Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice.

by

Ruggero Galici*1, Carrie K. Jones*, Kamondanai Hemstapat, Yi Nong, Nicholas G. Echemendia, Lilly C. Williams, Tomas de Paulis, P. Jeffrey Conn

Program in Translational Neuropharmacology, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232 USA

Copyright 2006 by the American Society for Pharmacology and Experimental Therapeutics.
Running Title Page

Running head: BINA, a positive allosteric modulator of mGluR2

* These authors have contributed equally to this work.

Address correspondence to:

P. Jeffrey Conn, Ph.D.
Professor, Director, Program in Translational Neuropharmacology
Department of Pharmacology
Vanderbilt University Medical Center
23rd Avenue South at Pierce
417-D Preston Research Building
Nashville, TN 37232-6600
Phone: 615-936-2478
Fax: (615) 936-6833
E-mail: jeff.conn@vanderbilt.edu

Text Pages: 33

Tables: 1

Figures: 10

References: 40

Words in Abstract: 216

Words in Introduction: 704

Words in Discussion: 1464

Abbreviations:

BINA, Biphenyl-indanone A or 3'-(((2-cyclopentyl-6,7-dimethyl-1-oxo2,3-dihydro-1H-inden-5-yl)oxy)methyl)biphenyl-4-carboxylic acid; mGluR2, metabotropic glutamate receptor subtype 2; mGluR3, metabotropic glutamate receptor subtype
3; mGluR, metabotropic glutamate receptors; L-AP4, L(+)-2-amino-4-phosphonobutyric acid; DCG-IV, (2S,2'R,3'R)-2-(2',3'-(2,2,2-trifluoroethyl)sulfonyl)pyrid-3-ylmethylamine; LY354740, (1S,2S,5R,6S)-2-oxabicyclo[3.1.0]hexane-2,6-dicarboxylate monohydrate; LY379268, (-)-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid; LY341495, (2S-2S)-amino-2-(carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid, (2), 2'-cyclopentyl-2,3-dimethyl-4-methoxyacetophenone; (3), 1-(4-methoxy-2,3-dimethylphenyl)-2-cyclopentyl-2-propenone; (4), 2-cyclopropyl-5-methoxy-6,7-dimethylindan-1-one; (5), 2-cyclopropyl-5-hydroxy-6,7-dimethylindan-1-one; (8), ethyl 3'-methylbiphenyl-4-carboxylate; (9), ethyl 3'-bromomethylbiphenyl-4-carboxylate; (10), ethyl 3'-(((2-cyclopropyl-6,7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5-yl)oxy)methyl)biphenyl-4-carboxylate; CBiPES, N-[4'-cyanobiphenyl-3-yl]-N-(3-pyridinylmethyl)ethanesulfonamide hydrochloride; GDP, guanosine 5' diphosphate; GTPγS, guanosine 5'[gamma-thio]triphosphate; PCP, phencyclidine.
Abstract

Previous studies indicate that agonists of the group II metabotropic glutamate receptors (mGluRs), mGluR2 and mGluR3, may provide a novel approach for the treatment of anxiety disorders and schizophrenia. However, the relative contributions of the mGluR2 and mGluR3 subtypes to the effects of the group II mGluR agonists remain unclear. In the present study, we describe an alternate synthesis and further pharmacological characterization of a recently reported positive allosteric modulator of mGluR2, termed here biphenyl-indanone A (BINA). In recombinant systems, BINA produced a robust and selective potentiation of the response of mGluR2 to glutamate with no effect on the glutamate response of other mGluR subtypes. In hippocampal brain slices, BINA (1 µM) significantly potentiated the mGluR2/3 agonist-induced inhibition of excitatory synaptic transmission at the medial perforant path-dentate gyrus synapse. BINA was also efficacious in several models predictive of antipsychotic- and anxiolytic-like activity in mice. The behavioral effects of BINA were blocked by the mGluR2/3 antagonist LY341495, suggesting that the in vivo effects of BINA are mediated by increased activation of mGluR2. Collectively, these results indicate that BINA is a selective mGluR2 positive allosteric modulator and provide further support for the growing evidence that selective allosteric potentiators of mGluR2 mimic many of the in vivo actions of mGluR2/3 agonists that may predict therapeutic utility of these compounds.
Introduction

Metabotropic glutamate receptors (mGluRs) are classified into three major groups based on sequence homologies, coupling to second messenger systems, and selectivities for various agonists (Conn and Pin, 1997). Group II mGluRs, mGluR2 and mGluR3, couple to Gi/o and associated effector pathways, such as the inhibition of adenylyl cyclase and the regulation of ion channels. Group II mGluRs reduce transmission at glutamatergic synapses in multiple brain regions, where excessive glutamatergic neurotransmission has been implicated in the underlying pathophysiology of anxiety disorders and schizophrenia (Walker and Davis, 2002; Moghaddam, 2003). Based on these findings, it has been postulated that selective agonists of group II mGluRs may provide anxiolytic and/or antipsychotic effects through a reduction in glutamatergic neurotransmission within these brain regions.

There have been considerable advances in the development of selective agonists of group II mGluRs. Systemic administration of the mGluR2/3 agonists LY379268, LY354740, and their analogs have behavioral effects in several rodent models predictive of anxiolytic and antipsychotic activity (see Schoepp and Marek, 2002; Schoepp et al., 2003; Marek, 2004 for reviews). Moreover, the selective group II mGluR agonist LY354740 has been shown to have anxiolytic activity in several clinical studies (Grillion et al., 2003; Schoepp et al., 2003; Swanson et al., 2005). However, only one structural class of selective group II mGluR agonists has been developed, and these compounds activate both mGluR2 and mGluR3. To date, the relative contributions of mGluR2 and mGluR3
to the actions of the group II mGluR agonists remains unknown. Moreover, the
development of tolerance to the effects of the direct acting group II mGluR
agonists has been observed in several rodent behavioral models (Cartmell et al.,
2000; Galici et al., 2005; Jones et al., 2005). Thus, it is important to develop
novel approaches for the subtype selective activation of the group II mGluRs.

One alternative approach to direct-acting group II mGluR agonists is the
use of subtype-selective positive allosteric modulators of mGluR2 or mGluR3.
Johnson et al (2003) reported the initial discovery of LY487379 as a selective
positive allosteric modulator of mGluR2. The pharmacological characterizations
of several compounds within the LY487379 structural class have now been
reported (Schaffhauser et al., 2003; Johnson et al., 2003; Johnson et al., 2005).
These compounds are highly selective for mGluR2 relative to other mGluR
subtypes. They do not activate mGluR2 directly but act at an allosteric site on
the receptor, which induces a left-ward shift of the glutamate concentration-
response curve (Schaffhauser et al., 2003; Johnson et al., 2003; 2005).
Interestingly, these mGluR2 potentiators mimic some of the behavioral effects of
mGluR2/3 agonists in animal models used to predict anxiolytic and antipsychotic
activity (Johnson et al., 2003; 2005; Galici et al., 2005). However, members of
this first series of mGluR2 allosteric potentiators have modest potencies in
several behavioral models (Johnson et al., 2003; Galici et al., 2005) and short
duration of action (Galici et al., 2005), which prevent a more systematic
characterization of their pharmacologic effects in vivo.
More recently, a novel series of selective allosteric potentiators of mGluR2 have been discovered (Pinkerton et al., 2005; Bonnefous et al., 2005). These compounds are chemically and structurally unrelated to LY487379 or to the group II agonist LY354740. Preliminary studies suggest that some of these newer compounds are centrally penetrant and block ketamine-induced hyperlocomotor activity in rats, an animal model predictive of antipsychotic activity (Rodriguez et al. 2004; Govek et al., 2005; Bonnefous et al., 2005). However, the pharmacological properties of these compounds have not been rigorously evaluated and no individual compounds have emerged as optimal tools for \textit{in vivo} and \textit{in vitro} studies. Interestingly, Rodriguez et al (2004) presented a preliminary report suggesting that a member of this series, 3′-[[2-cyclopentyl-6,7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5-yl]oxy]methyl]biphenyl-4-carboxylic acid, here termed biphenyl-indanone A (BINA), may provide a useful tool for \textit{in vivo} studies.

