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ABSTRACT 

 The extracellular cAMP-adenosine pathway is the cellular egress of cAMP followed by 

extracellular conversion of cAMP to adenosine by the sequential actions of ecto-

phosphodiesterase and ecto-5'-nucleotidase.  Although detailed studies in isolated organs, tissues 

and cells provide evidence for an extracellular cAMP-adenosine pathway, whether this 

mechanism contributes significantly to adenosine production in vivo is unclear.  1,3-Dipropyl-8-

p-sulfophenylxanthine is restricted to the extracellular compartment due to a negative charge at 

physiological pH, and at high concentrations ($0.1 mmoles/L) blocks ecto-phosphodiesterase.  

Here we show that administration of 1,3-dipropyl-8-p-sulfophenylxanthine at a dose that 

provided concentrations in plasma and urine of approximately 0.3 mmoles/L and 6 mmoles/L, 

respectively, inhibited urinary adenosine excretion.  In Sprague-Dawley rats, intravenous 1,3-

dipropyl-8-p-sulfophenylxanthine (10 mg + 0.15 mg/min) significantly decreased by 48% and 

39% the urinary excretion of adenosine (from 3.57 ± 0.38 to 1.87 ± 0.14 nmoles/30 min; 

P=0.0003) and the ratio of urinary adenosine to cAMP (from 0.93 ± 0.08 to 0.57 ± 0.06; 

P=0.0044), respectively, without altering blood pressure, renal blood flow or glomerular 

filtration rate.  Although 1,3-dipropyl-8-p-sulfophenylxanthine transiently increased urine 

volume and sodium excretion, these effects subsided, yet adenosine excretion remained reduced.  

Thus changes in systemic and renal hemodynamics and excretory function could not account for 

the effects of 1,3-dipropyl-8-p-sulfophenylxanthine on adenosine excretion.  Additional 

experiments showed that 1,3-dipropyl-8-p-sulfophenylxanthine, as in Sprague-Dawley rats, 

significantly attenuated adenosine excretion and the ratio of urinary adenosine to cAMP in both 

Wistar-Kyoto rats and spontaneously hypertensive rats.  We conclude that the extracellular 
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cAMP-adenosine pathway significantly contributes to the in vivo production of adenosine. 
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INTRODUCTION 

 Transport of intracellular cAMP into the extracellular compartment appears to be a 

ubiquitous process.  For example, studies document this mechanism in liver, superior cervical 

ganglia, fibroblasts, glioma cells, heart, adipose tissue and adipocytes (Jackson and Dubey, 

2001).  The rate of cAMP efflux is proportional to the intracellular levels of cAMP, the process 

begins within minutes following stimulation of adenylyl cyclase, and the mechanism is energy-

dependent and temperature sensitive (Jackson and Dubey, 2001). 

 The function of extracellular cAMP may be to provide adenosine for activation of 

adenosine cell-surface receptors.  In the interstitial compartment, extracellular AMP is rapidly 

dephosphorylated by ecto-5'-nucleotidase, an ubiquitous enzyme attached to the cell membrane 

by a lipid-sugar linkage (Pearson et al., 1985; Misumi et al., 1990; Zimmermann, 1992).  

Therefore, if ecto-phosphodiesterase is expressed on the cell surface, hormonal activation of 

adenylyl cyclase would result in extracellular production of adenosine by metabolism of 

extracellular cAMP to extracellular AMP by ecto-phosphodiesterase, followed by metabolism of 

extracellular AMP to adenosine by ecto-5'-nucleotidase.  This sequence of reactions is called the 

extracellular cyclic AMP-adenosine pathway.  Inasmuch as adenosine would be synthesized in 

the unstirred water layer by spatially-linked, cell-surface proteins, small increases in cAMP may 

produce biologically-active concentrations of adenosine in the biophase of cell-surface 

adenosine receptors, thus promoting autocrine and paracrine effects of adenosine.    

 Much in vitro data support the existence of the extracellular cAMP-adenosine pathway.  

