha 12.0 12.0 12.0 

TortSinLenBeta 0.075 0.075 0.075 

• A2BJumpProb  § 0.38 0.20 0.35 
Probabilistic 
COMPOUND 
Movement 

• B2AJumpProb  § 0.37 0.30 0.35 

• B2CJumpProb  § 0.55 0.34 0.65 

• C2BJumpProb  § 0.478 0.55 0.25 

CoreFlowRate 2 2 2 
FLOW RATE Control 

• SinusoidTurbo 0.82 0.85 0.82 

• ECDensity 0.65 0.60 0.65 
CELL Density 

• HepDensity 0.70 0.65 0.70 

• BindersPerCell  § 95 65 75 
SOLUTE BINDING 
Control 

• SoluteBindingProb  § 0.5 0.38 0.5 

• SoluteBindingCycles  § 11 28 10 

MetabolizeProb  § 0.02 0.02 0.02 
METABOLISM Control 

SoluteScale 1  § 1.0 1.0 1.0 

Dosage 
Parameter 
and TIME 

a 5,000 5,000 5,000 

Dosage Parameters • b  § 1 2 2 

c 2 2 2 

• injectTime 2.0 0.0 0.0 Bolus Injection TIME 
1 SoluteScale was called ISL2WetLabScaling by Park et al. (2009).   
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Appendix 

Descriptions of key ISL parameters listed in Table 1 

monteCarloRuns: The number of LOBULE simulations averaged to produce results for one ISL experiment  

cycleLimit: Provides the simulation with a stopping criterion  

StepsPerCycle: Specifies the number of iterations the RefModel executes in a single ExperAgent cycle.  The 

ExperAgent cycle is grounded to the default time scale in the validation data.  

nominalProfile: Specifies which model (e.g., RefModel) to use as the nominal when calculating SM values  

GraphInputFile: Specifies the file to read if the SS graph is to be specified by an explicit graph (file format is 

GML) 

GraphSpecFile: Provides the lobule graphical specification, and specifies the base file name (extension.ls) to 

be used if the graph is to be specified according to the LOBULE Specification file  

GraphSpecIterates: Tells the framework to modify LOBULE specification and run a Monte-Carlo set 

(consisting of N runs) for each different LOBULE specification.  Set to 1, it runs 1 set and provides 1 set 

of outputs.  Set to 5, the first run uses the current contents of lobule.ls; it then runs 4 more sets, slightly 

modifying the LOBULE specification each time, resulting in 5 sets. 

SSTypeRatio = DirSinRatio/TortSinRatio; DirSinRatio specifies the percentage of SS that are type SA 

(“direct;” shorter and wider); TortSinRatio specifies the percentage of SS that are SB (“tortuous;” 

longer and thinner)  

DirSinCirc: circumference for each SA type SS.  Although fixed for this study, SA SS circumference can be 

randomly drawn from a uniform distribution having the range DirSinCircMin and DirSinCircMax. 

TortSinCirc: circumference for each SB type SS.  Although fixed for this study, SB SS circumference can be 

randomly drawn from a uniform distribution having the range TortSinCircMin and TortSinCircMax. 

DirSinLenAlpha, DirSinLenBeta, DirSinLenShift: These values set the parameters for a pseudo-random 

number generator using a modified form of the Gamma distribution; the modification consists of a left-

right shift of the distribution, allowing the user to clip off the front of the distribution.  The pseudo-

random number drawn is the length of a specific shorter, wider SS.   

TortSinLenAlpha, TortSinLenBeta, TortSinLenShift: These values set the parameters for a pseudo-random 

number generator using a modified form of the Gamma distribution; the modification consists of a left-
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right shift of the distribution, allowing the user to clip off the front of the distribution.  The pseudo-

random number drawn is the length of a specific longer, thinner SS. 

