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Abstract 

Phosphatidylinositol 3-kinase (PI3K) can activate endothelial nitric oxide synthase 

(eNOS), leading to production of the vasodilator nitric oxide (NO).  By contrast, 

vascular smooth muscle (VSM) PI3K may partially mediate vascular contraction, 

particularly during hypertension.  We tested whether endothelial and VSM PI3K may 

have opposing functional roles in regulating vascular contraction.  Secondly, we 

tested whether the pro-contractile protein rho-kinase can suppress endothelial 

PI3K/eNOS activity in intact arteries, thus contributing to vasoconstriction by G 

protein-coupled receptor (GPCR) agonists.  We studied contractile responses to the 

GPCR agonist phenylephrine, and the receptor-independent vasoconstrictor potassium 

chloride (KCl), in aortic rings from Sprague-Dawley rats.  In endothelium-intact 

rings, the PI3K inhibitor wortmannin (0.1 µmol/L), markedly augmented responses to 

phenylephrine (P<0.05) by~50%, but not to KCl.  However, in endothelium-denuded 

or L-NAME (100 µmol/L)-treated rings, wortmannin reduced responses to 

phenylephrine and KCl (P<0.05).  Furthermore, the rho-kinase inhibitor Y-27632 (1 

µmol/L) abolished responses to phenylephrine, and this effect was partially reversed 

by wortmannin or L-NAME.  The ability of wortmannin to oppose the effect of rho-

kinase inhibition on contractions to phenylephrine was L-NAME-sensitive.  In aortas 

from angiotensin II-induced hypertensive rats, relaxation to acetylcholine (10 µmol/L) 

was impaired in normotensive controls (P<0.05), and vasoconstriction by 

phenylephrine was markedly enhanced and not further augmented by wortmannin.  

These data suggest that endothelial PI3K-induced NO production can modulate 

GPCR agonist-induced vascular contraction, and that this effect is impaired in 

hypertension in association with endothelial dysfunction.  In addition, endothelial rho-
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kinase may act to suppress PI3K activity, and hence attenuate NO-mediated 

relaxation and augment GPCR-dependent contraction. 
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Introduction 

Endothelial phosphatidylinositol 3-kinase (PI3K) can be activated by diverse 

stimuli such as fluid shear stress (Huang et al., 2004), estrogen (Hisamoto et al., 2001) 

and growth factors (Gerber et al., 1998; Zeng et al., 2000).  The PI3K signalling 

pathway stimulates the protein kinase Akt, leading to phosphorylation and activation 

of endothelial nitric oxide synthase (eNOS), resulting in increased production of nitric 

oxide (NO) (Dimmeler et al., 1999; Michell et al., 1999).  Conversely, in vascular 

smooth muscle, the PI3K pathway has been reported to contribute to vascular 

contraction both under physiological conditions (Su et al., 2004), and in a model of 

hypertension (Northcott et al., 2002; Northcott et al., 2004).  In addition, a recent 

study in cultured human endothelial cells provided novel evidence for an interaction 

between PI3K and the pro-contractile protein rho-kinase within the endothelium 

(Wolfrum et al., 2004).  The findings suggest that rho-kinase may suppress PI3K 

activity and consequent NO production by endothelial cells (Wolfrum et al., 2004), in 

addition to its direct contractile effect on vascular smooth muscle in response to G 

protein-coupled-receptor (GPCR) agonists (Gohla et al., 2000; Miao et al., 2002).  

However, no functional evidence for this phenomenon has been demonstrated in 

intact arteries.  Moreover, upregulation of the rhoA/rho-kinase signalling pathway in 

several vascular disorders (Kandabashi et al., 2000; Sato et al., 2000b) including 

hypertension (Chrissobolis and Sobey, 2001; Mukai et al., 2001) and angiotensin II-

related vascular dysfunction (Yamakawa et al., 2000; Funakoshi et al., 2001; Takeda 

et al., 2001) is now widely recognized, but there is currently no information on the 

functional importance of endothelial rho-kinase in vascular disease. 

Thus, the first aim of this study was to test whether endothelial and vascular 

smooth muscle PI3K have opposing roles in mediating vascular contraction following 
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GPCR activation.  Secondly, we tested for functional evidence of an interaction 

between endothelial rho-kinase and PI3K.  Thirdly, we examined whether modulation 

of vascular contraction by endothelial or vascular smooth muscle PI3K is altered in 

angiotensin II-induced hypertension. 
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Methods 

All experimental procedures were approved by the University of Melbourne 

Animal Experimentation Ethics Committee and complied with National Health and 

Medical Research Council of Australia guidelines.  Adult male Sprague-Dawley rats 

(296±10 g, n=61) were studied. 