We now report that BINA is a highly selective allosteric potentiator of mGluR2 with robust, long-lasting effects in animal models that have been used to predict antipsychotic- and anxiolytic-like activity of group II mGluR agonists. These studies provide strong support for the growing evidence that mGluR2 is responsible for many of the known \textit{in vivo} effects of mGluR2/3 agonists and that allosteric potentiators of mGluR2 may provide an exciting alternative to group II mGluR agonists for development of therapeutic agents.
Materials and Methods

Synthesis of BINA. The improved synthesis of BINA, 3’-[[2-cyclopentyl-6,7-dimethyl-1oxo-2,3-dihydro-1H-inden-5-yl]oxy]methyl]biphenyl-4-carboxylic acid, was completed via an alternate route (Figure 1) from the method used by Bonnefous et al. (2005). Cyclopentylacetyl chloride (1, 11.3 g) and 2,3-dimethylanisole (8.6 g) in methylene chloride were treated with aluminum trichloride (10.5 g) for 16 h at 20 °C to give 16.1 g (98%) of cyclopentylacetophenone 2. Treatment of 2 with paraformaldehyde (6.8 g) and dimethylamine hydrochloride (20 g) in acetic acid (1.5 ml) for 18 h at 95 °C according to Woltersdorf et al (1977) gave 6.0 g (84%) of intermediate 3. Cyclization of 3 in 18 M sulfuric acid (35 ml) for 3 h at 20 °C gave 4.9 g (82%) of methoxyindanone 4. Demethylation of 4 with 0.5 M boron tribromide in methylene chloride for 4 h at 20 °C gave 2.3 g (51%) of the indanol 5 after crystallization from methanol. 3-Toluoylzinc bromide 6, prepared from 3-bromotoluene (3.2 g), 1.6 M butyl lithium (12 ml) and 0.5 M zinc chloride (38 ml) in anhydrous tetrahydrofuran (THF) and 4-ethoxycarbonylphenyl-bis(triphenylphosphine)palladium 7, prepared from ethyl 4-iodobenzoate (4.4 g) and bis(triphenylphosphine)palladium dichloride (0.7 g) in THF, were combined and stirred for 16 h at 20 °C according to Klein et al. (1998), yielding 2.8 g (73%) of biphenyl 8 after gravity column chromatography on silica in hexane-ethyl acetate (10:1). Free radical-induced bromination of 8 with N-bromosuccinimide (2.1 g) and 2,2’-azobisisobutyronitrile (0.2 g) as a free radical initiator in carbon tetrachloride for 16 h at 80 °C according to Gillig et al. (2004) yielded 3.2 g (86%)...
of biphenylmethyl bromide 9. Coupling of intermediates 5 (2.4 g) and 9 (3.2 g) with potassium carbonate in dimethylformamide for 14 h at 75 °C gave 3.6 g (75%) of the ester 10 after flash column chromatography on silica in hexane–ethyl acetate (10:1). Hydrolysis of 10 with 2N sodium hydroxide (10 ml) in THF-methanol (1:1, 100 ml) for 2 h at 60 °C, followed by extraction with 1N sodium hydroxide from diethyl ether and neutralization of the aqueous layer with 12N hydrochloric acid yielded 2.0 g (16%) of BINA. Melting point: 238-241 °C. 1H Nuclear magnetic resonance (300 MHz in CDCl3): 8.21 (d, 2H, 3,5-CH), 7.73 (d, 2H, 2,6-CH), 7.71 (m, 1H, 2'-CH), 7.64 (dd, 1H, 6'-CH), 7.53, (m, 2H, 4',5'-CH), 6.81 (s, 1H, 4''-CH), 5.22 (s, 2H, OCH2), 3.07 (dd, 1H, 2''-CH), 2.73 (m, 2H, 3'''-CH2), 2.64 (s, 3H, 7'''-CH3), 2.33 (m, 1H, 2''''-CH), 2.23 (s, 3H, 6'''-CH3), 1.94 (m, 1H, 5'''-CH), 1.59 (m, 5H, 3''',4'''CH2 and 1'''-CH), 1.42 (m, 1H, 2''''-CH), 1.09 (m, 1H, 5'''-CH). Elemental analysis (C30H30O4) C: calculated 79.27%, found 78.52%; H: calculated 6.65%, found 6.73%.

Cell Culture and Transfections. Baby hamster kidney (BHK) cells stably expressing the rat mGlu1a receptor (rmGluR1a) were generously provided by Dr. Betty Haldeman at Zymogenetics Inc. (Seattle, WA). Cell were grown in Dulbecco’s modified Eagle’s medium (DMEM) containing 5% heat-inactivated fetal bovine serum (FBS), 2 mM GlutaMax I, 100 units of penicillin, 100 µg of streptomycin and 0.25 µg amphotericin B (antibiotic-antimycotic), 1 mM sodium pyruvate, 20 mM HEPES and 250 nM methotrexate. Human embryonic kidney (HEK) 293A cells stably expressing the rat mGlu5a receptor (rmGluR5a) were
grown in DMEM containing 10% heat-inactivated FBS, 2 mM GlutaMax I, antibiotic-antimycotic (100 units of penicillin, 100 µg of streptomycin and 0.25 µg amphotericin B), 0.1 mM non-essential amino acids, 20 mM HEPES and 500 µg/ml G418 sulfate. Rat mGlu2 receptor (rmGluR2) and the promiscuous G proteins (Gqi5) were co-transfected into HEK293A cells using lipofectamine 2000 and were grown in the same manner as rmGluR5a except for that the G418 sulfate was omitted.

Chinese hamster ovary (CHO) cells stably expressing the human mGlu2 receptor (hmGluR2) were transiently transfected with Gqi5 and CHO cells stably expressing the hmGluR4/Gqi5 were grown in DMEM containing 10% heat-inactivated dialyzed FBS, 2 mM GlutaMax I, antibiotic-antimycotic, 1 mM sodium pyruvate, 20 mM HEPES, 5 nM methotrexate and 20 µg/ml L-proline. CHO cells stably expressing the rat mGluR3 (rmGluR3) were grown in DMEM containing 10% heat-inactivated FBS, 2 mM GlutaMax I, 100 units of penicillin, 100 µg of streptomycin, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, 20 mM HEPES.

All recombinant cell lines were plated at a seeding density of 7-8 X 10^5 cells/well, in clear-bottomed, poly-D-lysine-coated 96 well plates (Becton Dickinson Labware, Bedford, MA). Cells were then incubated in glutamate/glutamine-free medium overnight at 37°C/5% CO₂, with the exception of BHK cells stably expressing mGluR1a, which were maintained in regular medium.
Membranes were prepared from CHO cells stably expressing either the hmGluR2 or rmGluR3. Briefly, cells were washed once with ice-cold 1x phosphate buffered saline, pH 7.4. Cells were then harvested with a cell scraper and resuspended in ice-cold buffer (20 mM HEPES and 10 mM EDTA, pH 7.4) and were homogenized using a Polytron for 2 s. The homogenate was centrifuged at 4 °C for 20 min at 40,000 g. The pellet was resuspended with the same buffer and was homogenized for 10 s. After centrifugation, the pellet was resuspended and homogenized for 5 s in ice-cold buffer containing 20 mM HEPES and 0.1 mM EDTA, pH 7.4. The final pellet was resuspended and homogenized using a glass homogenizer. Aliquots were stored at -80°C until use. Protein concentrations were measured using the Bio-Rad protein assay kit (Bio-Rad Laboratories, Hercules, CA) using serum albumin (Pierce, Rockford, IL) as the standard.

After thawing, the membranes were diluted and homogenized using a glass homogenizer in ice-cold assay buffer containing 50 mM Tris-HCl (pH 7.4), 5 mM MgCl₂, 150 mM NaCl, 1 mM EDTA, 10 μg/ml saponin and 1 μM guanosine 5’-diphosphate (GDP). Assay mixtures contained 10 μg membrane protein, test compound, glutamate, 0.1 nM [³⁵S]GTPγS and assay buffer to yield a total volume of 100 ul. Nonspecific binding was determined in the presence of 10 μM unlabeled GTPγS. The assay mixtures were incubated at 30°C for 60 min. The binding equilibrium was terminated by rapid filtration through Unifilter-96 GF/B filter plates (presoaked with ice-cold assay buffer) and the filters
were washed three times with ice-cold assay buffer using a 96 well Brandel harvester (Brandel, Gaithersburg, MD). Filter plates were dried and filled with 30 µl MicroScint™-20, the radioactivity was determined by TopCount NXT™ Microplate Scintillation and Luminescence Counter (PerkinElmer Life and Analytical Sciences, Downers Grove, IL).

