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ABSTRACT 

 For nearly twenty years, the primary focus for researchers studying Alzheimer disease has 

been centered on amyloid-β such that the Amyloid Cascade Hypothesis has become the “Null 

Hypothesis”. Indeed, amyloid-β is, by the current definition of the disease, an obligate player in 

pathophysiology, is toxic to neurons in vitro, and, perhaps most compelling, is increased by all of 

the human genetic influences on the disease. Therefore, targeting amyloid-β is the focus of 

considerable basic and therapeutic interest. However, an increasingly vocal group of 

investigators are arriving at an “Alternate Hypothesis” stating that amyloid-β, while certainly 

involved in the disease, is not an initiating event but, rather, is secondary to other pathogenic 

events. Additionally, and perhaps most contrary to current thinking, the “Alternate Hypothesis” 

proposes that the role of amyloid-β is not as a harbinger of death but rather a protective response 

to neuronal insult. To determine which hypothesis relates best to Alzheimer disease requires a 

broader view of disease pathogenesis and is discussed herein.  
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Amyloid-β and Alzheimer Disease: The Null Hypothesis 

 A wealth of evidence implicates amyloid-β (Aβ) in the pathogenesis of Alzheimer disease 

(AD) leading to the formulation of the Amyloid Cascade Hypothesis (Figure 1), i.e., the Null 

Hypothesis (Hardy and Higgins, 1992; Hardy, 2006). Casual observation of postmortem brain 

tissue of affected individuals makes it quite obvious why Aβ is the primary suspect in disease 

pathogenesis since Aβ is the major constituent in two of the most distinctive histopathologies, 

namely senile plaques and cerebral amyloid angiopathy (Glenner and Wong, 1984a; Glenner and 

Wong, 1984b; Masters et al., 1985). The destruction surrounding Aβ is evident from a close 

examination of histological preparations in the immediate vicinity of senile plaques and amyloid 

antiopathy, respectively, where degenerative neuronal processes and smooth muscle cells 

surrounding and infiltrating the Aβ deposits are found (Geddes et al., 1986; Kawai et al., 1992). 

Additionally, areas that are severely affected by disease, namely the hippocampal and 

frontotemporal cortices, show colocalization between Aβ plaques and neuronal cell death 

(Rogers and Morrison, 1985). Investigators then explored whether Aβ is toxic to neurons in both 

in vitro culture assays and in the intact brain of animals. Initially, results of these experiments 

seemed extremely contradictory, stemming from variability among commercial preparation of 

the peptide and the lack of proper control over whether Aβ was aggregated into fibrils of β-sheet 

conformation (Cotman et al., 1992). However, it is now firmly established that fibrillation of Aβ 

is needed to obtain neurotoxic effects (Pike et al., 1993; Lorenzo and Yankner, 1996; Yankner, 

1996) and that, under many circumstances, it is inherently toxic to both neurons and clonal cell 

lines in culture (Yankner et al., 1990; Pike et al., 1991). The neurotoxicity of Aβ peptide in vivo 

was likewise measured by infusion of the peptide to various animal models. Notably, 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on January 17, 2007 as DOI: 10.1124/jpet.106.114009

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #114009 PiP 

 5

intracortical injection of Aβ1-42 or Aβ25-35 fragments into aged rats or primates produced lesions 

that looked like those found in AD patients (Kowall et al., 1992).  

 The source of Aβ toxicity still remains elusive, regardless of the proliferation of theories 

advanced. The first theory proposed advocated interactions with cell surface receptors triggering 

an intracellular signaling cascade but little experimental evidence has supported this hypothesis. 