In aortic vascular smooth muscle cells (Dubey et al., 1996) and cardiac fibroblasts (Dubey et al., 

2000) in culture, exogenous cAMP is converted to AMP, adenosine and inosine in a 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on October 6, 2006 as DOI: 10.1124/jpet.106.112748

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #112748 

 -6-

concentration- and time-dependent fashion.  Significant increases in extracellular adenosine 

levels occur with concentrations of cAMP in the medium as low as 1 :mole/L, and steady-state 

levels of adenosine are achieved in the culture medium within five minutes after adding 

exogenous cAMP.  In addition to aortic vascular smooth muscle cells and cardiac fibroblasts, the 

extracellular cAMP-adenosine pathway is present in hepatocytes (Gorin and Brenner, 1976; 

Smoake et al., 1981), neurons (Rosenberg and Dichter, 1989; Rosenberg et al., 1994; Rosenberg 

and Li, 1995, 1996; Brundege et al., 1997), adipocytes (Kather, 1990; Zacher and Carey, 1999), 

isolated perfused kidneys (Mi and Jackson, 1996, 1998), cerebral blood vessels (Hong et al., 

1999), renal microvessels (Jackson and Mi, 2000), collecting ducts (Jackson et al., 2003), and 

proximal tubules (Jackson et al., 2006).  However, whether the extracellular cAMP-adenosine 

pathway accounts for a significant portion of adenosine biosynthesis in vivo is unknown and is 

the focus of the present investigation. 
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METHODS 

 Animals.  Studies utilized adult (14-16 weeks-of-age) male Sprague-Dawley rats, 

spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) obtained from Taconic 

Farms (Germantown, NY).  The Institutional Animal Care and Use Committee approved all 

procedures.   

 Protocol 1.  Sprague-Dawley rats (n=16) were anesthetized with Inactin (100 mg/kg, 

i.p.) and placed on a Deltaphase isothermal pad (Braintree Scientific, Braintree, MA).  Body 

temperature was monitored with a rectal temperature probe (Physitemp Instruments, Clifton, NJ) 

and maintained at 37 ± 0.5EC by adjusting a heat lamp positioned above the rat.  A short section 

of polyethylene (PE) tubing (PE-240) was placed in the trachea to facilitate respiration.  Two 

PE-50 cannulas were inserted into the right jugular vein and infusions of saline were initiated at 

25 µl/min in each cannula. A PE-50 catheter was placed in the left carotid artery for blood 

sample collection and for measurement of mean arterial blood pressure (MABP) via a digital 

blood pressure analyzer (model BPA, Micro-Med Inc.).  A PE-10 catheter was inserted into the 

left ureter for urine collection, and a flow probe (model 1RB; Transonic Systems, Inc., Ithaca, 

NY) was placed on the left renal artery and connected to a transit time flowmeter (model T206; 

Transonic System, Inc.) for determination of renal blood flow (RBF).  A bolus and infusion of 

inulin [carboxyl-14C] (0.5 µCi bolus followed by 0.035 µCi/min infusion) was administered via 

one jugular cannula.  Also, a bolus (10 mg) and infusion (0.15 mg/min) of 1,3-dipropyl-8-p-

sulfophenylxanthine (DPSPX; Sigma-Aldrich, St. Louis, MO) was administered via a separate 

jugular cannula in half (n=8) of the animals (the other half (n=8) continued to receive saline 

only; random assignment).  DPSPX was rendered highly soluable in saline by titrating with 
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sodium carbonate to convert the free acid to the sodium salt of DPSPX.  DPSPX is restricted to 

the extracellular compartment due to a negative charge at physiological pH (Tofovic et al., 

1991), and at high concentrations (equal to or greater than 0.1 mmoles/L) blocks ecto-

phosphodiesterase activity (Dubey et al., 1996, 2000). An intravenous bolus of erythro-9-(2-

hydroxy-3-nonyl) adenine hydrochloride (EHNA; 3 mg; Sigma-Aldrich) was administered to all 

animals to inhibit adenosine deaminase so as to enhance the ability to detect changes in 

adenosine production.  After a 90 minute rest period, parameters were recorded in all animals 

during three 30-minute renal clearance periods.  A mid-point blood sample (0.3 ml) for 

measurement of radioactivity was collected.  Plasma and urine 14C-inulin radioactivity were 

measured, and renal clearance of 14C-inulin was calculated for estimation of glomerular filtration 

rate (GFR).  Urinary adenosine and cAMP were measured by high pressure liquid 

chromatography (HPLC) with fluorescence detection as previously described (Jackson et al., 

1996).  Also, plasma levels of DPSPX were measured in a subset of rats using HPLC with 

ultraviolet detection as previously described (Tofovic et al., 1991).  Urinary sodium and 

potassium were measured by flame photometery (Instrumentation Laboratory, Lexington, MA). 