Calcium Mobilization Assay. Cells were loaded with calcium indicator dye (Calcium 3 Assay Kit) from Molecular Devices Corporation (Sunnyvale, CA) for 1 h at 37 °C. Dye was removed and replaced with the appropriate volume of assay buffer containing 1x Hanks’ Balanced Salt Solution (HBSS) (Invitrogen, Carlsbad, CA), 20 mM HEPES, and 2.5 mM probenecid, pH 7.4. Cells were then pre-incubated with either vehicle or various concentrations of BINA (5 x stock) for 5 min followed by the 1 min stimulation of an EC\(_{20}\) of agonists (i.e., glutamate or L-AP4). BINA was dissolved in 100% DMSO and then serially diluted into assay buffer containing 0.1% bovine serum albumin (BSA) for a 5 x stock in 0.5% DMSO. The stock was then added to the assay for a final DMSO concentration of 0.1%. Glutamate and L-AP4 were prepared to a 10 x stock solution in assay buffer prior to addition to the assay plate. Calcium mobilization was measured using the FLEXstation II (Molecular Devices, Sunnyvale, CA).

Hippocampal Slice Electrophysiology. Extracellular field recordings were performed using hippocampal brain slices prepared from male Sprague–Dawley rats, 3-4 weeks of age, as previously described with minor modifications (Macek
et al., 1996, Marino et al., 1998). After decapitation, brains were rapidly removed and submerged in an ice-cold sucrose replacement solution containing: 200 mM sucrose, 2.5 mM KCl, 1.2 mM NaH$_2$PO$_4$, 1.3 mM MgCl$_2$, 8 mM MgSO$_4$, 20 mM glucose, and 46 mM NaHCO$_3$ and equilibrated with 95% O$_2$/5% CO$_2$. Coronal hippocampal slices (400 µm) were cut using a microtome (Leica Microsystems, Nussloch GmbH) and transferred to a holding chamber containing artificial cerebrospinal fluid (ACSF) with 124 mM NaCl, 2.5 mM KCl, 1.3 mM MgSO$_4$, 1.0 mM NaH$_2$PO$_4$, 2 mM CaCl$_2$, 20 mM glucose, and 26 mM NaHCO$_3$, equilibrated with 95% O$_2$/5% CO$_2$ and maintained at room temperature. For all experiments, both sucrose replacement buffer and holding chamber ACSF buffer were supplemented with 5 µM glutathione, 500 µM pyruvate, and 250 µM kynurenic acid to increase slice viability.

After one hour of recovery in the holding chamber, hippocampal slices were transferred to the slice recording chamber and maintained fully submerged with continuous perfusion of ACSF (2-3 ml/min). Using a microscope with Hoffman modulation contrast, the middle third of the molecular layer of the dentate gyrus was identified for placement of the recording and stimulation electrodes. Recording electrodes were pulled from borosilicate glass on a Narashige vertical patch pipette puller and filled with 2.5 mM NaCl (0.3 to 1.0 MΩ resistance). A bipolar tungsten microelectrode (FHC, Bowdoinham, ME) was used for stimulation of the medial perforant path (MPP) fibers; stimuli (100 µs in duration) were delivered at 0.05 Hz using Grass S48 stimulator and Grass isolator. The field excitatory postsynaptic potentials (fEPSP) were recorded using
an Axon MultiClamp 700B amplifier (Molecular Devices, Sunnyvale, CA) in current clamp mode, data were digitized with DigiData 1322A, filtered (2 kHz) and acquired using the pClampex v.9.2 program. An input-output curve was performed for each experiment, and the stimulus intensity was adjusted to produce a fEPSP approximately 50% to 70% of the maximal amplitude. The fEPSP was analyzed using pClampfit to calculate the slope of the fEPSP. The first six consecutive slope values were averaged in order to define the baseline fEPSP slope value for a given experiment. The subsequent fEPSP slopes were normalized to the baseline fEPSP slope value and expressed as a percentage. Six averaged consecutive fEPSP slopes after 12 min of application of DCG-IV were averaged and defined as the value for applying DCG-IV. All normalized fEPSP slopes for each concentration of DCG-IV were then expressed as the mean±S.E.M.

Behavioral Studies

Subjects. All behavioral studies were conducted using C57BL6/J male mice (Charles River Laboratories Inc., Wilmington, MA) 8-10 weeks of age. Subjects were housed in groups of 4-5 per cage in a large colony room under a 12 h light/dark cycle (lights on at 6:00 a.m.) with food and water provided ad libitum. Test sessions were performed between 6:00 a.m. and 6:00 p.m. All dose groups consisted of 6 to 12 mice. All experiments were conducted in accordance with the NIH regulations of animal care covered in "Principles of Laboratory Animal
Apparatus. Amphetamine- and phencyclidine (PCP)-induced hyperlocomotor activity studies were conducted in open field chambers (27 X 27 X 20 cm) (Med Associates Inc, East Fairfield, VT) equipped with 16 horizontal (x and y axes) and 16 vertical (z axis) infrared photobeams located 1 cm and 5.5 cm above the floor of the chamber, respectively. Changes in locomotor activity were measured as the number of photobeam breaks (counts) and were recorded with a Pentium I computer equipped with a mouse activity monitoring system software (Med Associates Inc, East Fairfield, VT).

Prepulse inhibition (PPI) studies were conducted in sound attenuating acoustic startle cubicles (Med-Associates, St Albans, VT) equipped with two speakers, a mouse holder and a transducer system (a platform with load cells) through which startle responses were recorded. Chambers were connected to an amplifier and to a Pentium IV computer equipped with a Startle Reflex Software (Med-Associates, East Fairfield, VT).

For the stress-induced hyperthermia studies, changes in core body temperature were measured rectally using a digital thermometer with an accuracy of 0.1°C using a Physitemp (model BAT-12) digital thermometer (Physitemp Instruments, Inc. Clifton, NJ, US).

Elevated plus maze studies were conducted using an automated elevated plus maze constructed from black Plexiglas using a design validated by Lister.
(1987). The maze (Hamilton-Kinder, Poway, CA) consisted of two open arms (37.5 x 5 x 0.3 cm) and two closed arms (37.5 x 5 x 15 cm), which extended from the central platform (5 x 5 cm). The maze was elevated 63 cm above the floor. Each arm was outfitted with 4 infrared photobeam sensors. Automated software recorded the number of entries and time spent in the open and closed arms of the plus maze by analyzing photobeam breaks using the Motor Monitor software (Hamilton-Kinder, Poway, CA). A modified zone map was used. The central area was extended to include the first 2.5 cm of each arm, thus the arm area was defined as the most distal (35 cm). An arm entry was recorded when the mouse entered the distal part of the arm based on Lister (1987).

Procedure

Amphetamine- and PCP-Induced Hyperlocomotor Activity.

Experiments were conducted every 3-4 days in the same mice using a within subject counterbalanced design. Specifically, on each session, half of the mice received an acute injection of vehicle (10 ml/kg, i.p.) and the remaining half received a dose of BINA (10 and 32 mg/kg, i.p.). Animals were placed in the open field for 60 min (habituation period) and, thereafter, mice received amphetamine (3.2 mg/kg, s.c.) or PCP (5.6 mg/kg, s.c.) and locomotor activity was measured for an additional 120 min. These pretreatment times for amphetamine and PCP were chosen based on previous open field studies (Galici et al., 2005).
The duration of action of BINA (32 mg/kg i.p.) was evaluated in the same mice used for the acute studies by administering BINA at various pretreatment times, specifically 0, 1, 4, 8, or 16 h prior to PCP administration.

In order to evaluate the selectivity of the observed behavioral effects of BINA, pretreatment with a dose of BINA (32 mg/kg i.p.) or vehicle for 40 min, was followed by a dose of the orthosteric mGluR2/3 antagonist LY341495 (3 mg/kg, i.p.) prior to the end of the 60-min habituation period. Thereafter, mice received PCP (5.6 mg/kg s.c.) and locomotor activity was evaluated for an additional 120 min.

In a separate experiment, the effects of BINA (10 and 32 mg/kg, i.p.) on locomotor activity when administered alone were assessed using a between subject design in non-habituated naïve mice. In this experiment, BINA was given 60-min prior to the habituation period and locomotor activity was studied for 180 min. For all of the locomotor activity studies, changes in locomotor activity were expressed as the average number of counts or photobeam breaks ± S.E.M.

PCP-induced disruption of prepulse inhibition (PPI) of startle reflex.

