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ABSTRACT
The prefrontal cortex (PFC) has justifiably become a signifi-
cant focus of chronic pain research. Collectively, decades of
rodent and human research have provided strong rationale
for studying the dysfunction of the PFC as a contributing fac-
tor in the development and persistence of chronic pain and as
a key supraspinal mechanism for pain-induced comorbidities
such as anxiety, depression, and cognitive decline. Chronic
pain alters the structure, chemistry, and connectivity of PFC
in both humans and rodents. In this review, we broadly summa-
rize the complexities of reported changes within both rodent
and human PFC caused by pain and offer insight into potential
pharmacological and nonpharmacological approaches for

targeting PFC to treat chronic pain and pain-associated
comorbidities.

SIGNIFICANCE STATEMENT
Chronic pain is a significant unresolved medical problem causing
detrimental changes to physiological, psychological, and behav-
ioral aspects of life. Drawbacks of currently approved pain thera-
peutics include incomplete efficacy and potential for abuse
producing a critical need for novel approaches to treat pain and
comorbid disorders. This review provides insight into how ma-
nipulation of prefrontal cortex circuits could address this unmet
need of more efficacious and safer pain therapeutics.

Introduction
Pain is a multidimensional experience making it more than

a sensation detected by the peripheral nervous system. It en-
gages the central nervous system via multiple cortical and
subcortical networks. Human brain imaging shows that pain
activates multiple regions of the cortex including primary and
secondary somatosensory cortices and the prefrontal cortex
(PFC) (Rainville et al., 1997; Apkarian et al., 2005; Bushnell
et al., 2013). Neurons in the PFC respond to noxious (i.e., pain-
ful) stimuli (Condes-Lara et al., 1989) and play an important
role in the emotional valence, attentional components, and the
descending modulation of pain (Porro et al., 2002; Lee et al.,
2015; Martinez et al., 2017; Dale et al., 2018; Zhou et al.,
2018a). Reduced PFC activity is implicated in affective and
cognitive disturbances associated with chronic pain (Millecamps
et al., 2007; Ji et al., 2010; Cardoso-Cruz et al., 2013; Lee et al.,

2015; Wang et al., 2015). Recent evidence shows that negative
affect, commonly associated with both chronic pain and PFC
function, should be considered in the development of effective
pain therapies (Wasan et al., 2015; Edwards et al., 2016). Here,
we review PFC circuits as a contributor to both sensory and af-
fective pain and as a potential target for pain therapy.

Pain-Induced Disruptions within Rodent PFC
Early pivotal work in mice showed that both chronic inflam-

matory pain and neuropathic pain enhance excitatory synaptic
transmission in the anterior cingulate cortex (ACC), a subre-
gion of the PFC (Zhao et al., 2006; Xu et al., 2008). A short
time later, a novel study in the rat showed that the spared-
nerve injury (SNI) model of neuropathic pain (Decosterd and
Woolf, 2000) induced increases in dendritic complexity and
N-methyl-D-aspartate (NMDA)/a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) current ratios in layer 2/3
PFC neurons (Metz et al., 2009). Another study showed that
neuropathic pain enhanced the excitability of an intrinsically
distinct subclass of ACC-PFC neurons (Cao et al., 2009).
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Increased excitability of ACC-PFC neurons following nerve in-
jury was later reported to result from cortical disinhibition
caused by reduced connectivity between pyramidal neurons and
inhibitory interneurons in the ACC (Blom et al., 2014). Recent
work shows that increased activity of the ACC-PFC in mice is in-
volved in maintenance of chronic pain and defensive behaviors to
painful stimuli (Lee et al., 2022). Together, these findings indi-
cated that chronic pain creates a state of hyperexcitability within
the PFC.
Work around the same time implementing magnetic reso-

nance imaging of brains from rats with prolonged nerve injury
pain (>4 weeks) revealed a significant decrease in volume
across multiple cortical regions including the PFC, which coin-
cided with emergence of anxiety-like behaviors (Seminowicz
et al., 2009). It was later reported that cognitive deficits associ-
ated with arthritic pain are associated with increased polysyn-
aptic inhibition of layer 5 (L5) pyramidal neurons in the
prelimbic region of the PFC (PL-PFC), which was driven by
signaling through metabotropic glutamate receptors (mGluRs)
(Ji et al., 2010; Sun and Neugebauer, 2011). Work from Zhang
et al. (2015) supported these findings by showing that nerve
injury in mice increases excitatory input to parvalbumin-positive
inhibitory neurons in PL-PFC, consequentially decreasing excit-
ability of L5 pyramidal neurons. Our later work corroborated
these results by showing that SNI enhances intrinsic and excit-
atory synaptic activity of L5 parvalbumin-positive inhibitory neu-
rons in PFC of male, but not female, mice (Jones and Sheets,
2020).
In rats, SNI impairs glutamatergic synaptic signaling and