A2BJumpProb: Specifies the probability that, when given the option, a COMPOUND will jump from Space A 

to Space B 

B2AJumpProb: Specifies the probability that, when given the option, COMPOUND will jump from Space B to 

Space A 

B2CJumpProb: Specifies the probability that, when given the option, COMPOUND will jump from Space B to 

Space C  

C2BJumpProb: Specifies the probability that, when given the option, COMPOUND will jump from Space C to 

Space B 

CoreFlowRate: The number of slots (grid spaces) COMPOUNDS in the SS Core move forward during each 

step 

SinusoidTurbo: The PV to CV bias applied to the otherwise random walk for COMPOUNDS in grid spaces of 

an SS.  Smaller turbo means greater tendency of any one COMPOUND to wander sideways or 

backwards.  Larger Turbo means a stronger flow from the input to the output of the SS  

ECDensity: Specifies the relative ENDOTHELIAL CELL density; given the grid dimensions of Space B of a 

given SS, it specifies the percentage of spaces that index an ENDOTHELIAL CELL  

HepDensity: Specifies the relative HEPATOCYTE density; given the grid dimensions of Space C of a given SS, 

it specifies the percentage of spaces that index a HEPATOCYTE  

BindersPerCel: in this study, the number of BINDERS inside each CELL.  They are simple BINDERS for 

ENDOTHELIAL CELLS and ENZYMES for HEPATOCYTES.  The ISL provides the option to randomly draw 

the number of BINDERS for each CELL from a uniform distribution having limits of BindersPerCellMin 

and BindersPerCellMax 

MetabolizeProb: Probability that an ENZYME will transform DILTIAZEM to a METABOLITE before it releases it 

SoluteBindingProb: Probability that, when a BINDER and COMPOUND make contact, the COMPOUND will be 

bound 

SoluteBindingCycles: Number of simulation cycles a binder holds a COMPOUND.  This value maps to 

observing that the fraction bound within the same small region of a lobule is unchanged over an 

interval 
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isMembraneCrossing:  Specifies whether the COMPOUND can cross into (and out of) a CELL or not; 

DILTIAZEM can; SUCROSE cannot 

SoluteScale: (called ISL2WetLabScaling by Yan et al. (2008a,b)) Provides the precise validation mapping 

from ISL output to the wet-lab output fraction for that compound 
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• Supplementary Material • 

Tracing Multi-Scale Mechanisms of Drug Disposition in 
Normal and Diseased Livers 

Sunwoo Park, Sean H.J. Kim, Glen E.P. Ropella, Michael S. Roberts,  
and C. Anthony Hunt 

Validation and comparison of outflow profiles.  ISL outflow profiles for four simulated 
cationic drugs in identically parameterized NORMAL ISLs were validated earlier against in situ 
referent profiles (Yan et al., 2008a,b,c).  Disposition of DILTIAZEMS in the same NOMRAL ISLs 
and in a related, DISEASEDCCl4 ISLs were similarly validated using the same SM .  The referent 
livers for the DISEASEDCCl4 ISLs came from rats chronically treated with CCl4. The original 
citation (hung et al., 2002b) contains histopathology details.  For this report, the diltiazem outflow 
profiles from those same CCl4–treated livers were again matched by DILTIAZEM outflow profiles, 
but from a somewhat different, DISEASEDCCl4 ISL: the match provided by the DISEASEDCCl4 ISLs 
in this report were improved over that reported earlier in (Park et al., 2009) by adjusting eleven 
rather than nine key parameters.  In addition, diltiazem outflow profiles from alcohol–treated 
livers were matched by DILTIAZEM outflow profiles from new, DISEASEDALC ISLs.  The referent 
livers of the DISEASEDALC ISLs came from rats chronically treated with ethanol (Hung et al., 
2002a).  For both sets of experiments, SUCROSE was used as an EXTRACELLULAR marker.  
Outflow profiles from DISEASEDCCl4 ISLs and DISEASEDALC ISLs were accepted initially as valid 
when SM > 0.8.  The iterative refinement protocol described in (Park et al., 2009) was used to 
further improve the parameterization so that SM > 0.9 were achieved.   

Similarity Measure.  An ISL outflow profile was accepted as valid—as being indistinguishable 
experimentally from a profile obtained from a repeat wet-lab experiment—when SM > 0.8.  Once 
that was achieved, it was increased to SM > 0.9.  ISL outflow profiles were compared with 
referent profiles using the quantitative SM used previously (Hunt et al., 2006; Yan et al., 2008a,b; 
Park et al., 2009).  It is the fraction of collected COMPOUNDS that lies within a band that was a 
prespecified, scaled factor of referent outflow values.  We used  

 

 

 

where ps: simulated hepatic disposition outflow profile; pr: in situ hepatic disposition outflow 
profile; : start and end simulation cycle number; m: sample mean of pr ; 

; : scaling factor of the ± k·σ(γr) band; : 
lower bound of the band; : upper bound of the band; σ(γr): standard 
deviation of γr ; C(cond) = 1 if the cond is true, otherwise, 0; a counting function {F,T} → {0,1}; 
and Z is a set of integer values, R is of the real numbers (0, ∞+); k = 0.5, 0.75, and 1.0 were used.  
Both raw and smoothed ISL profiles were scored.  
 