The effects of BINA (32 and 100 mg/kg, i.p.) on PCP (5.6 mg/kg, s.c.)-induced disruption of PPI was studied using a within subject design. Eight different treatment conditions were assigned to 16 naïve mice in each session. Vehicle and BINA were administered 60 min, whereas water and PCP were given 15 min prior to the beginning of the session. These pretreatment times were chosen according to the open field studies and to the literature (Geyer and
Ellenbroek, 2003). Each session started with a 5 min acclimatization period, during which a 65 dB background noise was continuously present, and included a total of 54 trials. Six different trial types were randomly assigned and delivered (every 15-20 sec on average) for 9 times throughout the session: 40 ms broadband 120 dB burst (pulse only), 65 dB background noise (noise only) and 20 ms prepulse of 70, 76, 82 and 88 dB followed by 100 ms of 120 dB pulse. Sessions were conducted every 3-4 days.

Stress-Induced Hyperthermia.

For the stress-induced hyperthermia experiments, a between subject design was used. Mice were group housed until the day before experiment, then singly housed overnight. On test day, mice were pretreated with vehicle or a dose of either BINA (10 or 32 mg/kg, i.p.) or the benzodiazepine chlordiazepoxide (2.5, 5, or 10 mg/kg, i.p.) for 1 h prior to the beginning of the experiment. In order to evaluate the selectivity of BINA, mice were pretreated with a dose of LY341495 (3 mg/kg, i.p.) 30 min prior to a dose of 32 mg/kg BINA i.p. or vehicle, then tested 60 min later. Using a modified method from Van der Heyden et al., (1997) mice were brought into the testing room one at a time and baseline temperature was taken by inserting a thermistor probe, dipped into mineral oil, 2 cm into the rectum for 20 sec in order to obtain core body temperature \(T_1 \). Following a 15 min interval, core body temperature for each mouse was measured a second time \(T_2 \). Stress-induced hyperthermia was
calculated as the change in core body temperature between the first and second temperature readings ($\Delta T = T_2 - T_1$).

Elevated plus maze.

For the elevated plus maze experiments, a between subject design was used. On the test day, mice were pretreated with vehicle or a dose of either BINA (10 or 32 mg/kg, i.p.) or chlordiazepoxide (2.5, 5, or 10 mg/kg, i.p.), then acclimated in the testing room for 1 h. A 5-min test session began by placing each mouse on the central platform facing the open arm of the elevated plus maze. After each session, the maze was cleaned with 70% ethanol prior to testing the next mouse. Data were expressed as either the time spent in the open arms as a percent of the total testing time, the total number of open arm entries, or the total number of photobeam breaks or ambulations. In order to evaluate the selectivity of BINA, mice were pretreated with a dose of LY341495 (3 mg/kg, i.p.) 30 min prior to a dose of 32 mg/kg BINA i.p. or vehicle, and then tested 60 min later.

Drugs. All reagents and solvents for the synthesis of BINA were obtained from Sigma-Aldrich (Milwaukee, IL). All cell culture reagents were obtained from Invitrogen (Carlsbad, CA). G418 sulfate was obtained from Mediatech, Inc., (Herndon, VA). Methotrexate was obtained from Calbiochem (La Jolla, CA). [35S]GTPγS (1250 Ci/mmol), Unifilter-96 GF/B plates and MicroScintTM-20 were obtained from PerkinElmer Life Sciences (Boston, MA). Unlabeled GTPγS was
obtained from Sigma-Aldrich, Inc. (St. Louis, MO). Saponine was obtained from Fluka BioChemika (Buchs, Germany). (Ethylenedinitrilo)tetraacetic acid disodium salt (EDTA) was obtained from Mallinckrodt Baker, Inc., (Phillipsburg, NJ). L-glutamic acid, L-2-amino-4-phosphonobutyric acid (L-AP4), and LY341495 were obtained from Tocris (Ellisville, MO). Probenecid, L-proline, PCP hydrochloride, chlordiazepoxide hydrochloride and amphetamine hydrochloride were obtained from Sigma-Aldrich, Inc. (St. Louis, MO).

For the electrophysiology experiments, BINA was dissolved in DMSO then diluted to the appropriate concentration using ACSF. LY341495 and DCG-IV were dissolved in double deionized water with 1N sodium hydroxide. For behavioral experiments, BINA was dissolved in 10% Tween-80 and 1% lactic acid (Sigma-Aldrich, St. Louis, MO) and the pH was adjusted with 1N sodium hydroxide (Mallinckrodt, St. Louis, MO). PCP, amphetamine, chlordiazepoxide and LY341495 were dissolved in double deionized water. Doses refer to the form of the drug listed. All drugs were administered i.p. in a volume of 10 ml/kg.

Statistical Analysis. For the calcium mobilization assay, all data were normalized to %Glutamate or L-AP4 Maximum defined by 10 µM glutamate or L-AP4 for each cell line respectively. For the $[^{35}S]$ GTPγS binding assay, all data were normalized to %Glutamate Maximum defined as 10 µM glutamate. Data analysis was performed using the GraphPad Prism 3.0 software (GraphPad Software, Inc., San Diego, CA). Concentration-response curves were generated from the mean data of at least three independent experiments. Error bars
represent ± S.E.M. For the electrophysiology experiments, data were analyzed using Clampfit v.9.2 (Molecular Devices, Sunnyvale, CA). All results are expressed as mean ± S.E.M.; and statistical significance was determined using Student’s t test. For the locomotor activity time course and antagonist studies, data were analyzed using a repeated measures ANOVA with treatment and time (i.e. 120 min post-injection) as within group factors followed by analyses of simple main effects and, when appropriate, post-hoc analysis with LSD test. In order to quantify the potency and duration of action of BINA, locomotor activity data were calculated as the average counts/5 min that occurred in the first 60 min post injection (i.e. after habituation time) and were expressed as % control (i.e., average of 2 determinations of PCP effects by itself). ED$_{50}$ values were calculated by interpolation (only 2 data points were available) for each mouse and were expressed as mean ± S.E.M. Startle amplitude data were expressed as the mean value ± S.E.M. during presentation of the background noise only (i.e. 65 dB) and the pulse alone (i.e. 120 dB) and were analyzed with one-way repeated measures ANOVA. Levels of PPI were determined by the formula (100-((prepulse pulse / pulse alone)*100)) and were expressed as %PPI ± S.E.M.. Data were analyzed using repeated measures ANOVA with the prepulse intensity and treatment as within group factors, followed by analyses of simple main effects and, when appropriate, post-hoc analysis with LSD test. In the stress-induced hyperthermia and elevated plus maze tests, data were expressed as means ± S.E.M. Treatment groups were compared with the appropriate control groups using a one-way ANOVA and Dunnett’s t-test. Statistical analyses
were performed using JMP version 4.04 statistical software (SAS Institute, Cary, NC). For all behavioral data, a probability of $p \leq 0.05$ was taken as the level of statistical significance.
Results

Synthesis of BINA. BINA (3’-[(2-cyclopentyl-6,7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5-yl]oxy)methyl)biphenyl-4-carboxylic acid) was synthesized through a nine step reaction pathway as outlined in Fig. 1 using an alternate synthetic route from that by Bonnefous et al. (2005). The spectral data of BINA and its precursors were consistent with the structure of BINA.

BINA induces a selective allosteric potentiation of mGluR2 in recombinant systems. Activation of mGluR2 was assessed by measuring glutamate-induced increases in intracellular calcium in CHO cells expressing hmGluR2 co-expressed with the G protein (G_{q5}). Consistent with the effects of other allosteric potentiators of mGluR2, increasing concentrations of BINA induced parallel leftward shifts of the glutamate concentration-response curves in the hmGluR2 CHO cells with no increase in the maximal response to glutamate (Fig. 2A). The EC_{50} value of glutamate in the presence of a maximally effective concentration of BINA was 108.0 ± 15.2 nM. Thus, BINA induced a maximal change in the glutamate EC_{50} of approximately 11-fold (Fig. 2A).

To assess the potency of BINA, we determined the effects of increasing concentrations of BINA on the response to an EC_{20} concentration (200-300 nM) of glutamate in CHO cells expressing the hmGluR2/G_{q5} (Fig. 2B). BINA produced a maximal potentiation of approximately 3.5-fold, with an EC_{50} value of 33.2 ± 4.9 nM (Fig. 2B). Similar to the potentiation observed in hmGluR2, BINA also produced a concentration-dependent potentiation of the glutamate response.
of HEK293A cells expressing rmGluR2/G_{q5} with a maximal potentiation of approximately 6-fold and an EC_{50} value of 98.0 ± 8.2 nM (Fig. 2C).