decreases dendritic length in L5 PFC pyramidal neurons
(Kelly et al., 2016). Work from our laboratory showed that the
chronic constriction injury model of neuropathic pain, which is
similar to SNI, enhances the inhibitory–excitatory balance of
local inputs onto PL-PFC pyramidal neurons that project to
the periaqueductal gray (PAG), a key structure in the descend-
ing analgesic system (Cheriyan and Sheets, 2018). Interest-
ingly, this led to reduced intrinsic excitability of PAG-projecting
neurons in the PL-PFC but not in the infralimbic region of pre-
frontal cortex (IL-PFC) (Cheriyan and Sheets, 2018), supporting
the notion that decreased output from L5 PL-PFC contributes
to pain expression. Indeed, restoring basal activity of PL-PFC
neurons using optogenetic stimulation alleviates sensory and
affective pain behaviors in rats with chronic inflammation in
the hindpaw (Dale et al., 2018). Huang et al. (2019) then re-
ported downregulation of cannabinoid receptor 1 mRNA in PL-
PFC of SNI mice and showed that SNI enhances feedforward
inhibition of PAG-projecting neurons in the PL-PFC, which leads
to a disruption of descending PAG modulation of noradrenergic
and serotoninergic circuits in the spinal cord. In a recent spatial
transcriptomic dissection of the mouse PFC, it was revealed that
a specific subtype of PL-PFC L5 extra-telencephalic neurons
with robust projections to the PAG were the most transcrip-
tionally perturbed by SNI (Bhattacherjee et al., 2023). This
collection of consistent findings in the mouse indicates that
a significant component of chronic pain pathophysiology in-
volves the attenuation of PFC-PAG pathway activity.
Our recent work demonstrates that both SNI and the plan-

tar incision model (PIM) of surgical pain enhances the excit-
ability of layer 2/3 PL-PFC neurons expressing dynorphin
(Dyn), which is the endogenous opioid ligand for the j opioid
receptor (KOR) (Zhou et al., 2023). KORs mediate the sensory
(Obara et al., 2003; Xu et al., 2004; Aita et al., 2010) and

negative affective component of pain (Cahill et al., 2014; Mas-
saly et al., 2019; Navratilova et al., 2019). Both Dyn and
KOR mRNA are upregulated in the PFC of chronic pain
mice (Candeletti and Ferri, 1995; Palmisano et al., 2019;
Bhattacherjee et al., 2023) suggesting that Dyn-KOR signal-
ing within PFC circuits regulates to pain-induced affective
behaviors. Indeed, infusion of the synthetic KOR agonist
U50,488 or Dyn analog E-2078 into the PFC evokes condi-
tioned place aversion in rats (Bals-Kubik et al., 1993). In ad-
dition, KOR antagonism with norbinaltorphimine in the
PFC promotes anxiolytic behavior (Tejeda et al., 2015). The
KOR agonist U69,593 selectively inhibits glutamatergic ba-
solateral amygdala inputs to the PFC (Tejeda et al., 2015),
which is a pathway (i.e., basolateral amygdala-PFC) known
to be disrupted in various preclinical pain models (Ji et al.,
2010; Kiritoshi et al., 2016; Huang et al., 2019; Cheriyan
and Sheets, 2020). Together, this infers that local release of
Dyn into the PFC due to hyperactivity of PL-PFC-Dyn1
neurons is a signaling pathway that mediates aversion and
negative valence/affect associated with pain.