Drug input and dosage time management.  ISL experiments followed the same dosing protocol 
used in situ (Yan et al., 2008a,b; Park et al., 2009).  As illustrated in Fig. 2, a bolus dose of 
SCUROSE and/or DILTIAZEM was injected into a simulated catheter that feeds into PV.  
COMPOUNDS were collected as they entered CV, simulating collection by a fraction collector.  
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Hung et al. used the sum of two inverse Gaussian density functions (requiring five-parameters) to 
simulate compound dilution and dispersion within catheters and perfusion tubing before and after 
the lobular level (Hung et al., 2002a).  They fitted the density functions to averaged outflow 
profiles obtained following their standard experimental protocol when the liver was replaced by a 
shunt.  They used that dosing function to correct outflow profiles prior to PK analysis.  We 
obtained identically shaped dosing curves using the three-parameter density function, d(t); we 
parameterized d(t) to provide quantitative control of COMPOUND input into PV and to simulate all 
influences on diltiazem in situ prior to reaching PV and after exiting CV.  Park et al. (2009) 
proved an example of a parameterized d(t) in their Fig. 2.   

 

a, b, and c determine the dose input function’s amplitude, location, and shape; t is time and e is an 
exponential function.  The injection model D(a,b,c) uses d(t).  Different values of a, b, and c can 
be used when catheter, perfusion and/or collection details change, and when different 
pathological liver states alter the path from injection to PV or following CV (Park et al., 2009).  
Different dosage injection models D(5000,1,2) and D(5000,2,2) were used for the validation of 
NOMRAL and both DISEASED ISLs, respectively.  Different injection models were needed because 
diltiazem was detected earlier in the collected outflow perfusate from both types of diseased 
relative to normal livers.   

ISL profiles were also compared to that of the existing mathematical models – two-phased 
stochastic liver model (TPSLM).  We used Hollenbeck’s (1998) implementation of de Hoog’s 
(1982) numerical inverse Laplace transform algorithm to compute numerical inverse Laplace 
transforms of the TPSLM) (Hung et al., 2001, 2002a)[3, 15].  TPSLM predicts hepatic disposition 
of an in situ rat liver using Laplace transform and its inverse form.  It uses the following equation 
to predict hepatic disposition of COMPOUNDS. 

 

Dose is the injected drug bolus and Q is the perfusion rate.  L-1[⋅] denotes the inverse Laplace 
transform.   

 is the Laplace transform of the transit time density function of U-14C sucrose molecules 

across the liver. 

 

kin is the influx rate constant from a sinusoid into to hepatocytes.   

€ 

ˆ f B (s)  is the Laplace transform of the transit time density function of the nonpermeating 

indicator. 

 

 and  are Laplace transforms of the inverse Gaussian density function with MT1 and CV1
2, 

and MT2 and CV2
2, respectively.  MT1 and CV1

2 are mean and standard deviation of .  MT2 

and CV2
2 are mean and standard deviation of . 
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 is the Laplace transform of the transit time density function of water . 

kin,w is permeation constant.  vc,w is the normalized water volume, VB/VC. 
 
 
 
 
 
 
 

Table 1.  RefModel is a two-phase stochastic PK liver model.  Listed are the parameters and 
values used to fit the referent PK data.   

Category Parameter Normal DiseasedCCl4 DiseasedALC 
Q 2a 2a 2a 
Dose 15a 15a 15a 
kon 0.35b 0.35b 0.35b 
koff 0.021b 0.021b 0.021b 
KS 16.67 10.59 23.56 
KR 0.95 0.95 0.95 
CLint 67.41c 45.99c 77.25c 
CLpt 25.35c 25.35c 25.35c 
PS 90.54c 46.44c 83.76c 
VB 0.49d 0.57d 0.53d 

Fixed  
Parameters 

VC 1.30d 1.34d 1.38d 
kout,w kout,w vc,w kin,w vc,w kin,w 
kior,w kior,w kin,w / kout,w kin,w / kout,w Derived 