To determine the selectivity of BINA for mGluR2 relative to other mGluR receptor subtypes, we assessed the effects of this compound on glutamate-induced activation of mGluR3 as well as members of the other mGluR subgroups. In particular, the ability of BINA to shift glutamate-induced[^{35}S]GTPγS binding in membranes expressing either hmGluR2 or rmGluR3 was measured (Fig. 3A and 3B). Increasing concentrations of BINA produced a leftward shift in the glutamate-induced[^{35}S]GTPγS binding in the hmGluR2 with a maximal potentiation of approximately 10-fold, resulting in an EC_{50} value for glutamate of 0.5±0.0 µM (Fig. 3A) in the presence of 300 nM BINA. Interestingly, in the absence of glutamate, BINA also increased[^{35}S]GTPγS binding in membranes expressing hmGluR2. In contrast, BINA had no effect on glutamate-induced[^{35}S]GTPγS binding in rmGluR3 (Fig. 3B). Moreover, BINA had no effect on glutamate-induced activation of the other mGluR subtypes tested, including rmGluR1a (Fig. 4A), rmGluR5a (Fig. 4B) or hmGluR4 (Fig. 4C) using a calcium mobilization assay. Furthermore, application of BINA alone did not elicit a Ca^{2+} response in any of these other cell lines tested. These present data suggest that BINA is a potent and highly selective allosteric potentiator of mGluR2.

BINA potentiates agonist-induced inhibition of excitatory synaptic transmission at the medial perforant path-dentate gyrus synapse in the rat hippocampal slices. Previous studies have demonstrated that group II mGluRs, located presynaptically within the medial perforant path (MPP), inhibit
transmission at the MPP-dentate granule (DG) cell synapse by reducing glutamate release from presynaptic terminals (Macek et al., 1996; 1998). Furthermore, Schaffhauser et al. (2003) reported that the mGluR2 positive allosteric modulator LY487379 potentiates the effects of group II mGluR agonists at this synapse. These previous findings at the MPP-DG synapses provide an excellent response for determining whether BINA potentiates activation of native mGluR2 at an identified synapse. Thus, extracellular field recordings were performed in the middle third of the molecular layer of the DG in order to determine whether BINA had effects on synaptic transmission at MPP-DG synapse. As reported previously (Macek, 1996), bath application of the group II mGluR agonist DCG-IV reduced MPP excitatory synaptic responses in a concentration-dependent manner (Fig. 5A), with an inhibition of 70.3% when DCGIV was 3 µM (n=18). The observed effects of DCG-IV were blocked using the group II mGluR antagonist LY341495 (1 µM) (Macek et al., 1998) (data not shown). The effect of BINA was evaluated using a concentration of DCG-IV (100 nM) that induced a submaximal inhibition of the fEPSP slope (18.9 ± 2.6 % inhibition; n=8) (Fig. 5B and 5C). Consistent with the effects of BINA observed in the recombinant systems, BINA (1 µM) significantly potentiated the effect of DCG-IV on inhibition of the fEPSP slope (33.1 ± 3.9% inhibition; n=8) (Fig. 5B and 5C).

BINA Blocks PCP-induced Hyperlocomotor Activity. The finding that BINA is a highly selective allosteric potentiator of mGluR2 with activity in native
systems is encouraging in light of previous studies suggesting that this compound crosses the blood brain barrier (Rodriguez et al., 2004; Bonnefous et al., 2005). We next performed a series of studies to determine whether BINA could mimic the effects of group II mGluR agonists in animal models used to predict potential antipsychotic-like and anxiolytic activity. The effects of BINA on PCP-induced hyperlocomotor activity were determined using C57Bl6 mice (Fig. 6A-D). A two-way repeated measures ANOVA indicated that there was a significant effect of dose \(F(4, 20)=4.91, \ p < 0.05 \). Post-hoc analysis indicated that PCP (5.6 mg/kg, s.c.) significantly increased locomotor activity when compared to the vehicle control group (Fig. 6A). BINA produced a robust blockade of the PCP-induced hyperlocomotor activity, significant at a dose of 32 mg/kg, i.p. (Fig. 6A). The ED\textsubscript{50} value of BINA for blocking the effects of PCP was 16.8 ± 2.3 mg/kg (Fig. 6B).

The effects of BINA on the PCP-induced hyperlocomotor activity were reversed with pretreatment of the mGluR2/3 antagonist LY341495 (3 mg/kg, i.p.) indicating that the effects of BINA were mediated through activation of mGluR2 (Fig. 6A). LY341495 (3 mg/kg, i.p.) administered alone had no effects on the PCP-induced hyperlocomotor activity. Two-way repeated measures ANOVA also indicated that there was a time effect (Fig.4A) \(F(35, 175)=17.58, \ p < 0.05 \) and a treatment x time interaction (Fig. 6A) \(F(140, 700)=2.01, \ p < 0.05 \). BINA produced a modest decrease in locomotor activity when administered alone, significant at 32 mg/kg, i.p. \(F(2,26)=4.8, \ p < 0.05 \) (Fig. 6C). There was also a
significant time effect (Fig. 6C) \[F(35,910)=34.62, p < 0.05\] and a treatment x
time interaction (Fig. 6C) \[F(70,910)=2.69\].

We next determined the time course for the effects of a maximally
effective dose of BINA (32 mg/kg, i.p.) on PCP-induced hyperlocomotor activity
to determine the duration of action of this compound. BINA had no significant
effect when it was co-administered with PCP but had a robust effect at a 1 h
pretreatment time indicating that this compound may not fully reach the site of
action within the first min of administration, but is fully active by 1 h (Fig. 6D).
Importantly, BINA had a relatively long duration of action and produced a
significant blockade of PCP-induced hyperlocomotor activity that persisted for at
least 8 h after administration (Fig. 6D) \[F(6,36)=8.72, p < 0.05\]. However, BINA
had no significant effect when pretreated 16 h prior to PCP.

BINA has no effect on amphetamine-induced hyperlocomotor activity. We next determined the effects of BINA on amphetamine-induced
hyperlocomotor activity, another response that has been shown to be sensitive to
the effects of group II mGluR agonists (Cartmell et al., 2000) and the mGluR2
allosteric potentiator LY487379 (Galici et al., 2005). Interestingly, BINA had no
effect on amphetamine-induced hyperlocomotor activity after co-administration
(data not shown) or a 60 min pretreatment time (Fig. 7). Thus, BINA does not
share all of the *in vivo* activities of group II mGluR agonists or LY487379 in
models used to assess the activity of potential antipsychotic agents.
BINA blocks PCP-induced disruption of PPI. Another animal model that is often used to assess potential antipsychotic activity of novel compounds is the reversal of PCP-induced disruption of prepulse inhibition (PPI) of the acoustic startle response (see Geyer and Ellenbroek, 2003). Consistent with previous studies, PCP (5.6 mg/kg, s.c.) produced a robust decrease in PPI across all of the prepulse intensities tested (Fig. 8). Pretreatment with BINA produced a robust blockade of PCP-induced disruption of PPI, which was significant across all prepulse intensities tested after 100 mg/kg, s.c. The effect of BINA was also significant with the 82 and 88 dB prepulse intensities after 32 mg/kg s.c. (Fig. 8). Two-way repeated measures ANOVA indicated that there was a treatment effect (Figure 8), \([F(7,77)=11.98, p < 0.05] \). In addition, there was a prepulse intensity effect (Figure 8), \([F(3,33)=45.8, p < 0.05] \) but no treatment x prepulse intensity interaction. One-way ANOVA also indicated that PCP significantly increased startle amplitude when only the background noise (i.e. 65 dB) was presented (Table 1), \([F(7,77)=7.74, p < 0.05] \). However, there was no effect on startle amplitude when the startle pulse alone (120 dB) was presented under any of the treatment conditions (Table 1).