Experimental protocol 

Rats were euthanased by inhalation of 80% CO2:20% O2.  The thoracic aorta 

was removed, cleaned of connective tissue and cut into four segments of equal length 

(4-5 mm).  Ring segments were mounted at 0.5 g in 10 mL organ chambers 

containing Krebs-bicarbonate solution bubbled with 5% CO2 in O2 at 37oC.  Isometric 

tension was continuously recorded using a Grass FT03 force transducer and MacLab4 

Chart computer software (Version 3.5.4).  Following equilibration for 45 min, each 

ring was exposed to isotonic high K+-containing physiological saline solution (KPSS), 

in which Na+ in Krebs solution was replaced by K+ ([K+]KPSS=124 mmol/L).  The 

KPSS-induced contraction was allowed to reach a stable level over 10-15 min.  

Following several washouts and return to stable baseline (~0.5 g), each ring was 

precontracted to ~50% of its KPSS response with serotonin (1-3 µmol/L) or 

phenylephrine (0.1-0.3 µmol/L).  Sustained relaxation (>70% of precontracted tone) 

of aortic rings in response to acetylcholine (10 µmol/L) was taken to confirm the 

endothelium to be functionally intact.  In some experiments, the endothelium was 

removed by gentle rubbing with a wooden stick and this was confirmed by failure to 

relax in response to acetylcholine.  Smooth muscle viability of these rings was 

verified by a complete relaxation response to the NO donor, sodium nitroprusside (10 

µmol/L).  Following several washouts and return to stable baseline, concentration-

response curves were established for two vasoconstrictor agents: the GPCR agonist 
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phenylephrine, and the receptor-independent vasoconstrictor, potassium chloride 

(KCl). 

Effect of PI3K and rho-kinase inhibition on contractile responses 

The effect of PI3K inhibition was assessed by pre-treating aortic rings with 

wortmannin (0.1 µmol/L).  Experiments were carried out in endothelium-intact and -

denuded rings, as well as in endothelium-intact rings pre-treated with the NOS 

inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 100 µmol/L).  In all sets of 

experiments with wortmannin, vehicle (dimethyl sulfoxide, DMSO)-treated rings 

served as controls. 

The effect of the rho-kinase inhibitor Y-27632 (1 µmol/L) on contractile 

responses to phenylephrine or KCl was examined either alone or in the presence of 

wortmannin and/or L-NAME.  Inhibitors were added 30 min before commencing 

concentration-response curves. 

Short-term hypertension 

Adult male Sprague-Dawley rats (n=5) were treated with angiotensin II (0.7 mg/kg 

per d s.c.) for 14 d via a surgically implanted osmotic minipump (Alzet Model 2001, 

Alza Corporation, CA, USA).  A further three rats were implanted with minipumps 

containing vehicle (sterile water), thus serving as controls for the angiotensin II-

treated rats.  On Days 0 and 14, rats were anesthetized, a femoral artery was 

cannulated and arterial pressure was measured and recorded using a pressure 

transducer.  On Day 14, rats were euthanased by intravenous anesthetic overdose.  

The thoracic aorta was isolated as described and concentration-response curves to 

phenylephrine were established in the presence or absence of wortmannin (0.1 

µmol/L).  Contractile responses of aortic rings from vehicle-treated rats did not differ 
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from responses of non-operated controls.  These data were therefore combined for 

analyses, as appropriate. 

Drugs 

Acetylcholine chloride was obtained from Research Organics (Cleveland, OH, 

USA) and potassium chloride was obtained from Ajax Finechem (Seven Hills, NSW, 

Australia).  Y-27632 (R-[+]-trans-N-[4-pyridyl]-4-[1-aminoethyl]-

cyclohexanecarboxamide) was generously provided by Welfide Corporation (Osaka, 

Japan).  All other drugs were obtained from Sigma Chemical Co. (St. Louis, MO, 

USA).  Wortmannin was dissolved in DMSO and diluted in deionized water.  All 

other drugs were dissolved and diluted in deionized water or saline.  At the final bath 

concentration used (0.005%), DMSO vehicle had no effect on contractile responses. 

Statistics 

In each ring, contractile responses were normalized as a percentage of the 

KPSS response.  Relaxation responses to acetylcholine are presented as percentage 

inhibition of precontractile tone.  Each n represents the number of animals used.  

