CONTENTS

Number 1, January, 1938

	The Effect of Digitalis on the Anesthetized Dog. I. Action on the Splanchnic Bed. L. N. Katz, S. Rodbard, M. Friend and	I.
1	W. Rottersman	
16	Some Undescribed Pharmacological Properties of Bulbocapnin. Hans Molitor	11.
	The Influence of Theophylline Upon the Absorption of Mercu- purin and Salyrgan from the Site of Intramuscular Injection. Arthur C. DeGraff, Roberts C. Batterman, and Robert A.	III.
26	Lehman	***
37	Arterenol as a Possible Sympathetic Hormone. Z. M. Bacq The Fate of Drugs Used in Spinal Anaesthesia. Kenneth Bullock	
38	and A. D. MacDonald	
•	Gastrointestinal Administration of Sobisminol: Absorption, Distribution and Excretion of Bismuth. P. J. Hanzlik, A. J.	VI.
54	Lehman, A. P. Richardson and W. Van Winkle, Jr	
	The Local Anesthetic Actions of Two Esters of Mono Alkylated Amino Alcohols. David I. Abramson and Samuel D. Gold-	VII.
69	berg	
88	Studies on the Mechanism of Morphine Hyperglycemia. The Rôle of the Sympathetic Nervous System with Special Reference to the Sympathetic Supply to the Liver. R. C. Bodo, F. W. Tui and A. E. Benaglia	VIII.
	Studies of Chronic Morphine Poisoning in Dogs. VII. Effect of Thyroid Feeding on the Excretion of Morphine in Tolerant	IX.
106	and Non-Tolerant Dogs. O. H. Plant and D. Slaughter	
	The Effect of Benzedrine Sulfate on the Emptying Time of the	\mathbf{X} .
111	Human Stomach. Edward J. Van Liere and Clark K. Sleeth The Influence of Digitalis Glucosides on the Force of Contraction	XI.
116	of Mammalian Cardiac Muscle. McKeen Cattell and Harry Gold	
	Number 2, February, 1938	
	The Identification of the Active Crystalline Substance from Liver Which Protects Against Liver Damage Due to Chloroform or Carbon Tetrachloride; and a Study of Related Compounds.	XII.
127	R. C. Neale and H. C. Winter The Pharmacological Action of Deuterium Oxide. III. Its Pro-	XIII.
149	tective Effect on Acetyl Choline and Epinephrine. Sinisha B. Bogdanovitch and Henry G. Barbour	