BINA decreases stress-induced hyperthermia in mice. In addition to effects in animal models used to predict antipsychotic efficacy, group II mGluR agonists are also effective in multiple animal models of anxiolytic drug activity (see Swanson et al., 2005 for review). More importantly, mGluR2/3 agonists have been shown to have anxiolytic activity in multiple clinical studies (Grillion et
Thus, it is critical to determine whether allosteric potentiators of mGluR2 have activity similar to mGluR2/3 agonists in these animal models. We determined the effect of BINA on stress-induced hyperthermia, a response that is highly sensitive to mGluR2/3 agonists (Spooren et al., 2002; Swanson et al., 2005). BINA produced an inhibition of stress-induced hyperthermia, as evidenced by a main effect for dose \([F(3,56) = 34.1; \ p < 0.05]\), significant after doses of 32 mg/kg i.p. by a Dunnett's comparison with the vehicle group (Fig. 9A). The effects of BINA (32 mg/kg, i.p.) on stress-induced hyperthermia were blocked by pretreatment with a dose of LY341495 (3 mg/kg, i.p.) indicating that the effects were mediated by activation of mGluR2 (Fig. 9A). Larger doses of BINA produced substantial decreases in basal body temperature which precluded further evaluation in the stress-induced hyperthermia model. For comparison, the effects of the benzodiazepine chlordiazepoxide were also evaluated in the stress-induced hyperthermia model. Chlordiazepoxide produced a dose-dependent inhibition of the stress-induced hyperthermia as evidenced by a main effect for dose \([F(3,82) = 25.6; \ p < 0.05]\), significant after 5 and 10 mg/kg i.p. by a Dunnett's comparison with the vehicle group (Fig. 9B).

BINA produces anxiolytic-like effects in the elevated plus maze test. Anxiolytic effects of BINA were also evaluated in the elevated plus maze, another animal model that is sensitive to anxiolytic agents. In the elevated plus maze test, BINA increased the percent time spent in the open arms of the maze as
evidenced by a main effect for dose \(F(3,39) = 3.4; p < 0.05 \), significant after a dose of 32 mg/kg i.p. by a Dunnett's comparison with the vehicle group (Fig. 10A). In addition, BINA also increased the number of entries into the open arms of the maze after doses of 10 or 32 mg/kg i.p. by a Dunnett's comparison with the vehicle group (Fig. 10C). When administered alone, BINA had no effect on total ambulations (Fig. 10E). The increased entries and time spent in the open arms of the elevated plus maze after administration of BINA (32 mg/kg, i.p.) were blocked with pretreatment of LY341495 (3 mg/kg, i.p.) indicating that these effects were mediated through the activation of mGluR2 (Fig. 10A and 10C). For comparison, the effects of the chlordiazepoxide were also evaluated in the elevated plus maze test. Chlordiazepoxide increased the percent time spent in the open arms of the maze as evidenced by a main effect for dose \(F(3,39) = 4.8; p < 0.05 \), significant after doses of 10 mg/kg i.p. by a Dunnett's comparison with the vehicle group (Fig. 10B). In the dose range tested, chlordiazepoxide also produced an increase in the number of entries into the open arms of the maze, significant after doses of 5 and 10 mg/kg i.p. by a Dunnett's comparison with the vehicle group (Fig. 10D). After administration alone, chlordiazepoxide produced a modest increase in total ambulations, significant with a dose of 10 mg/kg (Fig. 10F).
Discussion

We report an alternate synthesis and further pharmacological characterization of the previously reported a positive allosteric modulator of mGluR2, termed here biphenyl-indanone A (BINA). Derived from a series of substituted indanones (Pinkerton et al., 2004; Bonnefous et al., 2005), BINA is structurally and chemically distinct from both group II mGluR agonists and the mGluR2 positive allosteric modulator LY487379. In recombinant systems, BINA is a potent and highly selective potentiator of the response of mGluR2 to glutamate with no effect on the glutamate response of the other mGluR receptor subtypes tested. At native mGluR2, BINA functions as a positive allosteric modulator in a manner similar to its actions on recombinant mGluR2. Most encouraging, BINA produces robust and long lasting effects in mouse behavioral models of antipsychotic- and anxiolytic-like activity that mimic previously observed effects using group II mGluR agonists. Taken together, our findings demonstrate that BINA is a selective tool for dissecting the role of mGluR2 in the observed effects of group II mGluR agonists in vivo.

The development of subtype-selective allosteric modulators for the activation of mGluRs offers many potential advantages over direct-acting agonists, including greater subtype-selectivity maintenance of activity dependent receptor activation. The discovery of LY487379 and related analogs as selective positive allosteric modulators of mGluR2 (Schaffhauser et al., 2003; Johnson et al., 2003; 2005) represented an important breakthrough in the field of mGluR research. However, modest potency and a short duration of action limit the utility
of these compounds for *in vivo* studies (Johnson et al., 2003; Galici et al., 2005). The present findings confirm and extend previously reported studies showing that BINA, a member of a novel series of mGluR2 potentiators (Pinkerton et al., 2005; Bonnefous et al., 2005), is highly selective and has robust *in vivo* activity; thereby providing an important tool for investigating the positive allosteric modulation of mGluR2.

In addition to inducing a left-ward shift of the glutamate concentration response curve, BINA induced a modest activation of mGluR2 in the absence of glutamate when measuring $[^{35}\text{S}]\text{GTP} \gamma \text{S}$ binding in membranes from cells expressing mGluR2. Thus, BINA has modest intrinsic mGluR2 agonist activity in this assay. It is unlikely that this is due to potentiation of the response to low concentrations of glutamate present in the medium since the $[^{35}\text{S}]\text{GTP} \gamma \text{S}$ binding assay is performed in a washed membrane preparation where glutamate should not be present. This direct activation of mGluR2 by BINA is reminiscent of previously reported effects of CDPPB, a positive allosteric modulator of mGluR5 that also exhibits modest intrinsic agonist activity at mGluR5 (Kinney et al., 2005). Furthermore, previous studies have yielded direct allosteric agonists for mGluR7 (Mitsukawa et al., 2005) and M1 muscarinic receptor (Spalding et al., 2002; Sur et al., 2003). However, it is not yet clear whether this direct activation of mGluR2 by BINA is relevant *in vivo* or is an artifact of this expression system. Importantly, BINA did not appear to have direct agonist activity in the calcium mobilization assay or at native mGluR2 at the MPP synapse. However, this does
not necessarily imply that BINA is incapable of direct activation of this receptor at other synapses or in other neuronal populations.

In addition to providing insights into the pharmacological properties of the positive allosteric modulation of mGluR2 in recombinant systems, BINA also served as a valuable ligand for the study of physiological and behavioral responses mediated by native mGluR2. BINA potentiated mGluR2 agonist effects on excitatory synaptic responses at the medial perforant path (MPP)-dentate gyrus (DG) synapse. Hyperactivity of glutamatergic transmission within the MPP-DG synapse is one region of the CNS thought to be associated with the pathogenesis of anxiety and fear conditioning (Walker and Davis, 2002; Bergink et al., 2004). Thus, our data provide important evidence to further support the role for mGluR2 in the physiological responses mediated by group II mGluR activation in systems thought to be relevant for anxiolytic and antipsychotic action of these compounds.

In the present study, BINA also mimicked the effects of group II mGluR agonists and mGluR2 allosteric potentiators in animal models used to predict potential antipsychotic-like and anxiolytic-like activity. Previous studies have shown that the N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (PCP) and the psychostimulant amphetamine produce behavioral changes in animals, such as increases in locomotor activity and disruption of prepulse inhibition, that are reversed by currently available antipsychotic therapies (see Geyer and Ellenbroek (2003) for review). Systemic administration of BINA produced a dose-related inhibition of PCP-induced hyperlocomotor activity and
dissruption of PPI. For the most part, the effects of BINA in these models were similar to those previously shown for group II mGluR agonists or the mGluR2-specific allosteric potentiator LY487379 (Cartmell et al., 1999; Spooren et al., 2000; Galici et al., 2005). Consistent with mediation by mGluR2, each of the effects of BINA were blocked by the mGluR2/3 antagonist LY341495. However, unlike the short acting LY487379 (Galici et al., 2005), the effects of BINA were long lasting over a duration of at least 8 h, indicating that this compound is suitable for a further pharmacologic evaluation in vivo (i.e. chronic studies).