 Protocol 2.  SHR (n=17) and WKY (n=16) rats were prepared as described above with 

the exception that the animals were not given radiolabeled inulin and urinary electrolytes were 

not measured.  As with the first protocol, the animals received an intravenous injection of 

EHNA (3 mg).  After a 60-minute rest period, urine was collected for 20 minutes and 

hemodynamic parameters were measured and recorded. Next, a bolus (10 mg) and infusion of 

DPSPX (0.15 mg/min) was administered to 8 WKY and 9 SHR, whereas the other WKY and 

SHR continued to receive saline only (random assignment).  
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 Statistics. Data were analyzed by repeated measures 2-factor analysis of variance 

(ANOVA) followed by a Fisher’s Least Significant Difference test (Fisher’s LSD) if the 

interaction term in the analysis of variance was significant.  The criterion of significance was 

p<0.05.  All values in text and figures are means ± SEM. 
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RESULTS 

 As shown in Figure 1, in Sprague-Dawley rats that received DPSPX (n=8), the urinary 

excretion rate of adenosine was significantly (P=0.0003; main effects term in ANOVA) reduced 

by approximately 48% compared with control rats (n=8).  DPSPX did not reduce urinary cAMP 

excretion, but did significantly (P=0.0044; interaction term in ANOVA) reduce the ratio of 

urinary adenosine to urinary cAMP excretion (by approximately 39%).  In contrast to the effects 

of DPSPX on urinary adenosine excretion, DPSPX did not affect MABP, RBF or GFR (Figure 

2).  There was a significant and time-dependent effect of DPSPX on urine volume and sodium 

excretion (Figure 3; P=0.0305 and P=0.0149 for urine volume and sodium excretion, 

respectively; interaction term in ANOVA).  In this regard, during the first two experimental 

periods, DPSPX approximately doubled urine volume and sodium excretion (P<0.05; Fisher’s 

LSD); however, this robust diuretic and natriuretic effect waned with time so that during the last 

experimental period, urine volume and sodium excretion were similar in control versus DPSPX-

treated animals.  Potassium excretion was not affected by DPSPX during any experimental 

period.  Plasma and urine levels of DPSPX were measured in four Sprague-Dawley rats and 

were 0.3 ± 0.1 and 6.2 ± 1.5 mmoles/L, respectively. 

 In the first protocol, DPSPX was given from the outset of the protocol.  Therefore, the 

study design was a parallel control design rather than a paired study design.  The purpose of the 

second study was to confirm the result of the first protocol using a paired design and to extend 

the results to other strains of rats, i.e., SHR and WKY.  As shown in Figure 4, DPSPX was 

associated with an approximate 56% (P<0.05; Fisher’s LSD) and 33% (P<0.05; Fisher’s LSD) 

reduction in urinary adenosine excretion in WKY (n=8) and SHR (n=9), respectively (P<0.0001 
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and P=0.0057 for WKY and SHR, respectively; interaction term in ANOVA). Urinary adenosine 

excretion was slightly but significantly (P<0.05; Fisher’s LSD) increased between the first and 

second experimental periods in the time-control WKY (n=8), but was not significantly changed 

in the time-control SHR (n=8).   As in the first protocol, DPSPX did not affect urinary cAMP 

excretion in either WKY (2.29 ± 0.15 and 1.94 ± 0.14 nmoles/20 min before and after DPSPX, 

respectively) or SHR (2.44 ± 0.11 and 2.92 ± 0.16 nmoles/20 min before and after DPSPX, 

respectively).  As shown in Figure 5, DPSPX was associated with an approximate 48% (P<0.05; 