Relevance of Rodent Models to the Human
Chronic Pain

Translation of how anatomic and functional changes to PFC
circuits in rodent pain models correlates with pain-induced
disruption of the human PFC is still evolving. One major hur-
dle remains the obvious lack of conscious reporting by rodents
regarding ongoing pain and the affective aspect of pain. How-
ever, the use of place preference paradigms has emerged as a
novel method for assessing spontaneous pain and the aversive
component of pain in rodents (Johansen et al., 2001; King
et al., 2009; Navratilova et al., 2013). Many studies using
place preference describe a significant role of PFC activity in
modulating affective pain (Johansen et al., 2001; Lee et al.,
2015; Navratilova et al., 2015; Huang et al., 2019). Another
limitation is that rodent PFC does not have a granular anat-
omy observed in human PFC (Preuss, 1995; Laubach et al.,
2018). Yet, it is argued that the rodent PL-PFC is homologous
with the pregenual ACC in humans (Vogt and Paxinos, 2014;
Laubach et al., 2018), which is a region associated with the un-
pleasantness of pain perception (Ploner et al., 2002; Kulkarni
et al., 2005). There are also consistencies regarding the role of
the rodent ACC-PFC and human ACC in pain regulation. Le-
sion of the rostral ACC-PFC attenuates of aversiveness of
nerve-injury induced neuropathic pain in rats (Qu et al., 2011).
This is consistent with the positive effects observed in human
chronic pain patients following cingulotomy (Sharim and
Pouratian, 2016; Strauss et al., 2017; Wang et al., 2017;
Deng et al., 2019).
Identifying specific cellular and synaptic disruptions that

drive neural connectivity changes in the PFC of human pain
patients remains challenging, which highlights the importance
of rodent PFC research. Progressive methods aimed at re-
searching neural circuits in rodent models provide a unique
opportunity to understand the functionality of brain networks
that integrate both normal and pathologic pain input in mam-
mals. Mice continue to be a powerful model for addressing sig-
nificant aspect of these unknowns as the ability to modify
murine genetics for identification and manipulation of defined
circuit pathways is extremely valuable. Further, there are
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numerous disease models in mice available for further explora-
tion of the PFC network as it relates to various pain and comor-
bid emotional disorders.

Cortical Disruptions in Human Chronic Pain
The PFC is involved in the sensing of acute painful stimuli

(Sakuma et al., 2014; Ong et al., 2019), with both the ACC-
PFC and dorsolateral PFC (DLPFC) being activated by nox-
ious stimulation (Hutchison et al., 1999; Nir et al., 2008). In
addition, activation of the PFC is correlated with both antici-
pation and unpleasantness of pain (Lorenz et al., 2002; Porro
et al., 2002). PFC activity is also implicated in anxiety and de-
pressive symptoms associated with pain (Ochsner et al., 2006;
Schweinhardt et al., 2008). In a systematic review from 2005,
Apkarian et al. (2005) highlighted that although the percep-
tion of experimental pain in healthy subjects involves more
frequently the ACC as well as sensory and thalamic regions,
chronic pain patients show a reduced activity within these re-
gions together with an increased activation of the PFC. En-
hanced PFC activity is a neural signature of high intensity
pain in chronic back pain patients (Baliki et al., 2006). Inter-
estingly, a recent meta-analysis of functional neuroimaging
studies on the effect of chronic pain treatment found that in the
majority of studies, the ACC showed significantly decreased ac-
tivity after chronic pain treatment in functional magnetic reso-
nance imaging and positron emission tomography studies,
whereas activity in the PFC was inconsistent (Kim et al., 2021).
Although discrimination of pain intensity is modulated by a

ventrally directed pathway including diverse prefrontal corti-
cal regions, spatial discrimination of pain stimuli involves a
dorsally directed pathway that activates the DLPFC (Oshiro
et al., 2009). The interpretation of a noxious stimulus intensity
and its subjective perception as pain is thereby guided by c os-
cillations in the PFC (Schulz et al., 2015; Nickel et al., 2017).
Interestingly, at this level of the pain pathway, no lateraliza-
tion occurs based on the side of stimulation. Sensitization to a
painful stimulus further increases the activity of brain regions
including the DLPFC (Benson et al., 2015), whereas increased
pain sensitivity is associated with a decreased activity of the
ventrolateral PFC and the ACC-PFC (Karshikoff et al., 2016).
Although Teutsch et al. (2008) showed that repetitive pain-