XIV	. The Pharmacological Action of Deuterium Oxide. IV. The	
	Sympathomimetic Action of Deuterium Oxide in Mice. Henry	
3737	G. Barbour and Julian B. Herrmann	158
AV.	Some Tetrahydroisoquinolines. I. Their Relative Toxicology	
	and Symptomatology. Axel M. Hjort, Edwin J. deBeer and David W. Fassett	165
VVI	Autonomic Drugs and the Biliary System. I. The Action of	100
22 7 1.	Acetyl-B-Methyl Choline Chloride (Mecholyl) and Benzyl	
	Methyl Carbinamine Sulphate (Benzedrine Sulphate) on the	
	Gall Bladder. James Flexner, Maurice Bruger and Irving S.	
	Wright	174
XVII.	Studies of Cyclopropane. IV. Cardiac Output in dogs Under	
	Cyclopropane Anesthesia. Benjamin H. Robbins and James	
	H. Baxter, Jr	179
XVIII.	Nor-Epinephrine [β-(3,4-Dihydroxyphenyl)-β-Hydroxyethyla-	
	mine] as a Possible Mediator in the Sympathetic Division of the	
	Autonomic Nervous System. C. M. Greer, J. O. Pinkston, J.	
	H. Baxter, Jr. and E. S. Brannon	189
XIX.	Microscopic Observations of Pulmonary Artery Reactions.	
	Albert J. Gilbert	228
XX.	Reactions of Carotid Arteries of Small Animals. Torald Soll-	
	mann and A. J. Gilbert	236
XXI.	The Relative Activity of Various Purified Products Obtained	
	from American Grown Hashish. R. P. Walton, L. F. Martin	000
YYII	and J. H. Keller	409
AAII.	rivatives. R. F. Silvers and A. R. McIntyre	252
	•	
	Number 3, March, 1938	
XXIII.	The Assay of Gonad Stimulating Preparations. M. C. D'Amour	
	and F. E. D'Amour	263
XXIV.	Nembutal Anesthesia. III. The Median Lethal Dose of Nembu-	
	tal (Pentobarbital Sodium) for Young and Old Rats.	
******	Emmett B. Carmichael	284
XXV.	The Pharmacological Action of Deuterium Oxide. V. A Cal-	
	origenic Saturation Level and the Influence of Ergotoxine. Henry G. Barbour and Lillie E. Rice	ഛ
XXVI	Nature of Acquired Tolerance to Alcohol. Henry W. Newman	454
MAY 1.	and Arnold J. Lehman	301
XXVII.	The Rat in the Assay of Cortin. Fred E. D'Amour and Dorothy	-
	Funk	307
XXVIII.	Analysis of the Circulatory Actions of Ethylnorsuprarenin. W.	
	M. Cameron, J. M. Crismon, L. J. Whitsell, and M. L. Tainter	318
XXIX.	The Action of Merthiolate on the Gonadotropic Effect of Anterior	
	Pituitary Extract. Graham Chen and H. B. van Dyke	333
	Tolerance and Fate of the Pressor Principle of Posterior Pituitary	
	Extract in Anasthatized Animals Edward Larson	246

CONTENTS \mathbf{v} XXXI. The Pharmacological Action of Deuterium Oxide. VI. Its

AAA1. The That macological Action of Deuterium Oxide. VI. 168	
Influence upon the Insensible Water Loss. Henry G. Barbour	
and Lillie E. Rice	363
	000
XXXII. Sobisminol: Toxicity, Tolerance and Irritation According to	
Different Channels of Administration. P. J. Hanzlik, A. J.	
Lehman and A. P. Richardson	372
XXXIII. Continued Voluntary Drinking of Sobisminol: General Effects.	
P. J. Hanzlik and A. J. Lehman	389
XXXIV. Excretion of Bismuth After Intramuscular Injection of Sobis-	
minol: Experimental and Clinical Results. P. J. Hanzlik, A.	
J. Lehman and A. P. Richardson	404
	404
XXXV. Intramuscular Injection of Sobisminol: Absorption and Dis-	
tribution of Bismuth. P. J. Hanzlik, A. J. Lehman and A. P.	
Richardson	413
XXXVI. Effects of Prostigmin and Atropine on the Human Stomach. H.	
O. Veach, B. R. Lauer, and A. G. James	422
XXXVII. A Basis for The Acetylcholine Action of Choline Derivatives.	
R. R. Renshaw, D. Green and M. Ziff.	420
•	400
XXXVIII. The Action of Acetyl-Beta-Methylcholine Chloride (Mecholyl)	
in Neurogenic Disturbances of The Urinary Bladder, With a	
Note On the Mechanism of Spinal Shock. Paul M. Levin	449
XXXIX. The Influence of Ouabain on The Contraction of Striated Muscle.	
McKeen Cattell	459
XL. The Relation of Acetanilid And other Drugs To Analgesia in	
Monkeys. Paul K. Smith	467
Midinojo. Lau II. Dimili	101