Fisher’s LSD) and 44% (P<0.05; Fisher’s LSD) reduction in the urinary adenosine to urinary 

cAMP excretion ratio in WKY and SHR, respectively (P=0.0075 and P=0.0035 for WKY and 

SHR, respectively; interaction term in ANOVA). Urinary adenosine to urinary cAMP excretion 

ratios were not significantly changed in the time-control WKY or SHR.  As in Sprague-Dawley 

rats, DPSPX increased urine volume in both WKY and SHR (in WKY, 194 ± 93 and 461 ± 99 

:l/20 min before and after DPSPX, respectively, P<0.05, Fisher’s LSD; in SHR, 260 ± 34 and 

358 ± 56 :l/min before and after DPSPX, respectively, P<0.05, Fisher’s LSD).  Also, as in 

Sprague-Dawley rats, DPSPX did not affect MABP or RBF in either WKY or SHR (data not 

shown). 
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DISCUSSION 

 The goal of the present study was to test the hypothesis that metabolism of extracellular, 

endogenous cAMP contributes to adenosine formation in vivo.  To test this hypothesis we 

measured urinary adenosine as an index of adenosine production and treated animals 

intravenously with DPSPX to block ecto-phosphodiesterase, the enzyme that converts 

extracellular cAMP to AMP (which in turn is metabolized to adenosine by ecto-5’-nucleotidase).  

We used urinary adenosine as a marker for total body adenosine production for two reasons.  

First, under normal physiological conditions, urinary adenosine is derived in part from filtered 

adenosine that escapes uptake and metabolism by tubular epithelial cells and in part from renal 

tubular production of adenosine (Thompson et al., 1985; Heyne et al., 2004).  Second, plasma, 

but not urinary, adenosine measurements are fraught with technical problems that give rise to 

misleading results because of rapid uptake and metabolism by cells in whole blood and because 

of rapid synthesis of adenosine in whole blood.  Because urine does not normally contain 

enzymes of adenosine production or metabolism, measurement of urinary adenosine should 

provide a more reliable index of adenosine production.     

 A key feature of this experimental strategy was the use of DPSPX.  DPSPX is a xanthine 

that is restricted to the extracellular compartment due to a negative charge at physiological pH 

(Tofovic et al., 1991).  At low concentrations, DPSPX blocks adenosine receptors (Daly and 

Jacobson, 1995), but at high concentrations DPSPX inhibits ecto-phosphodiesterase (Zacher and 

Carey, 1999).  For example, DPSPX at concentrations greater than or equal to 0.1 mmoles/L 

inhibits the metabolism of extracellular cAMP to AMP in the isolated perfused kidney (Mi and 

Jackson, 1995), cultured aortic vascular smooth muscle cells (Dubey et al., 1996), cultured 
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cardiac fibroblasts (Dubey et al., 2000), freshly isolated preglomerular vascular smooth muscle 

cells (Jackson and Mi, 2000), cultured oviduct cells (Cometti et al., 2003), freshly isolated 

collecting ducts and cultured collecting duct cells (Jackson et al., 2003) and freshly isolated 

proximal tubules and cultured collecting duct cells (Jackson et al., 2006).  

 In the present study, we administered a bolus of DPSPX of 10 mg followed by an 

infusion of 0.15 mg/min.  This experimental paradigm provided plasma levels of DPSPX, as 

measured by HPLC with ultraviolet detection, of approximately 0.3 mmoles/L, a concentration 

well within the range to inhibit ecto-phosphodiesterase.  Notably, we achieved urinary 

concentrations of DPSPX of approximately 6 mmoles/L, 60-fold above the concentration 

required to inhibit ecto-phosphodiesterase.  The high urinary concentrations of DPSPX are likely 

due to the fact that DPSPX does not cross cell membranes and therefore is concentrated in the 

urinary compartment as water is reabsorbed from the tubules.  Therefore, DPSPX should afford 

a high degree of inhibition of ecto-phosphodiesterase in the renal tubular system. 