On the other hand, studies have long since supported the idea that oxidative event(s) are crucial 

for Aβ toxicity [reviewed by (Mattson, 1995)] such that Aβ peptide is capable of generating 

reactive oxygen species (ROS) through the generation of hydrogen peroxide (Hensley et al., 

1994; Huang et al., 1999a; Huang et al., 1999b) and of stimulating inflammatory cells (Meda et 

al., 1995; Butterfield et al., 1996; Van Muiswinkel et al., 1996; Akama et al., 1998). The 

significance of reactive oxygen in Aβ toxicity is attested by the attenuation of toxicity by 

administration of antioxidants as well as free radical scavengers, such as vitamin E (Behl et al., 

1992). This prooxidant view of Aβ is further supported by in vivo evidence where deposits are 

associated with oxidative damage (Smith et al., 1994; Smith et al., 1998; Atwood et al., 2002) 

and such damage, like Aβ deposition (Selkoe, 1999), is viewed as an early event in disease 

pathogenesis (Nunomura et al., 1999; Nunomura et al., 2000). Although it is clear that Aβ 

directly or indirectly promotes oxidative stress and that such toxicity can be attenuated by 

antioxidants, the precise mechanism that connects amyloid deposition to increased oxidative 

stress is not yet resolved. While multiple studies have suggested that the neurotoxicity of 

aggregated Aβ is mediated by its ability to induce oxidative stress through spontaneous 

generation of free radicals and ROS (Hensley et al., 1994), this proposition has been called into 

question on both theoretical and experimental grounds (Sayre et al., 1997; Dikalov et al., 1999; 

Turnbull et al., 2001). It now appears that the oxidant effects of Aβ are mediated by its 
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interaction with redox-active metals such as iron and copper since chelation of Aβ significantly 

attenuates toxicity (Rottkamp et al., 2001). Aβ has an unusually high affinity for both iron and 

copper (Huang et al., 1997; Atwood et al., 1998; Cuajungco et al., 2000) and can reduce these 

metals with the subsequent production of H2O2 and oxidized amyloid (Huang et al., 1999a; 

Huang et al., 1999b). The relevance of this mechanism to disease pathogenesis is highlighted by 

the association of redox active metals with senile plaques in AD (Smith et al., 1997; Sayre et al., 

2000). In addition, the deposition of this normally soluble cellular protein promotes a chronic 

inflammatory response in AD, whereby activated microglia release ROS as part of the 

respiratory burst [reviewed in (Atwood et al., 2001)].  

 The strongest evidence for the crucial role played by Aβ in AD pathogenesis has been the 

characterization of the mutations that underlie familial early onset cases of the disease. All of 

these inherited mutations directly or indirectly affect both the processing and accumulation of 

Aβ. Familial Alzheimer disease (FAD) is associated with point mutations in amyloid-β protein 

precursor (AβPP) in regions that are involved in the proteolytic processing of the peptide (Goate 

et al., 1991; Lendon et al., 1997). It is thought that these mutations accelerate the onset of AD 

into the fourth decade by increasing the ratio of Aβ1-42/Aβ1-40, thereby increasing the relative 

amount of the more fibrillogenic form (Suzuki et al., 1994). A double mutation at positions 

670/671 (Swedish mutation) increases the production of total Aβ and thereby increases the load 

of Aβ1-42 without changing the relative ratio (Citron et al., 1992; Cai et al., 1993). The fact that 

an increase in total Aβ load accelerates the deposition of Aβ is supported by the neuropathology 

seen in patients with Down syndrome, a disorder caused by trisomy of chromosome 21, where 

the AβPP gene is localized. It is thought that the overexpression of AβPP in these individuals 

(Greenberg et al., 1996) causes the formation of Aβ plaques very similar to those seen in AD. 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on January 17, 2007 as DOI: 10.1124/jpet.106.114009

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #114009 PiP 

 7

The most common form of FAD is caused by mutations in one of the two presenilin genes (PS1 

on chromosome 14 or PS2 on chromosome 1) [reviewed by (Gooch and Stennett, 1996)]. 