ful stimulation leads to a substantial increase of gray matter
in pain-related areas for the duration of stimulation, it is well
established that pain chronification has the exact opposite ef-
fect. Atrophy of PFC gray matter is detected in humans with
complex regional pain syndrome, low back pain, and fibromy-
algia (Apkarian et al., 2004; Kuchinad et al., 2007; Geha et al.,
2008; Yuan et al., 2017). In chronic back pain patients, gray
matter volume in the left DLPFC, ventrolateral PFC, and
ACC-PFC shows a weak negative correlation with back pain
intensity (Fritz et al., 2016), and complex regional pain syn-
drome duration and intensity were negatively correlated with
DLPFC volume (Barad et al., 2014). Although thinning of gray
matter is referred to as atrophy in many studies, thereby sug-
gesting a reduction of neuronal cells, the decrease of gray mat-
ter in the ACC-PFC, DLPFC, and other pain-associated regions
is at least in part reversible when the pain is successfully
treated (Rodriguez-Raecke et al., 2009; Seminowicz et al., 2011;
Seminowicz and Moayedi, 2017).
Cerebral blood flow, which is an indirect measure of neuro-

nal activity, was reduced in the left DLPFC in a human

experimental pain model of noxious heat stimulation (Nishi-
gami et al., 2010). Initial studies investigating cerebral blood
flow induced by noxious heat stimulation showed that patients
with atypical facial pain showed increased blood flow in the
ACC and decreased blood flow in the PFC (Derbyshire et al.,
1994), whereas rheumatoid arthritis patients showed reduced
blood flow in the ACC-PFC (Jones and Derbyshire, 1997). In
patients with chronic neuropathic or non-neuropathic orofacial
pain, only non-neuropathic chronic pain patients showed in-
creased baseline blood flow in the ACC-PFC and DLPFC
(Youssef et al., 2014), whereas chronic low back pain showed
reduced blood flow in the bilateral PFC (Nakamura et al.,
2014). Although inconsistent in different patient groups,
changes in blood flow in response to noxious stimulation and
pain chronification may be related to both loss of gray matter
as well as changes in activation of the affected brain regions.
Human sexual dimorphism in pain experience and chronic

pain is well-established (Unruh, 1996; Berkley, 1997; Riley
et al., 1998; Mogil and Bailey, 2010; Mogil, 2012, 2020) with
prevalence of chronic pain reported higher in women compared
with men (Fillingim et al., 2009; Nahin, 2015; Dahlhamer
et al., 2018). Although subjective pain unpleasantness was
strongly associated with increased pain-evoked activation of the
perigenual ACC in women (Derbyshire et al., 2002; Straube
et al., 2009; Girard-Tremblay et al., 2014), men showed de-
creased ventromedial PFC activity (Girard-Tremblay et al.,
2014). Sex differences were also found in the functional connec-
tivity of insular subdivisions with median- and paracingulate
regions and right rostral ACC (Dai et al., 2018), as well as
ACC-amygdala and ACC-PAG connectivity in aged individuals
(Monroe et al., 2018). This is in line with sex differences found
in glutamatergic transmission in the mPFC of mice (Jones and
Sheets, 2020; Knouse et al., 2022). In addition to sex differ-
ences, inter-individual differences in pain sensing are among
others related to variability of pain-induced PFC activation
(Coghill et al., 2003; Piche et al., 2010), inter-hemispheric con-
nectivity of DLPFC (Sevel et al., 2016), medial-frontal and
frontal-parietal network connectivity profiles (Tu et al., 2019),
or gray matter volume in several brain regions, including the
posterior cingulate cortex and orbitofrontal PFC (Elsenbruch
et al., 2014). A continued effort to dissect sex and inter-individ-
ual differences in PFC involvement in chronic pain pathology is
critical, as currently approved pain therapeutics do not account
for these variables, which limits the implementation of person-
alized treatment strategies.

Targeting the PFC for Pain Relief
Collectively, both human and rodent studies validate that

disruption of PFC circuit function is a key factor in both
chronic pain and affective comorbidities associated with chronic
pain, which needs to be considered when developing novel and
more efficacious pain therapies (Wasan et al., 2015; Edwards
et al., 2016). Therefore, what strategies can be implemented for
targeting PFC circuits in chronic pain patients?