   It is unlikely that the ability of DPSPX to reduce the urinary excretion of adenosine was 

secondary to changes in systemic hemodynamics, renal hemodynamics, glomerular filtration rate 

or renal excretory function.  In the present study we did not detect an effect of DPSPX on 

arterial blood pressure, renal perfusion or glomerular filtration.  Because DPSPX is an adenosine 

receptor blocker (Daley and Jacobson, 1996) and because blockade of A1 adenosine receptors 

reproducibly increases urine volume and sodium excretion (Kuan et al., 1993), it is not 

surprising that in the current study DPSPX caused a large initial increase in urine volume and 

sodium excretion.  However, as has been noted previously, diuretic breaking occurs quickly 

following A1-receptor blockade (Bak and Thomsen, 2004), and therefore with time we observed 
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a gradual return of urine volume and sodium excretion to basal values.  Despite the return of 

urine volume and sodium excretion to baseline levels the excretion of adenosine remained 

attenuated in DPSPX-treated animals.  This observation would appear to rule-out the possibility 

that the effects of DPSPX on adenosine excretion were mediated by the transient changes in 

urine volume and sodium excretion.   Also, the fact that DPSPX did not significantly affect 

cAMP excretion but did reduce the ratio of adenosine to cAMP excretion argues strongly that 

the effects of DPSPX were not merely secondary to changes in urine volume or renal excretory 

function.  Consistent with this conclusion, Heyne et al. (2004) report that urine volume and 

sodium excretion have little if any effect on the urinary excretion of adenosine. 

 Currently, DPSPX is the only know inhibitor of ecto-phosphodiesterase that is restricted 

to the extracellular compartment, and therefore was the preferred inhibitor for the present study.  

However, as mentioned, DPSPX is also an adenosine receptor antagonist, and therefore it is 

conceivable that the reduction in urinary adenosine excretion was related to blockade of 

adenosine receptors.  However this seems unlikely because blockade of A1 receptors increases, 

rather than decreases, extracellular levels of adenosine (Andresen et al.,1999).  Although DPSPX 

decreases urinary adenosine excretion it does not increase urinary cAMP excretion.  This could 

be due to the fact that by blocking A2 receptors and decreasing adenosine levels, DPSPX inhibits 

A2 receptor-mediated activation of adenylyl cyclase.  

 The results of the present study are in accord with our previously published work using 

3-isobutyl-1-methylxanthine (IBMX) (Mi et al., 1994), an inhibitor of both intracellular and 

extracellular phosphodiesterase.  When added to the perfusate of a microdialysis probe inserted 

into the renal cortex of anesthetized rats, IBMX reduced the recovery of adenosine and inosine 
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(metabolite of adenosine) by about 40 to 50%, which is very similar to the reduction in urinary 

adenosine achieved in the present study.  However, because IBMX enters cells and inhibits 

intracellular as well as extracellular phosphodiesterase, our previous study left open the 

possibility that metabolism of cAMP to adenosine intracellularly was responsible for the cAMP-

adenosine pathway, rather than extracellular cAMP-adenosine pathway.  Taken together, the two 

studies support the concept that the extracellular cAMP-adenosine pathway importantly 

contributes to adenosine production in vivo. 

 DPSPX reduces urinary adenosine excretion in Sprague-Dawley rats, SHR and WKY.  

This indicates that the cAMP-adenosine pathway contributes to the in vivo production of 

adenosine in several different strains of rats.  An unexpected finding of the present study was the 

fact that basal urinary adenosine excretion in SHR is approximately 50% of the basal urinary 

adenosine excretion in WKY or Sprague-Dawley rats.  We do not know the mechanism of this 

potentially important difference between genetically hypertensive and normotensive rats.  

However, given the importance of adenosine in modulating the growth of cardiac fibroblasts 

(Dubey et al., 1997), vascular smooth muscle cells (Dubey et al., 1998)) and mesangial cells 

(Dubey et al., 2005), it is conceivable that reduced levels of adenosine could participate in the 

pathophysiology of genetic hypertension or its sequelae. 