Parameters ke CLint / VC CLint / VC CLint / VC 
vc,w 5 (VC / VB) 5 (VC / VB) 5 (VC / VB) 
kin,w 0.00815(CLpt / VB) 0.01250(CLpt / VB) 0.00695(CLpt / VB) 
MT1 11.975 10.075 9.875 
MT2 67.575 108.575 65.575 
CV1

2 0.282 0.252 0.252 
CV2

2 0.671 0.571 0.771 

Estimated  
Parameters 

p 0.675 0.645 0.645 
Units:          a ml ⋅ min­1                    b sec­1                     c ml ⋅ min­1 ⋅ g­1                                  d ml ⋅ g­1 
 

 
In Silico Liver Grounding.  In order to develop and begin validating concretized theories about 
the progression from normal to disease states and how hepatic features interact with compounds, 
we need the ability to simultaneously explore different regions of plausible mechanism space at 
different levels of detail, and relate results to wet-lab observations.  To facilitate that process it 
must be easy to change mechanistic details at any level without having to invest significant time 
in ISL reengineering.  We have discovered that the best way to achieve those objectives is to 
remove metric grounding from ISLs.  Hunt et al. (2009) discuss the merits of doing so. 
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The units, dimensions, and/or objects to which a variable or model constituent refers establish 
groundings.  Inductive ordinary differential equation models are typically grounded to metric 
spaces.  So doing provides simple, interpretive mappings between output and parameter values 
and referent data.  Because phenomena and generators are tightly coupled in such models, the 
distinction between phenomenon and generator is often small.  However, metric grounding 
creates issues that must be addressed each time one needs to expand the model to include 
additional phenomena and when combining models to form a larger system.  Adding a term to an 
equation, for example, requires defining its variables and premises to be quantitatively 
commensurate with everything else in the model.  Such expansions can be challenging and even 
infeasible when knowledge is limited and uncertainty is high, which is the situation that we faced.  
A model synthesized from components all grounded to the same metric spaces is itself grounded 
to the Cartesian composite of all those metric spaces.  The solution is to remove metric grounding 
from the ISL and confine it to quantitative feature-to-feature and phenomena-to-phenomena 
mapping models.   

The micromechanisms responsible for generation of hepatic disposition data during a 
perfused liver experiment do not interact according to any external measurement methods.  Nor 
do they interact directly with the whole rat.  They interact with the other components around 
them.  Hepatic cells, for example, interact with each other and their local environment.  They are 
independent of any measures used by an outside observer.  From that fact, we inferred that the 
ISLs must employ similar internal organization, which in modeling terms, means each component 
is grounded to other components rather than to a metric imposed by an outside observer: they are 
relationally grounded.   

 
On Differences Between Traditional PK Models and Synthetic  Analogues.  The above 
observations motivate comment about the differences between traditional, inductive, equation 
based PK models (left side of Fig. 1) and synthetic, internally grounded analogues like ISLs.  In 
models grounded to metric spaces, parameters serve mostly to shift model behavior within a 
smooth region of the output metric space.  In models grounded to hyperspaces or in those that are 
relationally grounded, like ISLs, parameters serve that same function.  They also serve to 
discontinuously (even abruptly) shift the behavior of the model into an entirely different region of 
behavior space: they change the analogue’s dynamic phenotype.  In metrically grounded models, 
the character of the model is bounded, whereas in relational or hyperspace grounded models, 
model character can change completely with a change in parameters.  In the former case, 
parameters describe one, particular (though abstract) model type.  In the latter case, parameters 
describe families of different yet related models.  The DISEASED ISLs are examples.  Relational 
grounding enables flexible, adaptable analogues, but requires a separate analogue-to-referent 
mapping model.   

 
Tracing and Computation Granularities.  When the granularity of the tracing is not the same 
as the very finest grain of the computation, then events below that tracing granularity are 
invisible.  An example is that during a single simulation cycle, it is possible for a COMPOUND to 
take a path of (1) SSA → SSB → SSC or (2) SSA → SSD → SSA.  In the first case, the COMPOUND 
traverses two SS nodes in a single cycle. This prevents a complete trace. We cannot detect that 
the COMPOUND visited SSB.  In the second case, the COMPOUND traverses back to its starting 
location, so potentially we might not get any tracing results for that COMPOUND.  Additionally, if 
a large number of steps (e.g., 10 or 20 steps) had been executed per simulation cycle, we might, 
in theory, not get any tracing results for some COMPOUNDS because they would have reached the 
CV or been metabolized within a single simulation cycle.  The current ISL solves the above 
problems by conducting profile validation in the cycle level (coarse-grain) and tracing in the step 
level (fine-grain).  Although the simulation uses a logical concurrency model, which allows us to 
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consider steps as a number of parallel events in a single cycle, those events are serialized (by 
interleaving) within the cycle and we can index the trace by position in the sequence. 