Pharmacological Interventions to Treat PFC Dysfunction
Caused by Pain

The most convenient way to target the PFC for treating
both sensory and affective pain is pharmacological therapeu-
tics. Several studies have shown that pharmacological
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compounds can attenuate pain symptoms through their ac-
tions in the PFC. Intracranial infusion of D-cycloserine, a par-
tial agonist for the NMDA receptor, into the PFC significantly
reduced pain behaviors in SNI rats (Millecamps et al., 2007)
indicating restoration of NMDA activity in PFC as a strategy
for pain relief. However, partial agonists also serve to dampen
activity without complete inhibition of receptors, suggesting
that reduction of NMDA receptor activation in PFC can atten-
uate pain. Indeed, previous work showed that NMDA recep-
tors containg the subunit 2B (NR2B receptors) are upregulated in
ACC-PFC following induction of peripheral inflammation in mice
and that direct infusion of the NR2B receptor antagonists Ro 25-
6981 or Ro 63-1908 into ACC-PFC reduced pain behaviors caused
by inflammation (Wu et al., 2005). Injection of the fatty acid pal-
mitoylethanolamide, which is a member of the extended endocan-
nabinoid family and a ligand at non-cannabinoid peroxisome
proliferator-activated receptors (PPAR-a), into PFC reduced me-
chanical allodynia in mice 30 days after nerve-injury (Guida et al.,
2015). Interestingly, palmitoylethanolamide reduced expression of
NR2B subunits in the PFC, which supports the notion that target-
ing NR2B receptor signaling in the PFC may be an effective strat-
egy for treating chronic pain (Wu and Zhuo, 2009).
Administration of the positive allosteric modulator for

mGluR5 VU0360172 together with the cannabinoid receptor 1
agonist ACEA into the IL-PFC reduces pain-related behaviors
and improves cognition in arthritic rats (Kiritoshi et al., 2016).
Interestingly, injection of these same compounds into the ACC-
PFC did not improve symptoms of arthritic rats (Kiritoshi
et al., 2016), which is one of many findings indicating that cir-
cuits across different subregions of the PFC (i.e., ACC, PL, and
IL) play distinct roles in regulating responses to noxious stimuli
and chronic pain (Mitric et al., 2019; Kummer et al., 2020; Tan
and Kuner, 2021). Cholinergic signaling has also been shown to
be disrupted in the PFC of SNI rats. Specifically, L5 PL-PFC
neurons show decreased sensitivity to acetylcholine (ACh) fol-
lowing SNI, which is mediated by loss of signaling through the
muscarinic subtype receptor 1 (M1), leading to neuronal hypo-
excitability (Radzicki et al., 2017). Although not tested in a pain
model, injection of the M1 agonist McN-A-343 into the ACC-
PFC increases nociceptive mechanical threshold in rats (Koga
et al., 2017). This implies that activation of M1 in PL-PFC may
restore excitability of L5 neurons to promote analgesia, which
is consistent with extensive evidence that the activity of L5 PL-
PFC neurons is suppressed in chronic pain states (Ji and Neu-
gebauer, 2011; Lee et al., 2015; Wang et al., 2015; Zhang et al.,
2015; Cheriyan and Sheets, 2018; Huang et al., 2019; Mitric
et al., 2019; Cheriyan and Sheets, 2020). However, targeting
cholinergic signaling for pain relief extends broadly outside the
PFC (Naser and Kuner, 2018).
Interestingly, administration of the antidiabetic drug met-

formin alleviates mechanical hypersensitivity observed in
nerve-injured mice (Melemedjian et al., 2011; Inyang et al.,
2019). Positive effects of metformin are also observed in mod-
els of surgical, inflammatory and chemotherapy induced pain
(Russe et al., 2013; Mao-Ying et al., 2014; Burton et al.,
2017). Although the effects of metformin are believed to be
primarily peripheral, one reported mechanism of action for
metformin is reversing reductions in axon initial segment
length of IL-PFC neurons detected in SNI male mice (Shiers
et al., 2018). Metformin also reverses significant declines in
cognitive flexibility that is only observed in SNI male mice
(Shiers et al., 2018). Given the strong association of executive

function and PFC circuits (Miller, 2000), there may be therapeu-
tic potential in repurposing metformin for targeting PFC dys-
function and cognitive deficits caused by chronic pain, which is
a significant problem in human pain patients (Eccleston, 1995).
Ketamine is a general anesthetic that produces a cataleptic