   Biochemical and pharmacological evidence strongly supports the existence of the cAMP-

adenosine pathway in vitro, and the present study suggests that the cAMP-adenosine pathway 

also exits in vivo.  In addition to biochemical and pharmacological evidence supporting the 

cAMP-adenosine pathway, molecular characterization of the components of the system is 

progressing.  In this regard, the molecular details of one component of the pathway, i.e., the 
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ecto-5’-nucleotidase mediating the metabolism of AMP to adenosine, are well described 

(Zimmermann, 1992), and molecular studies identify several cAMP transporters that may 

participate in the efflux of cAMP to the extracellular compartment (Sekine et al., 1997; van 

Aubel et al., 2002).  However, the molecular identity of the ecto-phosphodiesterase that mediates 

the extracellular metabolism of cAMP to AMP remains unclear.  With regard to classical 

phosphodiesterases, in mammals there are at least 11 gene families, and each family is 

composed of 1 to 4 distinct genes.  Moreover, many of these genes give rise to splice variants so 

that mammals produce more than 50 different phosphodiesterase proteins (Lugnier, 2006).  In 

addition, mammalian cells express at least three different functional ecto-nucleotide 

pyrophosphatases (E-NPPs), and these cell-surface enzymes are capable of hydrolyzing cAMP to 

AMP (Goding et al., 2003).  It is conceivable that ecto-phosphodiesterase is comprised of one or 

more of the aforementioned enzymes or is a yet-to-be-discovered enzyme distinct from classical 

phosphodiesterases or E-NPPs.  Further work is needed to identify the precise molecular identity 

of ecto-phosphodiesterase.   

 In summary, the present study demonstrates that systemic administration of DPSPX 

achieves high levels of DPSPX in plasma and more notably in urine and this is associated with a 

substantial decrease in the urinary excretion of adenosine.  We conclude that the extracellular 

cAMP-adenosine pathway importantly contributes to adenosine production in vivo. 
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LEGENDS FOR FIGURES 

 

Figure 1:  Urinary excretion rate of adenosine (top panel) and cAMP (middle panel) and the 

ratio of adenosine to cAMP excretion in the urine (bottom panel) in control Sprague-Dawley rats 

(n=8; solid bars) and Sprague-Dawley rats pretreated with DPSPX (10 mg bolus plus 0.15 

mg/min infusion; n=8; hatched bars) during three back-to-back renal clearance periods.  

a
P<0.05, Fisher’s LSD.  Data are shown as means ± SEM. 

 

Figure 2:  MABP (top panel), RBF (middle panel) and GFR (bottom panel) in control Sprague-

Dawley rats (n=8; solid bars) and Sprague-Dawley rats pretreated with DPSPX (10 mg bolus 

plus 0.15 mg/min infusion; n=8; hatched bars) during three back-to-back renal clearance 

periods.  Data are shown as means ± SEM. 

 

Figure 3: Urine volume (top panel), sodium excretion (middle panel) and potassium excretion 

(bottom panel) in control Sprague-Dawley rats (n=8; solid bars) and Sprague-Dawley rats 

pretreated with DPSPX (10 mg bolus plus 0.15 mg/min infusion; n=8; hatched bars) during 

three back-to-back renal clearance periods.  
a
P<0.05, Fisher’s LSD.  Data are shown as means ± 

SEM. 

 

Figure 4:  Urinary excretion of adenosine during two experimental periods in WKY (top panels) 

and SHR (bottom panels).  WKY-Saline (n=8) and SHR-Saline (n=8) groups received only 
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saline between experimental periods 1 and 2.  WKY-DPSPX (n=8) and SHR-DPSPX (n=9) 

groups received DPSPX (10 mg bolus plus 0.15 mg/min) between experimental periods 1 and 2.  

a
P<0.05, Fisher’s LSD.  Data are shown as means ± SEM. 

 

Figure 5:    Adenosine to cAMP urinary excretion ratios during two experimental periods in 

WKY (top panels) and SHR (bottom panels).  WKY-Saline (n=8) and SHR-Saline (n=8) groups 

received only saline between experimental periods 1 and 2.  WKY-DPSPX (n=8) and SHR-

DPSPX (n=9) groups received DPSPX (10 mg bolus plus 0.15 mg/min) between experimental 

periods 1 and 2.  
a
P<0.05, Fisher’s LSD.  Data are shown as means ± SEM. 
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