While the effects of BINA and the structurally distinct mGluR2 potentiator LY487379 in animal models of antipsychotic-like activity were comparable, there were some important differences. For instance, BINA did not reverse amphetamine-induced hyperlocomotor activity whereas, group II mGluR agonists (Cartmell et al., 1999, 2000) and LY487379 (Galici et al., 2005) inhibit amphetamine-induced hyperlocomotor activity. Furthermore, in contrast to LY487379 (Galici et al., 2005), BINA blocked the disruptive effects of PCP on PPI. While the reasons for these important differences between the effects of BINA and LY487379 are unclear, previous studies reveal that different orthosteric agonists can differentially activate different signaling pathways of a single receptor, a phenomenon referred to as agonist receptor trafficking (Brink et al., 2000; Gazi et al., 2003). Based on this, it has been suggested that structurally distinct agonists can have different in vivo effects by actions at a single receptor. Interestingly, we recently showed that the same principle applies to allosteric potentiators and that different classes of allosteric potentiators of mGluR5 can
have different effects on coupling of this receptor to activation of calcium transients versus ERK2 phosphorylation (Zhang et al., 2005). It is conceivable that potentiation of mGluR2 by different classes of allosteric modulators could have distinct effects on coupling of this receptor to different cellular responses. If so, this could lead to different \textit{in vivo} effects of different classes of allosteric potentiators. It is unlikely that the effects of BINA and LY487379 are due to off-target activity since they are both blocked by the group II mGluR antagonist LY341495. Thus, the present data provide the first evidence that two classes of allosteric potentiators of an mGluR have subtly different effects \textit{in vivo}. The combined actions of BINA reported here provide further preclinical evidence that mGluR2 may play a key role in the antipsychotic-like effects of mGluR2/3 agonists. While it is tempting to speculate that selective positive allosteric potentiators of mGluR2 may provide a novel therapeutic approach for the treatment of schizophrenia, particularly as an important alternative to group II mGluR agonists (Schoepp et al., 2002; Krystal et al., 2004), further characterization of BINA in other preclinical models predictive of antipsychotic activity is warranted.

Finally, we report that BINA has activity in two preclinical models of anxiety, specifically elevated plus maze and stress-induced hyperthermia. These findings are especially exciting in light of recent clinical studies that reveal that group II mGluR agonists have anxiolytic effects in humans (Schoepp et al., 2003; Grillon et al., 2003; Swanson et al., 2005). In the present study, the magnitude of the observed increase in time spent and number of entries into the open arm of
the elevated plus maze after pretreatment with BINA were similar to effects observed previously with group II mGluR agonists (Helton et al., 1998; Linden et al, 2003). BINA also prevented the development of stress-induced hyperthermia as observed using both group II mGluR agonists and CBiPES, a structural analog of LY487379 (Johnson et al., 2005; Rorick-Kehn et al., 2006). In both preclinical anxiety models, the effects of BINA were blocked by LY341495 confirming a role for the activation of mGluR2. Thus, our findings extend previous studies suggesting a role for mGluR2 in anxiety disorders and support the fundamentally novel approach to treatment of anxiety disorders using allosteric potentiators of mGluR2.

In summary, BINA constitutes a highly selective positive allosteric modulator of mGluR2 with a long duration of action and robust efficacy in several preclinical models used to predict anxiolytic and antipsychotic-like activity. Our findings confirm and extend a role for the mGluR2 receptor in many of the documented effects of mGluR2/3 agonists in vivo and suggest that positive allosteric modulators of mGluR2 provide an important alternative to group II mGluR agonists for the treatment of anxiety disorders and schizophrenia.
Acknowledgments. The authors wish to thank Mr. William Nobis for excellent technical assistance. This work was supported by grants from NINDS and NIMH. Vanderbilt is a site in the NIH-supported Molecular Libraries Screening Centers Network (MLSCN).
References

Galici R, Echemendia NG, Rodriguez AL, Conn PJ (2005) A selective allosteric potentiator of mGluR2 receptors has similar effects to an orthosteric mGluR2/3 agonist in mouse models predictive of antipsychotic activity. J Pharmacol Exp Ther 15:1181-1187.

Govek SP, Celine Bonnefous, John H. Hutchinson, Theodore Kamenecka, Jeffrey Acquisition, Richard Pracitto, Lucy X. Zhao, Michael F. Gardner, Joyce K.

the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-trifluoroethylsulfonyl)pyrid-3-ylmethylamine. *J Med Chem* **46**:3189-3192.

Krystal JH, Abi-Saab W, Perry E, D’Souza DC, Liu N, Gueorguieva R, McDougall

Macek TA, Schaffhauser H, Conn PJ (1998) Protein kinase C and A3 adenosine receptor activation inhibit presynaptic metabotropic glutamate receptor (mGluR) function and uncouple mGluRs from GTP-binding proteins. *J Neurosci* **18**:6138-6146.

Schoepp DD, Wright RA, Levine LR, Gaydos B, Potter WZ (2003) LY354740, an mGluR2/3 receptor agonist as a novel approach to treat anxiety/stress. *Stress*

Footnotes

A portion of these studies was presented at the 5th international meeting on metabotropic glutamate receptors in Taormina, Italy (September 2005).

1 Change of address:
Ruggero Galici, Ph.D.
Neuroscience
Johnson & Johnson, Pharmaceutical Research and Development, LLC
3210 Merryfield Row
San Diego, CA 92121
Email: rgalici@prdus.jnj.com
(858)320-3442
Legends for Figures.

Figure 1. Synthesis of BINA [3’-(((2-cyclopentyl-6,7-dimethyl-1-oxo-2,3-dihydro-
1H-inden-5-yl)oxy)methylbiphenyl-4-carboxylic acid]. BINA was prepared in 9 steps from 3-bromotoluene, 2,3-dimethyl-anisole, ethyl 4-iodobenzoate, and cyclopentylacetic acid in 16% overall yield.

Figure 2. Concentration-response curves for glutamate in the absence or presence of increasing concentrations of BINA (A). Concentration-response curves of BINA in the presence of a submaximal concentration (EC_{20}) of glutamate in CHO cells stably expressing hmGluR2 (B) and rmGluR2 (C). Cells were preincubated with vehicle or BINA for 5 min prior to the addition of a submaximal concentration (EC_{20}) of glutamate or increasing concentration of glutamate. Calcium mobilization was measured using FLEXstation II. The fluorescence responses were normalized as a percentage of the maximal response to glutamate (10 µM) and are the mean ±S.E.M. of three independent experiments performed in triplicate.

Figure 3. Concentration-response curves for glutamate-induced[^35S]GTPγS binding to membranes prepared from recombinant cell lines expressing either hmGluR2 (A) and rmGluR3 (B) in the absence or presence of 30 or 300 nM BINA.[^35S]GTPγS binding assay was incubated at 30°C for 60 min, in which the assay mixtures contain 10 µg membrane protein, BINA, glutamate and 0.1 nM[^35S]GTPγS. Data were normalized as a percentage of the maximal response to
1 mM or 31.6 µM glutamate for hmGluR2 and rmGluR3, respectively. The mean of three individual experiments performed in triplicate and error bars represent S.E.M.

Figure 4. Concentration-response curves for glutamate in the absence or presence of 300 nM or 1 µM BINA in cell lines expressing rmGluR1a (A), rmGluR5a (B) or hmGluR4 (C). Calcium mobilization was measured using FLEXstation II and the signal amplitude was normalized as a percentage of the maximal response to glutamate or L-AP4 (10 µM). The mean of three individual experiments performed in triplicate and error bars represent S.E.M.

Figure 5. BINA potentiates the effect of DCG-IV on fEPSPs at MPP-DG synapses in rat hippocampal slices. (A) Concentration-response curves for the inhibitory effect of DCG-IV on fEPSP slopes by activation of group II mGluR at MPP-DG synapses (n=50 slices). (B) Representative traces show the recorded fEPSPs before and after 12 min of application of DCG IV alone (100 nM, left panel); or DCG-IV (100nM) in the presence of BINA (1µM, right panel). Each trace is an average of six consecutive evoked responses at MPP-DG synapses. (C) Bar graph illustrates normalized fEPSP slopes at MPP-DG synapses after 12 min of application of DCG-IV alone (100nM, n=8 slices) or DCG-IV (100 nM) in the presence of BINA (1 µM, n=8 slices). All values were express as mean±S.E.M., Calibration bar: 0.2mV/5ms. *p<0.01; Student's t test.
Figure 6. Effects of BINA on PCP-induced hyperlocomotor activity and spontaneous locomotor activity in mice. (A) BINA blocked the effects of PCP-induced hyperlocomotor activity. (B) Potency of BINA in blocking PCP-induced hyperlocomotor activity. Average counts/60 min, expressed as mean percentage ± S.E.M of the average of 2 determinations of PCP effects (i.e. % control), is plotted as a function of BINA dose expressed in mg/kg. (C) BINA administered alone (32 mg/kg i.p.) decreased spontaneous locomotor activity. Data are expressed as mean ± S.E.M. (D) Time course effects of BINA on PCP-induced hyperlocomotor activity in mice. BINA was administered with (i.e. at time 0h) and 1, 4, 8 and 16h prior to PCP treatment. Vertical lines represent ±S.E.M. and are absent when less than the size of the point. (n=7-8 per dose) Ordinate: Average counts/5 minutes. Abscissa: Time in minutes. *, p < 0.05 indicates statistical difference from vehicle (V). **, p < 0.05 indicates statistical difference from PCP (PCP; 5.6 mg/kg).