state termed dissociative anesthesia but can also produce sig-
nificant analgesia (White et al., 1982) and positive effects on
mood (Berman et al., 2000; Zarate et al., 2006). Innovative
work from Zhou et al. (2018b) showed that ketamine produces
a robust reduction in aversion caused by inflammatory pain in
rats and this effect involves reducing pain-induced hyperactiv-
ity of the ACC-PFC. Later work indicated that anti-aversive
effects of ketamine are also mediated through activation of
PL-PFC circuits (Li et al., 2021a). Both of these studies show
that ketamine’s reduction of aversive pain symptoms was due,
in part, by inhibition of NMDA receptors and activation of
translation regulator mammalian target of rapamycin complex
1 in both ACC-PFC and PL-PFC (Zhou et al., 2018b; Li et al.,
2021a). In addition, recent work shows that administration of
a selective dopamine receptor 1 (D1R) agonist into the ACC-
PFC restores activation of hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels thereby normalizing neuro-
nal activity and attenuating both sensory and affective pain
behaviors in injured rats (Lancon et al., 2021). This is consis-
tent with previous findings reporting that agonists for seroto-
nin receptor type 7 (5-HT7R) restores HCN channel function
in the ACC-PFC and alleviates neuropathic pain in mice with
chronic constriction injury of the sciatic nerve (Santello and
Nevian, 2015; Santello et al., 2017). Altogether, this highlights
a number of promising pharmacological interventions for re-
covering normal PFC activity with the goal of treating ongoing
acute and chronic pain.

Nonpharmacological Interventions

Major limitations to pharmacologically resolving PFC dys-
function in pain remain 1) nonspecific targeting of drugs to
areas in the central nervous system and throughout the body
other than the PFC, which can create unwanted side effects,
and 2) insufficient drug penetration into the brain due to the
tight junctions of the blood–brain barrier (BBB). However,
novel strategies for invasive and noninvasive brain stimula-
tion are emerging that could be used to specifically manipulate
PFC activity as a means to treat pain and pain-associated
comorbidities.
Invasive Brain Stimulation. Although stimulation of

the spinal cord has demonstrated effectiveness in treating
chronic pain disorders like failed back surgery syndrome or
complex regional pain syndrome, peripheral stimulation ap-
proaches like transcutaneous electrical nerve stimulation or
electro-acupuncture have shown positive effects in painful dia-
betic neuropathy and post-herpetic neuralgia (Cruccu et al.,
2007; Farrell et al., 2018). Invasive neurostimulation of (pre-
frontal) cortical and subcortical regions has primarily focused
on motor cortex stimulation and deep brain stimulation (DBS)
of diverse thalamic nuclei, periaqueductal, or periventricular
gray matter, with conflicting evidence regarding efficacy to
treat chronic pain (Farrell et al., 2018; Frizon et al., 2020;
Knotkova et al., 2021). Recently, the ACC-PFC has been pro-
posed as a promising target for DBS, following reports that
neurosurgical lesioning of this region resulted in alleviation of
pain (Farrell et al., 2018). First studies applying DBS to the
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ACC-PFC of neuropathic pain patients reported significant de-
creases in pain scale ratings as well as improvements in the
affective components of pain (Spooner et al., 2007; Boccard
et al., 2014, 2017; Pagano et al., 2023). Recent innovative pre-
clinical work implemented a closed-loop neural feedback para-
digm by which optogenetic activation or electrical DBS of PL-
PFC in response to pain-induced local field potentials within
somatosensory cortex (S1) or ACC significantly reduced acute
and chronic inflammatory pain in rodents (Sun et al., 2022).
Noninvasive Brain Stimulation. One of the major