Comparisons were made using Student’s paired or unpaired t tests or ANOVA, as 

appropriate.  Newman-Keuls test was used for post-hoc comparisons.  P<0.05 was 

considered significant. 
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Results 

Effect of PI3K inhibition on contractile responses 

In endothelium-intact aortic rings, the PI3K inhibitor wortmannin augmented 

the maximum response to phenylephrine by ~50% (P<0.05; Figure 1A), but reduced 

the maximum response to KCl (P<0.05; Figure 1B).  Wortmannin also augmented the 

maximum response to a second GPCR agonist serotonin (data not shown).  By 

contrast, in either endothelium-denuded or L-NAME-treated rings, wortmannin 

slightly reduced (by <10%) maximum responses to both phenylephrine and KCl 

(P<0.05; Figures 1C-F). 

Effects of rho-kinase inhibition alone or combined with PI3K inhibition 

In endothelium-intact aortic rings, the rho-kinase inhibitor Y-27632 

effectively abolished contractions to phenylephrine (P<0.05; Figure 2A).  In 

endothelium-denuded and L-NAME-treated rings, Y-27632 also reduced maximum 

responses to phenylephrine (P<0.05; Figures 2C and E), but by substantially less than 

in endothelium-intact rings (see Figure 2A).  Co-treatment with wortmannin partially 

reversed the inhibitory effect of Y-27632 in endothelium-intact rings (P<0.05; Figure 

2A), but not in endothelium-denuded or L-NAME-treated rings (Figures 2C and E).   

In contrast, Y-27632 only modestly attenuated responses to KCl, and to a similar 

degree, in all rings (Figure 2B, D and F).  Moreover, co-treatment with wortmannin 

did not reverse the inhibitory effect of Y-27632 on KCl, but in fact further reduced 

the contractions to KCl in all rings (Figure 2B, D and F).  

Effect of PI3K inhibition on contractile responses of hypertensive vessels 

After 14 days, angiotensin II treatment caused a marked increase in mean 

arterial pressure to 169±2 mmHg (n=5, P<0.05; Figure 3A), compared with 97±5 

mmHg in vehicle-treated rats (n=3).  Relaxations to acetylcholine were markedly 
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impaired in the hypertensive vessels (P<0.05; Figure 3B) while contractions to 

phenylephrine were enhanced in hypertension by ~30% (P<0.05; Figure 3C).  

Importantly, maximum responses to phenylephrine were unaffected by wortmannin in 

hypertension (Figure 3D).  Furthermore, responses to serotonin were similarly 

augmented in hypertensive arteries and were also unaffected by wortmannin (data not 

shown). 
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Discussion 

The present study provides functional evidence for several roles of PI3K in the 

regulation of vascular tone.  First, NO generated as a result of endothelial PI3K basal 

activity may modulate GPCR-mediated vascular smooth muscle contraction.  Second, 

rho-kinase within endothelium may suppress PI3K activity and consequently reduce 

NO activity and augment GPCR- mediated vasoconstriction. Third, vascular smooth 

muscle PI3K may have a minor role in mediating GPCR-dependent and –independent 

vascular contraction.  Fourth, the ability of endothelial PI3K to offset vasoconstriction 

appears to be impaired in hypertension in association with endothelial dysfunction, 

leading to augmented vascular contractility.  

Physiological roles of vascular PI3K 

Endothelial PI3K can stimulate production of NO via activation of the protein 

kinase Akt, and consequent phosphorylation and activation of eNOS in response to 

various stimuli (Zeng et al., 2000; Hisamoto et al., 2001).  Little is known regarding 

the functional roles of endothelial PI3K in modulating contractile responses in intact 

arteries.  In the present study, wortmannin markedly augmented vasoconstriction by 

phenylephrine, but attenuated responses to KCl.  We observed a similar potentiation 

of responses to a second GPCR agonist, serotonin, following PI3K inhibition (data 

not shown).  In contrast, in endothelium-denuded or L-NAME-treated rings, 

wortmannin attenuated contractile responses to both phenylephrine and KCl.  These 

findings suggest that endothelial PI3K can counteract GPCR-mediated vascular 

contractions via eNOS/NO. 

The effect of PI3K inhibition to attenuate all contractile responses in 

endothelium-denuded or L-NAME-treated aorta suggests a direct role for vascular 

smooth muscle PI3K in vascular contraction, consistent with two recent studies (Yang 
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et al., 2001; Su et al., 2004).  The precise mechanism(s) by which vascular smooth 

muscle PI3K might promote contraction is still unclear, but could include antagonism 

of cyclic nucleotide signaling pathways (Komalavilas et al., 2001), interactions with 

protein kinase C (Su et al., 2004) or regulation of voltage-gated calcium channels 

(Macrez et al., 2001). 