In such situations, it is tempting to ground the model absolutely to, say, time in seconds.  
Note that for purposes of describing the traces, we do that.  The interval between two adjacent 
cycles is divided by the number of steps. The quotient of the division is a new fine-grain time 
resolution for tracing. In the current ISL, time resolution in the cycle level is 0.5 SECONDS and the 
number of steps per cycle is 2.  For these traces, time resolution in the step level then becomes 
0.25 SECONDS (0.5/2).  But, methodologically, it is important to note that this is a post-simulation 
analytic technique for which there is no referent counterpart. 
 
ISL Implementation and Execution.  Parallel executions were performed in different ways to 
improve performance compared to monotonic parallelism and sequential execution (Ropella et 
al., 2003).  Each parallel mode was associated with one of the six ISL levels illustrated in 
manuscript Fig. 3 or an experimental requirement.  Heterogeneity in parallel execution helped 
achieve improved performance along with efficient resource management.  ISL parallel mode, 
illustrated in Fig. S1, was supported at group and experiment levels.  Group Level Parallel mode 
enabled executing multiple experiments in parallel by segregating each and allowing each to run 
concurrently without interaction.  Parallel batch processing and analysis of local execution results 
were performed using that mode.  Experiment Level Parallel mode enabled executing single 
experiments in parallel as separate LOBULE Monte Carlo variants.   
 
Tools used.  We built the environment using Swarm 2.2 (www.swarm.org), MPICH (www-
unix.mcs.anl.gov/mpi/mpich1/) 1.2, GCC (gcc.gnu.org) 4.1.1, OSCAR 
(oscar.openclustergroup.org) 5.0, and Fedora 5 (www.fedoraproject.org) on a small-scale, in-
house, eight-node Beowulf cluster.  Simulation and tracing results were analyzed using R 
(www.r-project.org) 2.7.1 and Matlab (www.mathworks.com) 7.14.   
 
Generating Raw Event Trace Data.  During the first phase, two types of raw tracing data were 
generated for SSs and METABOLITES.  A trace data file was generated for each SS including PV 
and CV.  It recorded the temporal order of spatiotemporal events experienced by all COMPOUNDS 
that resided within a particular SS.  The collected trace data were grouped into three fields – 
simulation time, node, and compound.  The simulation time field provided an execution step 
counter value and simulation TIME, using the fine-grain time resolution (0.25 SECONDS) for each 
traceable event.  The graph node field provided SS identifier (ID), SS length in grid spaces, and 
number of COMPOUNDS.  It was used mainly to compute a COMPOUND’S traverse path length.  
The number of COMPOUNDS provided the population density of COMPOUNDS within a SS during a 
simulation cycle.  The compound field provided spatiotemporal activities of COMPOUNDS within a 
SS.  It grouped information into compound ID, compound type, layer, spatial location, 
bound/unbound, and number of compounds.  Compound ID denoted the unique identifier of each 
COMPOUND, either DILTIAZEM or SUCROSE.  Layer designated the COMPOUND’S “vertical” 
location within a SS: within Core or Spaces A, B, or C.  Spatial location stated the COMPOUND’S 
coordinates within a space.  The bound/unbound field recorded which component had bound a 
DILTIAZEM.  It was set to -Binder-, -Enzyme-, +ECell+, +Hepatocyte+, or NA to indicate a 
DILTIAZEM’S location within the SSs in addition to its binding status.  The -Binder- and -Enzyme- 
labels identified the compound as being bound to a BINDER in an ENDOTHELIAL CELL or to an 
ENZYME in a HEPATOCYTE; when unbound, the COMPOUND was labeled +ECell+ or 
+Hepatocyte+.  Bound/unbound was declared NA when the DILTIAZEM was located outside CELLS 
within any space.  To trace METABOLIC events, each SS NODE also generated a tracing file that 
listed the COMPOUND’S ID and type along with the TIME METABOLISM occurred.   
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Additional Observations On Results 
 