drawbacks of techniques like DBS is their invasive nature, re-
quiring surgical procedures for electrode implantation. In light
of this, there has been a notable surge in the development of
noninvasive brain stimulation techniques over the recent dec-
ades. These include different approaches designed to directly
modulate neuronal activity based on distinct physical charac-
teristics (Chang et al., 2022). One of the most extensively in-
vestigated noninvasive techniques is repetitive transcranial
magnetic stimulation (rTMS) (O’Connell et al., 2018). rTMS
employs an electromagnetic coil to generate a magnetic field,
which alters the excitability of neurons both locally in the
stimulated areas and at the innervation targets (Yang and
Chang, 2020). Although high-frequency stimulation has been
demonstrated to enhance neuronal excitability, low-frequency
stimulation reduces it, thereby mimicking long-term potentia-
tion and depression-like synaptic changes (Hoogendam et al.,
2010; Xiong et al., 2022). Interestingly, research in healthy
subjects has provided results that rTMS to the DLPFC can al-
ter tolerance to experimental pain models (Mylius et al.,
2012). Based on these findings, rTMS over the DLPFC has
successfully and significantly decreased chronic pain symp-
toms in patients with traumatic spinal cord injury (Nardone
et al., 2017) and chronic tension-type headache (Mattoo et al.,
2019). The efficacy of rTMS applied to the DLPFC for the
treatment of fibromyalgia and neuropathic pain patients re-
mains inconclusive, in part due to substantial heterogeneity in
study design (O’Connell et al., 2018; Knotkova et al., 2021).
However, recent findings in a rat model of chronic constriction
injury have shown that rTMS not only reversed mechanical al-
lodynia and thermal hyperalgesia, but also induced alterations
in the expression levels of brain-derived neurotrophic factor,
tumor necrosis factor-a and interleukin-10 in the PFC, poten-
tially exerting anti-inflammatory effects (Toledo et al., 2021).
There is also innovative work showing that intravenously in-
jected magnetoelectric nanoparticles can reliably evoke corti-
cal activity in mice using a low intensity magnetic field
(Nguyen et al., 2021). It has been reported that magnetoelec-
tric nanoparticles have limited toxicity (Kaushik et al., 2016)
making them an attractive candidate for use in restoring ac-
tivity in specific regions and/or neuronal populations within
the PFC of pain patients.
Transcranial direct current stimulation (tDCS) makes use

of weak electrical currents that are applied to specific brain re-
gions via two or more electrodes on the scalp, thereby result-
ing in increased or decreased excitability depending on the
polarity of the electrodes used (i.e., anodal tDCS and kathodal
tDCS, respectively) (Pacheco-Barrios et al., 2020). Although
the majority of studies investigating the effects of tDCS on
chronic pain conditions, including fibromyalgia and neuro-
pathic pain, target the primary motor cortex (M1) due to its
connection to other pain-associated brain structures (e.g., cin-
gulate gyrus, prefrontal cortex, and insula), individual studies

targeting the DLPFC revealed increases in pain thresholds and
pain perception in healthy subjects (Boggio et al., 2008, 2009b)
and reduction of pain scores in fibromyalgia and knee osteoar-
thritis patients in home-based settings (Brietzke et al., 2020;
Martorella et al., 2022). Similar results have been generated in
a recent preclinical study showing that tDCS of the PFC allevi-
ates pain and aversive behaviors in neuropathic pain mice
(Gan et al., 2021), which is consistent with reported pain-relief
observed in tDCS of PFC in humans (Lefaucheur et al., 2008).
In patients undergoing total knee arthroplasty, tDCS of PFC,
but not M1, reduced opioid use in the 3-day period following
surgery (Borckardt et al., 2017), which strengthens the clinical
relevance of PFC stimulation as an adjunctive therapy for phar-
macological treatment of surgical pain. However, discrepancies
over the effectiveness of tDCS remain as systematic reviews
and meta-analysis report limited evidence for a pain reducing
effect of tDCS targeted to the PFC in fibromyalgia or neuro-
pathic pain (Zhu et al., 2017; Knotkova et al., 2021; Wen et al.,
2022), which means improvements are needed in this area.
Nevertheless, tDCS is reported to be safe, easy, and well-toler-

ated in humans (Boggio et al., 2006, 2009a; Bikson et al., 2016)
making it a promising technique for new therapeutic avenues.
One example involves targeted drug delivery to specific brain re-
gions by utilizing the effects of tDCS on enhancing BBB perme-
ability, which has been shown in the rat (Shin et al., 2020).
Compounds designed to manipulate specific PFC cellular or cir-
cuit activity could be focally delivered by increasing permeability
of the BBB over the PFC using tDCS. This method would re-
strict the site of drug delivery to the PFC, which should reduce
risk of unwanted side effects and widen therapeutic indexes.
The tDCS increase BBB permeability is also reversible in the
rat (Shin et al., 2020). Based on our recent findings showing
that SNI and surgical pain induce hyperactivity of PL-PFC-
Dyn1 neurons (Zhou et al., 2023), therapeutics aimed at reduc-
ing PFC-Dyn1 circuit activity or antagonizing Dyn neurotrans-
mission originating from PFC-Dyn1 neurons could be focally
delivered by increasing permeability of the BBB over the PFC
in humans using tDCS. Using this novel principle, even the use
of site-specific viral gene-therapy or nanoparticle delivery could
be accomplished. Nonetheless, further development is needed in
using tDCS for focal drug delivery in the human brain as data
from the rat were shallowly limited to within 100–200 mm of the
pia mater (Shin et al., 2020), and the efficacy and safety of re-
peatedly using this method remains unclear.
Along with tDCS, transcranial laser stimulation (TLS) has