Recently, PS has been identified as one of the component of γ-secretase and FAD mutations 

increase the activity of γ-secretase although the alternate roles of PS, other than γ-secretase 

(Haass and Steiner, 2002), in AD pathogenesis also have been suggested (Herms et al., 2003; Tu 

et al., 2006). Most importantly however, missense mutations in the presenilin genes increase the 

ratio of Aβ1-42/Aβ1-40 (Citron et al., 1997; Tomita et al., 1997). Finally, one allele of the 

apolipoprotein E gene, namely apolipoprotein ε4 predisposes individuals to the development of 

late-onset AD (Corder et al., 1993). Of the three alleles (also including apolipoprotein ε2 and 

apolipoprotein ε3), apolipoprotein ε4 has the greatest affinity for Aβ, is found associated with 

senile plaques and is thought to accelerate fibrillogenesis (Wisniewski et al., 1994). Interestingly, 

the apolipoprotein ε2 inhibits fibril formation and is protective against the development of AD 

(Corder et al., 1994). 

 The above evidence implicating Aβ in AD pathogenesis led to the supposition that generation 

of transgenic animals that either overexpress AβPP, or a mutation in AβPP that affects 

processing of the full length protein thereby leading to an increase in the Aβ1-42/Aβ1-40 ratio, may 

mimic the pathophysiology that is seen in AD. Taken as a group, the various transgenic mice 

strains that have been produced thus far have demonstrated that overexpression of mutated AβPP 

but not wild type AβPP or overproduction of the Aβ1-42 peptide fragment is alone sufficient to 

cause deposition of the peptide into senile plaque-like structures [reviewed by (Holscher, 1998)]. 

Indeed, despite the fact that each of the different constructs yielded somewhat different 

phenotypes, some aspect of AD pathophysiology is apparent in each of them. For example, 

Games and colleagues created a transgenic mouse expressing human AβPP with the Val717Phe 
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mutation at ten times the endogenous level and these animals developed Aβ plaques in the 

hippocampus, cerebral cortex and corpus collosum by 6-9 months of age and also show synaptic 

loss and astrocytosis (Rogers and Morrison, 1985). Another popular model is Tg2576 mouse 

which overexpresses AβPP containing the Swedish double mutation (Lys670Asn/Met671Leu). 

In addition to a marked increase in levels of Aβ in the CSF and deposition of amyloid plaques, 

these mice demonstrated marked deficits in spatial learning, as demonstrated by the Morris water 

maze test, by the age of 9 months (Hsiao et al., 1996). Even though no neurotoxicity was 

observed in these mice, it is thought that their impaired spatial learning, which is correlated with 

long-term potentiation (a model for memory), is related to synaptic loss. Interestingly, these mice 

also displayed oxidative stress in association with the plaques, much like that seen in AD (Smith 

et al., 1998). Neurodegenerative phenotypes have also been seen accompanied by an increased 

mortality rate, with 50% of mice dying by 12 months of age compared to an average of 24 

months in controls, in mice overexpressing AβPP (LaFerla et al., 1995). Although there are 

differences in the details of these studies, it is clear that Aβ can independently cause AD-related 

pathology and some behavioral defects, which mimic AD pathology to a limited extent. 

 Taken together, the above evidence indicts Aβ as being the pivotal, if not the sole, culprit for 

causing disease. 

 

Amyloid-β and Alzheimer Disease: The Alternate Hypothesis 

 The first, and foremost, argument that Aβ is not the initiator of AD that deposition of Aβ into 

senile plaques is by no means specific to AD patients and is instead a marker of normal aging 

(Davies et al., 1988). Therefore, the strong association of Aβ in AD may simply mark an 

acceleration of age-related deterioration. Support for this view can be found with the number of 
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plaques in cognitively-normal individuals rivaling those seen in advanced disease (Mann et al., 

1992; Schmitt et al., 2000). Furthermore, there exists only a weak correlation between the burden 

of Aβ and neuronal loss or cognitive impairment (Giannakopoulos et al., 2003; Guillozet et al., 

2003). Additionally, increased amyloid production and deposition is also seen as a response to 

injury in the central nervous system, especially following ischemia and head trauma (Gentleman 

et al., 1993; Roberts et al., 1994; Geddes et al., 1997). Aβ deposition in aging and following 

injury might be a compensation for the primary insult (Lee et al., 2004b). This is not to imply 

that in attempting to respond to cellular stresses that Aβ cannot lead to cellular destruction. 

However, it does require an underlying pre-existing stress, i.e., the presumptive etiology of AD.  