Validation of Disposition in NORMAL and DISEASED ISLs.  The following is an illustration of 
iteratively adjusting parameters of the validated NORMAL ISL toward those of DISEASEDALC 
ISLs.  PERFUSATE flow through each SS and the extent of local movement bias were controlled 
by two parameters: CoreFlowRate and SinusoidTurbo.  For simplicity, the value of the former 
was held constant for all LIVERS.  SinusoidTurbo controls COMPOUND movement within 
EXTRAVASCULAR, EXTRACELLULAR spaces.  Changes in compound properties and/or changes in 
extravascular space properties can influence compound movement within extravascular, 
extracellular spaces, so SinusoidTurbo was available to change if needed (which it was).  We first 
needed to adjust the probabilistic movements of COMPOUNDS in DISEASEDALC so that the outflow 
fraction near the peak (< 15 SECONDS) was close to that of a NORMAL outflow profile, but lower 
after 15 SECONDS.  To achieve the first, we tuned A2BJumpProb and B2AJumpProb to values 
smaller than those of the validated NORMAL ISLs.  When using the same dosing function, the 
shape and height of an outflow profile around its peak were very sensitive to changes in those two 
parameters.  We also tuned BinderPerCell for DISEASEDALC to be smaller than those of NORMAL 
ISLs.  That adjustment also contributed to the placement of the outflow profile’s peak because it 
determined the population densities of BINDERS and ENZYMES in Spaces B and C.  To achieve a 
lower outflow fraction after the peak, we increased B2CJumpProb but lowered C2BJumpProb 
relative to the values of NORMAL ISL.  Consequently, more COMPOUNDS entered Space C in 
DISEASEDALC, but they were delayed in reaching CV.  An increase in METABOLIC events in Space 
C was also an important factor contributing to a lowered outflow profile.  Other adjustments that 
enabled achieving SM > 0.9 are diagrammed in manuscript Fig. 4 and listed in Table 1.   

Hunt et al. (2006) discuss analyses of ISL parameter changes and their sensitivity along with 
the fact that the generative consequences of all ISL parameters are networked.  Adjusting other 
parameters can often offset a change in an outflow profile caused by a small change in one 
parameter.  Consequently, studies of sensitivity to individual parameters are less informative and 
less meaningful than are location changes in LOBULE parameter space.  Individually, the 
parameter changes in manuscript Fig. 4 did not cause statistically distinguishable changes in 
outflow profiles.  Nevertheless, someone experienced in observing different ISL outflow profiles 
may observe a perceptible change in outflow profile shape.  In general, a 5% change in any one 
parameter will produce an imperceptible change in an outflow profile and no change in SM value.  
However, a 5% change in all parameters can cause a significant change in outflow profile.  The 
changes in manuscript Fig. 4 averaged 31.9% for DISEASEDCCl4 ISLs and 18.1% for DISEASEDALC 
ISLs.   

 
Tracing COMPOUND Resident TIMES and METABOLIC Events.  One COMPOUND within one 
SS grid space in manuscript Fig. 3 can be viewed as mapping to a wet-lab lower limit of 
detection.  For example, it may be viewed as the limit of detection of referent compound in a 
biopsy sample that has a volume 1/5,000th that of an average lobule.  At that limit, some biopsy 
samples will test negative for compound, even though we are confident some is present.  By 
analogy, an empty space within the ISL during simulation cycle maps to “no detectable drug.”  
Even though we can trace the change in location of a specific COMPOUND during execution, there 
is no mapping to corresponding changes in location for specific molecules.  A COMPOUND maps 
to some number of actual molecules.  From one simulation cycle to the next, that number of 
molecules is unchanged.  However, the actual molecules to which a COMPOUND maps is not the 
same from one simulation cycle to another.   

From raw COMPOUND tracing data, any number of derived measures can be obtained, and 
each enables viewing disposition from different perspectives.  Each provides a somewhat 
different image of events occurring within ISLs during simulations.  Some measures may be 
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useful in helping us think about ISLs (e.g., what change may be needed during parameter tuning 
to move closer to targeted phenomena).  Others may be helpful in thinking about hepatic 
disposition.  Still others may be helpful in thinking about different disease consequences and even 
disease progression.   