ILLUSTRATIONS

Graph of changes observed following intravenous injection of digitalis in	
divided doses in anesthetized dog with liver in circuit, and arterial pres-	~
sure level high (fig. 1)	7
— of changes observed following continuous intravenous injection of	
digitalis in anesthetized dog with liver in circuit and arterial pressure	~
high (fig. 2)	7
- of changes observed following continuous intravenous injection of	
digitalis in anesthetized dog with liver in circuit and arterial pressure	_
low (fig. 3)	8
- of changes observed following continuous intravenous injection of digi-	
talis in anesthetized dog with liver out of circuit and arterial pressure	_
high (fig. 4)	9
— of changes observed following continuous intravenous injection of	
digitalis in anesthetized dog with liver out of circuit and arterial pres-	
sure low (fig. 5)	9
Photograph of flowmeter (fig. 6)	12
Effect of bulbocapnin on skin temperature, blood circulation in ear, and leg	
volume (fig. 1)	17
of bulbocapnin on blood pressure, kidney volume and leg volume (fig. 2).	18
— of bulbocapnin on blood pressure and leg volume when injected in arteria	
carotis interna and arteria mesenteric inferior (fig. 3)	19
of adrenalin on kidney volume and leg volume before and after bulbocap-	
nin (fig. 4)	20
— of adrenalin on cat's blood pressure before and after bulbocapnin	
(fig. 5)	21
—— of bulbocapnin and papaverin on isolated rabbit's intestine (fig. 6)	23
— of bulbocapnin on vascular reflexes in ear of nonanesthetized rabbit	
(fig. 7)	23
Curves showing mean percentage absorption of mercupurin and of mercu-	
purin without theophylline at various time intervals after intramuscu-	
lar injection (fig. 1)	32
showing mean percentage absorption of salyrgan with theophylline and	
of salyrgan at various time intervals after intramuscular injection	
(fig. 2)	33
Procaine concentrations in cerebro-spinal fluid following spinal injection of	
procaine HCl (fig. 1)	46
Larocaine concentrations in cerebal-spinal fluid (fig. 2)	47
Tutocaine concentrations in cerebro-spinal fluid (fig. 3)	48
Absorption of sobisminol from loops of ligated intestines (fig. 1)	57
Effect of benzedrine sulfate on stomach (fig. 1)	113
Action of ouabain in various concentrations on systolic tension of isolated	
papillary muscles (fig. 1)	120

Influence of digitalis on cardiac muscle (fig. 2)	120
Augmentation of systolic tension produced by solution of digitoxin (fig. 3)	122
Section from liver of control rat subjected to chloroform anesthesia (fig. 1)	136
- from liver of rat from same experiment but which received sodium xan-	
thine prior to anesthesia (fig. 2)	136
- from liver of control rat receiving carbon tetrachloride anesthesia	
· · · · · · · · · · · · · · · · · · ·	136
from liver of rat receiving carbon tetrachloride anesthesia but which was	
protected with sodium xanthine (fig. 4)	136
- from liver of rat from same experiment which received guanine prior to	
carbon tetrachloride anesthesia (fig. 6)	139
from liver of rat receiving same anesthesia as those represented by	
figures 6 and 7, but which received one protective dose of guanosine	
	139
— from liver of rat subjected to carbon tetrachloride anesthesia and killed	200
later (fig. 8)	142
— from liver of rat subjected to same anesthesia as control rat in figure	
8, but which received hypoxanthine before anesthesia was administered	
(fig. 9)	142
— from liver of rat from same experiment as those represented in figures 8	
and 9, but which received two protective doses of uracil prior to anes-	
thesia (fig. 10)	149
Potentiation of acetyl choline by heavy water (fig. 1)	
Reinforcement and persistence of acetyl choline action in 20 per cent D ₂ O bal-	100
	151
Effects of exposing acetyl choline solutions to fundulus scales for various	101
lengths of time (fig. 3)	153
Protective action of heavy water upon weak epinephrine solutions exposed	100
to scales; persistence of scale-treated epinephrine after evaporation of	
"protective" heavy water (fig. 4)	154
Two mice about one-fifth saturated with deuterium oxide (fig. 1)	
Mouse about one-fifth saturated with deuterium oxide showing exophthalmos	100
and general pilomotor stimulation in profile (fig. 2)	160
- · · · · · · · · · · · · · · · · · · ·	162
Effect of acetyl-B-methyl choline chloride (mercholyl) and of benzyl methyl	102
Carbinamine sulphate (benzedrine sulphate) on gall bladder (fig. 1)	176
of acetyl-B-methyl choline chloride (mecholyl) and of benzyl methyl car-	
binamine sulphate (benzedrine sulphate) on gall bladder (fig. 2)	177
Records of arterial pressure from three experiments in which response to	
l-epinephrine and dl-nor-epinephrine was compared with that to hepatic	
nerve stimulation (fig. 1)	190
Pressor responses to l-epinephrine, dl-nor-epinephrine, and hepatic nerve	100
stimulation before and after ergotoxine (fig. 2A)	202
	203
Records of blood pressure and iris with l-epinephrine, dl-nor-epinephrine,	00
dl-arterenol and henatic nerve stimulation (fig. 3)	204