 A review of the literature would indicate that the underlying stress is of energetic origin, 

since a shortage of energy supply [and Ca(II) overload] induces an upregulation of AβPP 

expression. Ischemia, hypoglycemia and traumatic brain injury, a condition that has been shown 

to put neurons under metabolic stress (Xiong et al., 1997), all upregulate AβPP and its mRNA in 

animal models and culture systems (Hall et al., 1995; Jendroska et al., 1995; Yokota et al., 1996; 

Shi et al., 1997; Murakami et al., 1998). Not only does energy deficiency and Ca(II) 

dysregulation promote AβPP expression, but they also route the metabolism of AβPP from the 

non-amyloidogenic to the amyloidogenic pathway. Loss of mitochondrial energy metabolism 

alters the processing of AβPP to generate amyloidogenic derivatives (Gabuzda et al., 1994; 

Mattson and Pedersen, 1998), and, likewise, oxidative stress increases the generation of Aβ 

(Frederikse et al., 1996; Neve and Robakis, 1998; Paola et al., 2000). It also goes quite well with 

the role of AβPP as an acute phase reactant that is upregulated in neurons, astrocytes and 

microglial cells in response to inflammation and numerous associated cellular stresses including 

axonal injury (Gentleman et al., 1993; Blumbergs et al., 1995), loss of innervation (Wallace et 
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al., 1993), excitotoxic stress (Topper et al., 1995; Panegyres, 1998), heat shock (Ciallella et al., 

1994), oxidative stress (Yan et al., 1994; Frederikse et al., 1996), aging (Higgins et al., 1990; 

Nordstedt et al., 1991; van Gool et al., 1994) and inflammatory processes (Brugg et al., 1995). 

Other pro-inflammatory stimuli that mediate the synthesis and release of AβPP include IL-1β 

(Goldgaber et al., 1989; Buxbaum et al., 1992) and tumor necrosis factor α converting enzyme 

(Buxbaum et al., 1998). The increased expression of AβPP by these stresses is likely a result of 

diminished energy resources. It is interesting that Aβ can regulate glucose metabolism (Ling et 

al., 2002) and that β islet cells of the pancreas express AβPP and several related enzymes at high 

levels (Figueroa et al., 2001).  

 The increased generation of Aβ under conditions of energetic stress may therefore be both a 

response to oxidative challenge observed in AD and following injury as well as a re-routing of 

metabolic priorities. In this scenario, Aβ in fact plays a protective role. The Aβ burden of the 

brain negatively correlates with oxidative stress markers (Nunomura et al., 1999; Cuajungco et 

al., 2000; Nunomura et al., 2000). This argues against the neurotoxic role of Aβ in vivo, as does 

the observation that cultured neurons can be cultured directly on top of isolated Aβ plaques or 

immobilizing Aβ with out any notable toxicity (Canning et al., 1993; Carpenter et al., 1993; 

DeWitt et al., 1998). Perhaps the in vitro toxicity that is sporadically shown in culture, and very 

unreliable to reproduce in animal models, may not be an intrinsic property of the peptide itself 

(Rottkamp et al., 2001). Notably, Aβ appears to attenuate oxidative stress in vivo (Nunomura et 

al., 2000; Nunomura et al., 2001) by likely acting as an antioxidant (Cuajungco et al., 2000). 

Furthermore, at nanomolar concentrations, Aβ can serve as a trophic factor withdrawal (Yankner 

et al., 1990) and metal-induced oxidative damage (Zou et al., 2002). These findings are 

consistent with the trophic and neuroprotective action of Aβ at physiological concentrations 
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(Whitson et al., 1989; Whitson et al., 1990; Yankner et al., 1990; Koo et al., 1993; Singh et al., 

1994; Luo et al., 1996). Aβ also protects neurons from death following injection with saline or 

iron (Bishop and Robinson, 2003) and protects lipoproteins from oxidation in cerebrospinal fluid 

and plasma (may involve metal ion sequestration) (Atwood et al., 1998; Kontush et al., 2001). 