 
Tracing COMPOUND Path Lengths and Spatiotemporal Binding Patterns.  Below, all results 
are reported in the order NORMAL, DISEASEDCCl4 and, DISEASEDALC, when values for all three are 
provided, and DISEASEDCCl4 and DISEASEDALC when only DISEASED ISL values are provided.  
There are no wet-lab methods to measure which lobular subspaces (within a particular lobule) are 
visited by a compound during a single pass through the liver.  We recorded each COMPOUND’S 
SINUSOID traverse path (in grid spaces) for 100 SECONDS after dosing: until it either exited the 
LOBULE, was METABOLIZED, or the run ended.  Path lengths were divided into two types: 
complete and incomplete.  In the above order, the mean percent of the dose that ended at CV was 
47, 59, and 38%, whereas 23, 9, and 29% ended at a SS (it was METABOLIZED).  Passage was still 
in progress when the run ended for 30, 32, and 33% of the DILTIAZEM dose.  SUCROSE had shorter 
path lengths because it did not enter CELLS and so was more likely to reach CV before the run 
terminated.  The average path lengths for DILTIAZEM, in the above order, were 64, 59, and 55, 
whereas for sucrose the averages were 79, 65, and 76.  The shorter mean path for DISEASED ISLs 
shows that both DISEASE types made it easier for COMPOUNDS to move closer to CV as TIME 
advanced.  It is evident from Fig. 6a & b inserts that DISEASEDCCl4 ISLs had a more narrowly 
distributed variety of path lengths.  Note also that the DISEASEDCCl4 ISLs had significantly fewer 
of the shortest paths (0–25 grid spaces) than either NORMAL or DISEASEDALC ISLs.   

The data in Fig. 6c & d show that the fraction of COMPOUNDS that was in a LOBULE at a 
particular TIME and was attached to a BINDER eventually reached a similar steady state ratio of 
about 0.8 in DISEASEDCCl4 and DISEASEDALC LOBULES.  However, the relative fractions BOUND in 
ENDOTHELIAL (Space B) and HEPATOCYTE layers (Space C) were different.  In the order 
presented above, means (and SD) for the fraction bound within all CELLS were 0.60 (0.19), 0.67 
(0.20), and 0.62 (0.17).  The fraction bound within ENDOTHELIAL CELLS in Space B was 0.53 
(0.18), 0.49 (0.16), and 0.59 (0.17); the fraction bound within HEPATOCYTES in Space C was 0.07 
(0.02), 0.17 (0.04), and 0.03 (0.01).  

Consistent with the parsimony guideline, everything within or around hepatocytes that was 
capable of binding or sequestering diltiazem was conflated and represented using one 
INTRACELLULAR BINDER type.  Only a small subset of that material includes enzymes that 
metabolize diltiazem.  Because of how events were scheduled, it is possible for a DILTIAZEM to 
be released toward the end of one simulation step and—by chance—be bound again to another 
BINDER in that same CELL before being given an opportunity to move out of the CELL.   
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Figure S1.  Lifecyle management of ISL experiments.  There are eight stages.  1.  An ISL 
experiment is configured with a LOBULE specification file that describes the structural topology of 
a LOBULE, an ISL parameter file that lists all parameters and their values, and a parameter-
sweeping file that specifies a non-linear discrete region of ISL parameter space to be swept.  A 
parameter sweeping space is a collection of ISL parameter files.  They are dynamically 
constructed from ISL parameter and sweeping files by a parameter sweeper.  The sweeping space 
is partitioned depending on the parallel mode selected.  2.  The sweeping space is decomposed 
into a set of partition blocks in the Group Level Parallel mode, which is a coarse-grain 
parallelism.  Parallel batch processing of multiple parameter files is performed in this mode.  3.  
A set of multiple Monte Carlo runs of a single parameter file is decomposed into a set of partition 
blocks in the Experiment Level Parallel mode, which is a fine-grain parallelism.  4.  Partition 
blocks are dispatched to a set of computation nodes.  5.  A simulator at each computation node 
runs concurrently using a parameter file or a collection of Monte Carlo runs depending on the 
parallel mode.  6.  A posteriori analysis is conducted over the results produced concurrently by 
local analysis at each computation node.  These two-phase analyses improve overall performance.  
All analytical results are stored within a shared file system.  7.  If parameter sweeping is 
activated, ISL experiments are continued until all parameter sets in the sweeping space are 
consumed.  8.  Otherwise, the experiment is stopped. 
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Figure S2.  Multiscale COMPOUND tracing within an ISL during execution.  There are nine 
stages.  1. All SS are decomposed into a set of partition blocks.  2. Each block is dispatched to a 
set of computation nodes.  3. Each computation node loads generated tracing data referenced by 
its SS identification.  4. The temporal changes within each SS are traced by analyzing the files.  5. 
The partial traverse path of each COMPOUND is built by reconstructing the changes in terms of SS 
visited by each COMPOUND.  The path is constructed over only those SS in the block.  6. The full 
COMPOUND traverse path is computed by combining its partial (and local) traverse paths into a 
single global path.  7. Resident TIME is computed from the traverse path at all levels listed in Fig.  
3.  8. ISL COMPONENTS that bind a COMPOUND are traced by analyzing the temporal changes 
within SS nodes.  9. The process stops once tracing resident TIMES is complete at every 
computation node. 
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Figure S3. Fraction of DILTIZEM dose that was BOUND or UNBOUND within different SS spaces in 
each zone.  The selected SSs were the same as those in manuscript Fig. 4.  A comparable size SS 
was selected from Zone 1 (three left panels), Zone 2 (three center panels), and Zone 3 (three right 
panels) from a NORMAL (three top panels), a DISEASEDALC (three middle panels), and a 
DISEASEDCCl4 ISL (three bottom panels).  In each panel, the dose fraction (regardless of location 
or state) that is BOUND or UNBOUND in HEPATOCYTES (in Space C) or in ENDOTHELIAL CELLS (in 
Spacxe B) at indicated times is plotted.  The curves are approximate trend lines.   
 