Records of blood pressure, iris and non-pregnant uterus with l-epinephrine,	
dl-nor-epinephrine, and hepatic nerve stimulation (fig. 4)	
of blood pressure and nictitating membrane with l-epinephrine, dl-nor-	
epinephrine, and hepatic nerve stimulation (fig. 5)	
- of blood pressure and nictitating membrane with l-epinephrine, dl-nor-	
epinephrine, and hepatic nerve stimulation (fig. 6)	
- from three experiments showing responses of uterus, nictitating mem-	
brane and blood pressure to l-epinephrine and dl-nor-epinephrine (fig. 7).	
Non-pregnant uterus of rat in Locke's solution (fig. 8)	
Records of duodenum and blood pressure with l-epinephrine, dl-nor-epine-	
phrine, and hepatic nerve stimulation (fig. 9)	
Responses of duodenum and blood pressure to hepatic nerve stimulation in	
two cats under dial anesthesia (fig. 10)	
Rabbit duodenum in Locke's solution; duodenum of kitten (fig. 11)	
Photomicrographs of pulmonary artery reactions (figs. 1 and 2)	
of pulmonary artery reactions (fig. 3)	
of pulmonary artery reactions (figs. 4 and 5)	
Fresh carotid of cat (fig. 1)	
Carotid from same cat (fig. 2)	
Same artery as in figure 2 (fig. 3)	
Activity of cannabis preparations (figs. 1 and 2)	
of cannabis preparations (figs. 3 and 4)	
Assay of gonad stimulating preparations (fig. 1)	
— of gonad stimulating preparations (fig. 2)	208
— of gonad stimulating preparations (fig. 3)	209
— of gonad stimulating preparations (fig. 4)	
— of gonad stimulating preparations (fig. 5)	272
— of gonad stimulating preparations (fig. 6)	
— of gonad stimulating preparations (fig. 7)	
Median lethal dose of nembutal for young and old rats (fig. 1)	
Calorigenic effect of 40 per cent D ₂ O (fig. 1)	
— effect of 100 per cent D ₂ O (fig. 2)	
Relation of metabolism to specific gravity of insensibly lost water (fig. 3)	
Plateau of metabolism increased under deuterium oxide interrupted by ad-	
dition of ergotoxine ethanesulfonate to morning dose of deuterium oxide	
(fig. 4)	297
Same as figures 1 and 2 but showing effects of thyroidectomy after interval of	
65 days (fig. 5)	29 9
Relationship of blood alcohol concentration to degree of drunkenness in ab-	
stinent and habituated dogs (fig. 1)	
Alcohol concentration of blood and brain after intravenous injection in rats	
(fig. 2)	305
Rat in assay of cortin (graph 1)	312
Relative constrictor potency of ethylnorsuprarenin and epinephrine for	
perfused cat's leg (fig. 1)	322
Cardiac stimulation in heart-lung preparation by equivalent doses of ethyl-	
norsuprarenin and epinephrine (fig. 2)	324