Moreover, low concentrations of Aβ possess significant anti-oxidant activity in an ascorbate-

stimulated-lipid-peroxidation assay (Andorn and Kalaria, 2000). In sum, the physiological 

explanation for increased generation of Aβ in AD and following head trauma is the need to 

reduce ROS to prevent neuronal apoptosis (Raina et al., 2001) and promote neuritic repair.  

 Neurons are especially prone to oxidative stress due to high oxygen consumption, low levels 

of classic antioxidants, high unsaturated lipid content of neuronal membranes, and lack of 

mitotic renewal. As a result, the ratio between ROS formation and antioxidant defenses are 

essential for proper neuronal function. Normally antioxidant defense systems are sufficient to 

block ROS mediated damage. However, in cases of age related neurodegeneration, where there is 

considerable redox imbalance (Zhu et al., 2005). Given that Aβ is associated with the production 

of free radicals in vitro, it is essential to consider the in vivo temporal relationship between 

oxidative stress phenomena and Aβ deposition. Notably, oxidative stress, in vivo, is found in 

morphologically normal neurons in AD and seems to be inversely correlated with Aβ deposition 

(Nunomura et al., 1999; Nunomura et al., 2000). It therefore seems unlikely that Aβ 

accumulation, in vivo, by itself is sufficient to explain altered oxidative balance.  

 The strongest evidence for the role of Aβ in AD comes from the familial forms of this 

disease and involves mutations of genes that are directly involved in AβPP processing. Though a 

tremendous amount of effort has been dedicated to determining the mechanism of disease related 

to these mutations, this has proven only marginally useful to our understanding of sporadic AD, 
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which represents the majority of cases. For example, AβPP mutations have been identified in 

only 20-30 families world wide and represent far less than 0.1% of the 15 million known cases of 

AD (Josefson, 2002; Lleo et al., 2004; Hardy and Crook, 2005). Mutations in both presenilin 1 

and 2, which are the most common genetic determinant of AD, only contributes an additional 

120-130 families. While it is clear that mutations in these proteins involved in AβPP processing 

are capable of inducing amyloid deposition and dementia, no aberrant change is observed usually 

for many decades, and even then, this is likely a result of exacerbation of age-related deposition 

of Aβ in these individuals (the joint result of increased Aβ concentration and 

microenvironmental conditions) leading to the chronic neuroinflammation associated with the 

disease.  

 The positive correlation between apolipoprotein E ε4 genotype and incidence of AD in 

supporting a causative role for Aβ is flawed. While it is true that apolipoprotein E ε4 has the 

greatest affinity for Aβ, is found associated with senile plaques and is thought to accelerate 

fibrillogenesis (Wisniewski et al., 1994), this is not the sole or even the major physiological role 

of apolipoprotein E proteins. Apolipoprotein E helps to regulate the transport and metabolism of 

lipids. The level of apolipoprotein E is elevated in response to injury in the peripheral and central 

nervous system (Horsburgh et al., 2000) and, just like Aβ, apolipoprotein E may thus serve a 

protective role after ischemia or traumatic brain injury by distributing phospholipids and 

cholesterol to injured neurons (Poirier et al., 1993). Apolipoprotein E may further protect against 

oxidative injury and prevent the accumulation of lipid peroxidation end products, such as 

hydroxynonenal, which are prominent features in AD and acute brain injury. In support of this 

view, various studies show that patients that are homozygous for apolipoprotein ε4 genotype 

have longer periods of unconsciousness and higher incidence of post-traumatic coma following 
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severe traumatic brain injury (Sorbi et al., 1995; Friedman et al., 1999). Thus, apolipoprotein ε4 

predisposes patients for any number of neurodegenerative processes, not specific for AD. 

Therefore, as in acute injury, apolipoprotein ε4 may be associated with a higher incidence of AD 

because it is less efficient in protecting neurons from the causative insult and therefore may have 

very little to do with its affinity for Aβ. 