Supplementary Discussion 
Relating Differences in ISL Parameter Values to Wet-Lab Measures of Disease.  Microsomal 
protein and cytoskeleton residue are attributes of homogenized tissue samples and have no ISL 
counterparts.  It is noteworthy, however, that B2CJumpProb in Fig. 4 exhibits the identical 
opposite trend for DISEASEDCCl4 and DISEASEDALC ISLs.  Permeability (called the permeability-
surface [PS] product by Hung et al. (2002a,b)) is a derived measure of water’s ability to permeate 
lobular tissue.  A2BJumpProb maps well to this measure.  Number of fenestra counted fenestrae 
in comparable tissue sections.  Fenestrae influence the ability of all material, especially larger 
material, to exit blood and access the space of Disse.  The pattern of change in A2BJumpProb 
maps well to number of fenestra.  In ISL Space B, an ENDOTHELIAL CELL is the lower limit or 
spatial resolution.  Fenestrae are below that level of resolution and thus have no ISL counterpart.  
However, grid spaces not assigned to ENDOTHELIAL CELLS map to extracellular spaces, and so a 
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subset maps to FENESTRAE.  If fenestrae are influential, then one might expect ECDensity to map 
inversely to number of fenestra (higher ECDensity → lower number of fenestra); but ECDensity 
is lower for DISEASEDCCl4 ISLs.  However, there may well be different ISL parameterizations 
(mechanistic hypotheses) that also validate, in which the outward JumpProb parameter changes 
are lessened and ECDensity is changed to compensate.  Additional ISL changes could be 
considered given semi-quantitative wet-lab data against which to validate.  For example, a 
parameter can be added to reduce the fraction of COMPOUND-accessible extracellular spaces in 
Spaces B and C in DISEASED relative to NORMAL ISLs.   

The albumin space measure decreased for both diseased livers.  It is a measure of the lobular 
volume accessible to albumin.  We might expect LOBULAR resident TIMES to map somewhat to 
accessible space: if the spaces are smaller, then resident time should decrease, and it did.  We see 
in Fig. 5(a) that the SUCROSE and DILTIAZEM dose fractions having longer resident times 
decreased in both DISEASED ISLs.  Membrane thicknesses are direct measures of representative 
hepatocyte membranes in tissues sections.  There is no ISL counterpart because the CELL is the 
limit of resolution.  It is not clear if membrane thickness plays any significant role in influencing 
cellular entry and exit of diltiazem.  The reduction in HepDensity (and possibly ECDensity, also) 
maps directly to observed reductions in the number of functional hepatocytes in the CCl4-treated 
livers. 

Collagenization, which is increased in different ways in the two disease models, would be 
expected to make it harder for a compound to move “into” tissue spaces, and harder to return 
once there.  In the DISEASED ISLs, movement between spaces, A2BJumpProb, etc. plus 
SinusoidTurbo (for DISEASEDCCl4 ISL), are altered.  Their complex interactions influenced 
resident TIMES (Fig. 5) and path lengths (Fig. 6), which are reflected in the details of locations 
within and between Spaces observed in Fig. 4.   
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