Constriction of excised hepatic veins by ethylnorsuprarenin and epinephrine	
and relaxation by nitroglycerine (fig. 3)	325
Changes in venous and arterial pressures, intestinal, leg and liver volumes	
in cat receiving ethylnorsuprarenin intravenously (fig. 4)	326
— in arterial and portal pressures and leg volume from ethylnorsuprarenin	
intravenously in cat (fig. 5)	327
— in arterial pressure, leg volume, heart volume and pulse rate in cat	000
receiving ethylnorsuprarenin intravenously (fig. 6)	328
— in leg volume and blood pressure, showing dilatation, then constriction	
of leg after ethylnorsuprarenin in comparison with responses to nitro-	
glycerine and epinephrine (fig. 7)	329
Action of merthiolate on gonadotropic effect of anterior pituitary extract	004
(figs. 1 and 2)	334
Changes in microscopic appearance of ovaries of rats following administra-	
tion of pituitary gonadotropic extract with or without merthiclate	220
(fig. 3)	339
— in microscopic appearance of uteri and vaginae of rats following administration of pituitary gonadotropic extract with or without mer-	
	240
thiolate (fig. 4)	340
following administration of pituitary gonadotropic extract with or with-	
out merthiclate (fig. 5)	249
Composite diagram of blood pressure, spleen volume and volume of about	042
one-third of small intestine of cat (barbital and ether anesthesia) re-	
ceiving series of intravenous injections of pituitary extract (fig. 1)	250
Tolerance of anesthetized dogs and cats for pituitary extract (figs. 2 to 5)	
Amounts of urine and posterior pituitary eliminated by anesthetized cats	000
and dogs receiving pituitary extract intravenously (fig. 6)	355
Tolerance of anesthetized dogs and cats for pituitary extract (figs. 7 to 10)	
Relation of insensibly lost water to CO ₂ output (fig. 1)	
— between water lost insensibly and CO ₂ output during administration of	000
deuterium oxide (fig. 2)	367
Effects of D ₂ O followed by withdrawal and recovery (fig. 3)	
Changes in metabolism and water loss following ergotoxine given on sixth	
day of deuterium oxide treatment (fig. 4)	369
Temperatures of mice becoming gradually saturated by various courses	
of deuterium oxide (fig. 5)	370
Continued drinking of water (control) and of diluted solvent in sobisminol	
by white rats (fig. 1)	391
- drinking of different dilutions of sobisminol by white rats (fig. 2)	392
- drinking of solvent and different dilutions of sobisminol by rabbits	
(fig. 3)	393
Bismuth-balance chart after intramuscular injection of therapeutic doses	
of sobisminol in patients and rabbits (fig. 1)	408
Clinical urinary excretion of bismuth after intramuscular injection of sobis-	
minol (fig. 2)	
Effects of prostigmin and atropine on human stomach (fig. 1)	
— of prostigmin and atropine on human stomach (fig. 2)	425

ILLUSTRATIONS хi Effects of prostigmin and atropine on human stomach (figs. 3 and 4) 426 Measurement of evanescence in absence of nicotine action, measurement of evanescence in presence of nicotine action (figs. 2a and 2b)...... 433 Similarity of effect of eserine on activity of ethoxycholine and acetylcholine Showing presence of blood-labile substance in heart blood of cat receiving Effect of mecholyl on bladder of normal cat; nembutal anesthesia (fig. 1).... 450 of mecholyl on bladder of cat seven days after section of posterior sacral -- of mecholyl on bladder of cat two days after section of all sacral roots; - of mecholyl on bladder of cat after transection of spinal cord at upper Changes in twitch tension and efficiency following exposure to ouabain, and - in twitch tension following exposure to ouabain, with reversal following Monkeys in position for mechanical and electrical stimulation and recording Some effects in monkeys of acetanilid, caffeine and morphine (fig. 2)...... 472