Recently, the original Amyloid Cascade Hypothesis was subsequently forced into revised to 

the Oligomeric Amyloid Cascade Hypothesis since a number of discordant findings disprove the 

Amyloid Cascade Hypothesis as we discussed above. For example, there is a very weak 

correlation between Aβ and disease state (Giannakopoulos et al., 2003) with very high Aβ loads 

often seen in cognitively intact old people (Crystal et al., 1988). Moreover, transgenic animal 

models, including Tg2576, with supraphysiological Aβ levels show little/no neuronal loss 

(Irizarry et al., 1997a; Irizarry et al., 1997b). Despite a relative paucity of solid experimental 

evidence, oligomeric Aβ has quickly risen to be the new star in the field, seemingly through the 

momentum of the original hypothesis. Nonetheless, until recently, the pathophysiological 

identity of oligomeric Aβ was unclear. In this regard, recently, Lesne and colleagues showed that 

Aβ*56 (which may be a dodecameric oligomer of Aβ) is found in cognitively impaired Tg2576 

animals without Aβ plaques, but not in unimpaired animals (Lesne et al., 2006). Aβ*56 

correlates with early declines in memory but not later ones (Lesne et al., 2006), and, when 

isolated and injected into rats, Aβ*56 leads to reversible cognitive deficits. While this is an 

interesting study that will definitely add fuel to the oligomeric amyloid hypothesis, before we get 

ahead of ourselves, a few salient aspects bear remembrance. First, different groups have reported 

that knockout of PS1 (i.e., no Aβ and surely no Aβ*56, either), while attenuating Aβ pathology 

in AβPP mutant transgenic mice, does not cure cognitive deficits (Dewachter et al., 2002; Saura 
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et al., 2005). In fact, these PS1 knockout-AβPP double transgenic animals lacking Aβ fare worse 

than single AβPP animals with Aβ might even indicate that Aβ is beneficial in certain 

circumstances as we previously indicated (Nunomura et al., 2001; Rottkamp et al., 2001; Lee et 

al., 2004a; Lee et al., 2004b). In any event, what is clear from this is that cognitive deficits do not 

relate to Aβ (in any guise, even Aβ*56). Furthermore, the study by Galvan et al. (Galvan et al., 

2006) provides another clear example that Aβ is not responsible for the cognitive and 

pathological changes that stereotypify AD (Lee et al., 2004a; Lee et al., 2004b; Lee et al., 2006). 

Specifically, by introducing an additional mutation to AβPP mice that prevents the cleavage of 

AβPP by caspase, rescues cognitive and pathological deficits but does NOT affect Aβ plaques. 

While these authors did not specifically address whether Aβ*56 was affected, the similarities in 

other Aβ species would tend to indicate not. Therefore, transgenic manipulations have now 

clearly demonstrated that cognitive deficits and pathological abnormalities in AβPP transgenic 

mice bear no relationship to Aβ – both the positive and negative control experiments show this 

(i.e., cognitive deficits with no Aβ and rescue of cognitive deficits without change of Aβ). 

 The “Alternate Hypothesis” (Figure 2) is that Aβ simply represents a bystander or a protector 

rather than the causative factor of disease (Smith et al., 2002; Lee et al., 2003; Lee et al., 2004b). 

Notably, all therapeutic studies that have an effect on Aβ levels in cells or animals have shown 

extremely poor or no efficacy in subsequent clinical trials. This includes indomethacin (Weggen 

et al., 2001), ibuprofen (Lim et al., 2000), sulindac sulphide (Weggen et al., 2001), a nitric oxide-

releasing nonsterodial anti-inflammatory drug (Jantzen et al., 2002) and estrogen (Zheng et al., 

2002). Clearly, the “Alternate Hypothesis” points to greater therapeutic efficacy by directing 

efforts to the upstream metabolic and oxidative abnormalities that are what lead to Aβ.  
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LEGENDS FOR FIGURES 

 

Figure 1. The Null Hypothesis: Increased Aβ, often through genetic influences, leads to 

oxidative stress that then leads to neuronal death. 

 

Figure 2. Alternate Hypothesis: Risk factors for AD lead directly to oxidative stress that not only 

causes neuronal death but also an adaptive response by neurons (amyloid-β) as a protective 

measure. 
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