been clinically used for treating deficits caused by brain injury
and stroke (Hummel et al., 2005; Miniussi et al., 2008; Demi-
rtas-Tatlidede et al., 2012). The use of TLS is based on the ab-
sorption of photon energy by cytochrome oxidase, the terminal
enzyme of mitochondrial respiration, and thereby stimulating
ATP production and enhancing neuronal capacity for meta-
bolic energy production (Gonzalez-Lima and Barrett, 2014).
Although in healthy volunteers beneficial effects have been
found for cognitive and emotional functions (Gonzalez-Lima
and Barrett, 2014), application in stroke patients did demon-
strate the safety of TLS and improved outcome of acute stroke
when initiated within 24 hours of stroke onset (Zivin et al.,
2009). TLS has also been shown to enhance BBB permeability
(Li et al., 2021b, 2023) and could therefore be used for target-
specific delivery of compounds to the PFC.
Last, transcranial focused ultrasound (tFUS) is a novel tech-

nique that depends on mechanical interaction of ultrasound
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waves with neuronal membranes, which affects membrane per-
meability and ion channel gating properties (di Biase et al.,
2019). As compared with the other noninvasive brain stimula-
tion techniques, it offers increased penetration depth and
smaller focus, thereby offering an unprecedented possibility to
target brain regions inaccessible to rTMS or tDCS (Badran and
Peng, 2024). In healthy volunteers, tFUS of the anterior thala-
mus attenuates thermal pain sensitivity (Badran et al., 2020)
and stimulation of the primary somatosensory cortex S1 signifi-
cantly attenuated somatosensory evoked potentials and en-
hanced performance on sensory discrimination tasks (Legon
et al., 2014). Stimulation of the posterior frontal cortex via
tFUS improved mood and pain scores in chronic pain patients;
although this effect was only investigated 40 minutes poststi-
mulation (Hameroff et al., 2013). Interestingly it has been
shown in mice that by fine-tuning the tFUS pulse repetition fre-
quency, specific excitatory and inhibitory neuron types could be
selectively targeted (Yu et al., 2021). This highlights the poten-
tial use of tFUS for stimulation of diverse subpopulations of
neurons in the PFC, which would be a key therapeutic advance-
ment given the extensive evidence of cell- and circuit-specific
changes within the PFC in preclinical pain studies (Metz et al.,
2009; Lee et al., 2015; Zhang et al., 2015; Kelly et al., 2016;
Radzicki et al., 2017; Cheriyan and Sheets, 2018; Huang et al.,
2019; Mitric et al., 2019; Jones and Sheets, 2020; Zhou et al.,
2023). In addition, clinical trials exploring the use of tFUS to
temporarily opening the BBB to improve delivery of pharmaco-
logical compounds to brain tumors are ongoing (ClinicalTrials.-
gov identifier: NCT05762419) and could be used as a template
for targeting PFC circuits in pain patients.
Here, we summarize years of research describing the involve-

ment of the PFC in modulating both sensory and affective di-
mensions of acute and chronic pain in rodents and humans. This
supports the growing need to progressively develop pharmacolog-
ical and noninvasive neuromodulation techniques directed at the
PFC, or even a combination of both, that could cultivate new
possibilities of personalized or patient-specific therapies for im-
proving treatment of different pain disorders. One promising ex-
ample mentioned is this review is PFC stimulation as adjunctive
therapy for surgical pain (Borckardt et al., 2017), which could be
improved or adjusted for sex and inter-individual variability.
Nevertheless, the only recommendation for neuromodulation of
the PFC included in evidence-based guidelines is a level B rec-
ommendation (probable efficacy) for high-frequency rTMS of the
left DLPFC in fibromyalgia (Lefaucheur et al., 2017, 2020). Al-
though this review highlights the significant strides made in un-
derstanding the role of the PFC in pain modulation, continued
research is critically needed to provide new insight into how
these novel and emerging therapeutic strategies could be incor-
porated to safely treat different forms of pain and comorbid con-
ditions caused by pain. This will not only help to overcome
regulatory barriers but will also facilitate the adoption of these
techniques into routine clinical practice, thereby enhancing ac-
cessibility and efficacy in pain management strategies.
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