Interaction between endothelial rho-kinase and PI3K 

The small G protein rhoA and its downstream effector rho-kinase contribute to 

contraction of vascular smooth muscle via “calcium sensitization”(Somlyo and 

Somlyo, 2000), and activity of both proteins is upregulated in hypercontractile 

vascular diseases such as hypertension (Chrissobolis and Sobey, 2001; Mukai et al., 

2001), atherosclerosis (Miyata et al., 2000), and coronary and cerebral vasospasm 

(Katsumata et al., 1997; Sato et al., 2000a).  Although the functional roles of 

rhoA/rho-kinase in vascular smooth muscle have been studied extensively, there is 

very little known about the functional importance of endothelial rho-kinase in 

modulation of vascular tone.  In cultured endothelial cells, rhoA can negatively 

regulate eNOS protein expression by destabilising eNOS mRNA (Laufs and Liao, 

1998), and possibly regulate eNOS phosphorylation via inhibitory effects on PI3K 

and Akt (Ming et al., 2002).  A more recent study has provided evidence that rho-

kinase may attenuate NO production in cultured endothelial cells via inhibition of 

endothelial PI3K activity (Wolfrum et al., 2004).  In the present study, we found 

functional evidence for such an effect of endothelial rho-kinase.  Treatment with the 

rho-kinase inhibitor Y-27632 effectively abolished contractile responses to 

phenylephrine, whereas responses to KCl were only modestly reduced, consistent 

with previous findings that responses to GPCR agonists are particularly sensitive to 

rho-kinase inhibition (Uehata et al., 1997; Budzyn et al., 2004).  We now provide two 
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novel findings in relation to the functional importance of endothelial rho-kinase.  

Firstly, inhibition of GPCR-mediated contraction by Y-27632 is substantially 

endothelium- and eNOS-dependent, indicating that endothelial rho-kinase normally 

suppresses relaxant effects of eNOS-derived NO.  Secondly, additional treatment with 

wortmannin selectively attenuated the inhibitory effect of Y-27632 on responses to 

phenylephrine in a strictly endothelium- and eNOS-dependent manner.  Thus, these 

findings provide the first functional evidence for an interaction between endothelial 

rho-kinase and PI3K in mediating vasoconstriction by a GPCR agonist.  Interestingly, 

an additional pro-contractile effect of rho-kinase as an inhibitor of endothelial PI3K 

activity is consistent with observations that vasoconstrictor sensitivity to rho-kinase 

inhibition is markedly diminished in the absence of eNOS function (Chitaley and 

Webb, 2002; Budzyn et al., 2004).  Thus, a novel implication of our study is that 

inhibition of GPCR-dependent vascular contraction by Y-27632, and other rho-kinase 

inhibitors, is partially endothelium- and PI3K/eNOS-dependent. 

Role of PI3K during hypertension 

In association with profound hypertension and endothelial dysfunction 

following angiotensin II infusion for 14 days, we observed markedly enhanced 

responses to the rho-kinase-dependent GPCR agonist phenylephrine.  Importantly, 

PI3K inhibition did not augment contractile responses to phenylephrine (or serotonin; 

data not shown) in these arteries.  This is consistent with (i) a vasoconstrictor 

response unopposed by PI3K/eNOS-derived NO, perhaps due to the lack of functional 

PI3K in endothelium; but (ii) normal levels of PI3K activity in vascular smooth 

muscle of hypertensive vessels, unlike in the DOCA-salt model in which plasma 

levels of angiotensin II are not elevated (Northcott et al., 2002; Northcott et al., 2004). 
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Therapeutic implications 

This study has provided functional evidence compatible with a potentially 

important role of endothelial PI3K in modulating vascular tone, and for an inhibitory 

effect on this enzyme by endothelial rho-kinase.  In many cardiovascular disease 

states, diminished NO levels are paralleled by increased expression and/or activity of 

rhoA/rho-kinase (Harrison, 1997; Shimokawa, 2002).  Thus, redressing the imbalance 

between these two opposing systems could be an attractive therapeutic approach.  Our 

data are therefore compatible with a new concept that excessive stimulation of the 

rhoA/rho-kinase pathway exacerbates endothelial dysfunction by reducing 

PI3K/eNOS activity.  Consistent with this, it is interesting to note that statins, a 

widely used class of drugs for cholesterol lowering, also exert ‘pleiotropic’ effects 

that include improved NO bioavailability via both rhoA inhibition (Laufs and Liao, 

1998) and stimulation of the PI3K/Akt pathway (Mukai et al., 2003).  Furthermore, it 

is conceivable that the beneficial clinical effects of the rho-kinase inhibitor fasudil in 

the treatment of cerebral vasospasm, a severe complication characterized by 

endothelial dysfunction following subarachnoid hemorrhage (Sobey and Faraci, 

1998), are in part related to improved endothelial function as well as its direct effects 

on vascular contractility. 