Figure 7. BINA had no effect on amphetamine-induced hyperlocomotor activity in mice. Data are expressed as mean ± S.E.M. Average counts/60 min is plotted as a function of time in h (n=7-8 per condition). Vertical lines represent ±S.E.M. and are absent when less than the size of the point. Ordinate: Average counts/5 min. Abscissa: Time in minutes.
Figure 8. BINA blocked PCP-induced disruption of PPI in mice. Data are expressed as mean ± S.E.M. %PPI is plotted as a function of prepulse intensity (dB) used. *, p < 0.05 indicates statistical difference from vehicle (V). **, p < 0.05 indicates statistical difference from PCP (PCP; 5.6 mg/kg). Vertical lines represent ±S.E.M.. Ordinate: Percent prepulse inhibition. Abscissa: Prepulse intensity amplitude (dB) (n=7-8 per dose group).

Figure 9. BINA inhibited stress-induced hyperthermia in mice. The dose related effects of BINA and the benzodiazepine chlordiazepoxide were evaluated on stress-induced hyperthermia. Dose of the mGluR2/3 antagonist LY341495 used was 3 mg/kg. Data are expressed as mean ± S.E.M. Bar graphs above Veh represent the effects of vehicle alone. Vertical lines represent ±S.E.M. (n=10-12 mice per dose group). Abscissa: Dose of drug in milligrams per kilogram. Ordinate: ΔT (°C). *, p < 0.05 versus Veh, Dunnett's t test.

Figure 10. BINA produced anxiolytic effects in the elevated plus maze test in mice. The dose related effects of BINA and the benzodiazepine chlordiazepoxide were evaluated on time spent in open arms as a percentage of total testing time (A and B), total number of entries into the open arms (C and D), or total ambulations (E and F). Bar graphs above ±LY341495 (A, C, E) represent the effects of the mGlu2/3 antagonist LY341495 (3 mg/kg) given in combination with a 32 mg/kg dose of BINA. Data are expressed as mean ± S.E.M. Bar graphs above Veh represent the effects of vehicle alone. Vertical lines represent
±S.E.M. Abscissa: Dose of drug in milligrams per kilogram. (n=10-12 mice per dose group). Ordinate: Percent time in the open arms, Total number of entries into the open arm, or Total ambulations (total number of beam breaks/5 min). *, p < 0.05 versus Veh, Dunnett's t test.
TABLE 1. Effects of BINA on startle amplitude of the acoustic startle reflex.
Data are expressed as mean ± S.E.M. when the background noise stimulus (65 dB) or the pulse stimulus (120 dB) was presented alone. * p<0.05 compared to control (i.e. vehicle ± water).

<table>
<thead>
<tr>
<th>Treatment Dose (mg/kg, i.p.)</th>
<th>Startle Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65 dB</td>
</tr>
<tr>
<td>Vehicle ± Water</td>
<td>200.4 ± 28.6</td>
</tr>
<tr>
<td>BINA (32) ± Water</td>
<td>211.9 ± 31.1</td>
</tr>
<tr>
<td>BINA(100) ± Water</td>
<td>100.1 ± 10.5</td>
</tr>
<tr>
<td>Vehicle ± PCP (5.6)</td>
<td>418.5 ± 80.0*</td>
</tr>
<tr>
<td>BINA (32) ± PCP (5.6)</td>
<td>259.9 ± 37.9</td>
</tr>
<tr>
<td>BINA (100) ± PCP (5.6)</td>
<td>117.3 ± 17.1</td>
</tr>
<tr>
<td>BINA (100) ± LY341495 (3) ± PCP (5.6)</td>
<td>151.9 ± 13.7</td>
</tr>
<tr>
<td>Vehicle ± LY341495 (3) ± PCP (5.6)</td>
<td>249.4 ± 17.5</td>
</tr>
</tbody>
</table>
Figure 2

A. hmGluR2

- Vehicle, EC$_{50}$ = 1182 ± 109.1 nM
- 10 nM BINA, EC$_{50}$ = 783.7 ± 101.3 nM
- 30 nM BINA, EC$_{50}$ = 544.2 ± 51.7 nM
- 100 nM BINA, EC$_{50}$ = 296.5 ± 36.7 nM
- 300 nM BINA, EC$_{50}$ = 108.0 ± 15.2 nM

B. hmGluR2

EC$_{50}$ = 33.2 ± 4.9 nM

C. rmGluR2

EC$_{50}$ = 98.0 ± 8.2 nM

Normalized Fluorescence (% Glutamate Maximum) vs. log[Glutamate], M

Normalized Fluorescence (% Glutamate Maximum) vs. log[BINA], M

Normalized Fluorescence (% Glutamate Maximum) vs. log[BINA], M
Figure 3

A

hmGluR2

- Vehicle, EC50 = 4.8±0.5 µM
- +30 nM BINA, EC50 = 2.0±0.1 µM
- +300 nM BINA, EC50 = 0.5±0.0 µM

B

rmGluR3

- Vehicle, EC50 = 244.7±48.9 nM
- +30 nM BINA, EC50 = 262.1±36.7 nM
- +300 nM BINA, EC50 = 155.8±32.9 nM

The article has not been copyedited and formatted. The final version may differ from this version.

JPET Fast Forward. Published on April 11, 2006 as DOI: 10.1124/jpet.106.102046

Downloaded from jpet.aspetjournals.org on April 29, 2016.
Figure 4

A: rmGluR1

- Vehicle, EC$_{50}$ = 560.9±24.5 nM
- 300 nM BINA, EC$_{50}$ = 574.3±34.6 nM
- 1µM BINA, EC$_{50}$ = 587.2±41.6 nM

B: rmGluR5

- Vehicle, EC$_{50}$ = 387.6±49.5 nM
- 300 nM BINA, EC$_{50}$ = 545.1±16.0 nM
- 1µM BINA, EC$_{50}$ = 481.5±46.9 nM

C: hmGluR4

- Vehicle, EC$_{50}$ = 112.3±19.2 nM
- 300 nM BINA, EC$_{50}$ = 128.6±16.0 nM
- 1µM BINA, EC$_{50}$ = 123.9±22.2 nM
Figure 5

A

Normalized fEPSP slope inhibition (%)

Log [DCG IV], M

B

DCG IV 100 nM

DCG IV 100 nM + BINA 1 µM

Control

Control

C

Normalized fEPSP slope inhibition (%)

DCG IV 100 nM

DCG IV 100 nM + BINA 1 µM
Figure 6

A

Vehicle + PCP (5.6)
BINA (10) + PCP (5.6)
BINA (32) + PCP (5.6)
Vehicle + LY341495 (3) + PCP (5.6)

B

Counts/60 min (% PCP)

BINA dose (mg/kg)

C

Vehicle + water
BINA (10) + water
BINA (32) + water

D

Average counts/60 min

VPCP (5.6) 0 1 4 8 16
Figure 7

- Vehicle + AMPH (3.2)
- BINA (10) + AMPH (3.2)
- BINA (32) + AMPH (3.2)

Average counts/5 min vs. Time (min)
Figure 8

The figure shows the percentage of prepulse inhibition (PPI) as a function of prepulse intensity (dB) for different treatment groups. The y-axis represents the percentage PPI, while the x-axis represents the prepulse intensity (dB) levels at 70, 76, 82, and 88 dB.

- **Vehicle + water** (black line)
- **BINA (32) + water** (red line)
- **BINA (100) + water** (green line)
- **BINA (100) + PCP (5.6)** (blue line)
- **BINA (32) + PCP (5.6)** (light blue line)
- **BINA (100) + LY341495 (3) + PCP (5.6)** (turquoise line)
- **Vehicle + LY341495 (3) + PCP (5.6)** (gray line)

Significant differences are indicated by asterisks: * for p < 0.05, ** for p < 0.01.
Figure 9

(A) ΔT (°C) vs Dose (mg/kg)

(B) ΔT (°C) vs Dose (mg/kg)
Figure 10

A

% Time Open

BINA (mg/kg)

Veh 10 32 + LY341495 (3)

% Time Open

Chlordiazepoxide (mg/kg)

Veh 2.5 5 10

C

Open Entries

BINA (mg/kg)

Veh 10 32 + LY341495 (3)

Open Entries

Chlordiazepoxide (mg/kg)

Veh 2.5 5 10

E

Total Ambulations

BINA (mg/kg)

Veh 10 32 + LY341495 (3)

Total Ambulations

Chlordiazepoxide (mg/kg)

*