Selectivity of pharmacological inhibition of PI3K  

It is important to recognize that eight distinct isoforms of PI3K have been 

identified.  These are grouped into three main classes based on their protein structure, 

substrate specificity and regulation (Foster et al., 2003; Wymann et al., 2003).  Whilst 

wortmannin is well established as a selective PI3K inhibitor at the concentration used 

here (0.1 µmol/L), it inactivates all eight PI3K isoforms as does LY294002 (Wymann 

et al., 2003), and there are currently no isoform-selective PI3K inhibitors 
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commercially available.  Thus, it is conceivable that the different roles of endothelial 

versus vascular smooth muscle PI3K in regulation of vascular tone are mediated by 

different isoforms of PI3K.  To answer this question, future studies will require the 

development of isoform-selective PI3K inhibitors and/or the use of gene knockout 

technology (Katso et al., 2001). 

In summary, endothelial and vascular smooth muscle PI3K appear to have 

opposing roles in regulating vascular tone, with endothelial PI3K modulating GPCR-

dependent vasoconstriction via the effects of NO.  Moreover, this study has provided 

the first functional evidence for negative regulation of endothelial PI3K by 

endothelial rho-kinase.  In angiotensin II-induced hypertension, endothelial 

dysfunction and enhanced vascular contraction are associated with impaired PI3K 

function in endothelium, conceivably due to enhanced rho-kinase activity.  Thus, 

inhibition of excessive rho-kinase activity may serve to improve endothelial NO 

production in vascular disease. 
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Legends for Figures 

Figure 1 Effects of PI3K inhibition 

Left column:  Concentration-response curves to phenylephrine in the presence of 

vehicle (VEH) or wortmannin (WORT, 0.1 µmol/L) in endothelium-intact (EI, n=16; 

A), endothelium-denuded (EX, n=6; C) and L-NAME (100 µmol/L)-treated aortic 

rings (n=6; E).  Right column:  Concentration-response curves to KCl in the 

presence of VEH or WORT in EI (n=14; B), EX (n=6; D) and L-NAME-treated aortic 

rings (n=6; F).  All values are mean±SE.  *P<0.05 vs VEH maximum, Student’s 

paired t test. 

 

Figure 2 Effects of rho-kinase inhibition alone or combined with PI3K 

inhibition 

Left column:  Concentration-response curves to phenylephrine in the presence of Y-

27632 (1 µmol/L) alone, and in combination with wortmannin (WORT, 0.1 µmol/L) 

in endothelium-intact (EI, n=8; A), endothelium-denuded (EX, n=6; C) and L-NAME 

(100 µmol/L)-treated aortic rings (n=6; E).  Right column:  Concentration-response 

curves to KCl in the presence of Y-27632 alone, and in combination with WORT in 

EI (n=6; B), EX (n=7; D) and L-NAME-treated aortic rings (n=6; F).  All values are 

mean±SE. *P<0.05 vs VEH maximum, †P<0.05 vs Y-27632 maximum, one-way 

ANOVA (repeated measures) and Newman-Keuls post-hoc test. 
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Figure 3 Effects of angiotensin II treatment 

(A) Mean arterial pressure (MAP) of rats at Days 0 and 14 of angiotensin II (0.7 

mg/kg per d s.c.) treatment (n=5); (B) relaxation responses to acetylcholine (ACh, 10 

µmol/L) of aortic rings from normotensive control (NBP, n=33) and hypertensive rats 

(HBP, n=5); (C) concentration-response curves to phenylephrine in aortic rings from 

NBP (n=16) and HBP rats (n=5); (D) concentration-response curves to phenylephrine 

in the presence of vehicle (VEH) or wortmannin (WORT, 0.1 µmol/L) in aortic rings 

from HBP rats (n=5).  All values are mean±SE.  *P<0.05 vs Day 0, Student’s paired t 

test; †P<0.05 vs NBP, Student’s unpaired t test. 
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