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ABSTRACT
In situ clinical measurement of receptor occupancy (RO) is
challenging, particularly for solid tumors, necessitating the
use of mathematical models that predict tumor receptor occu-
pancy to guide dose decisions. A potency metric, average free
tissue target to initial target ratio (AFTIR), was previously de-
scribed based on a mechanistic compartmental model and is
informative for near-saturating dose regimens. However, the
metric fails at clinically relevant subsaturating antibody doses,
as compartmental models cannot capture the spatial hetero-
geneity of distribution faced by some antibodies in solid tu-
mors. Here we employ a partial differential equation (PDE)
Krogh cylinder model to simulate spatiotemporal receptor oc-
cupancy and derive an analytical solution, a mechanistically
weighted global AFTIR, that can better predict receptor occu-
pancy regardless of dosing regimen. In addition to the four key
parameters previously identified, a fifth key parameter, the ab-
solute receptor density (targets/cell), is incorporated into the
mechanistic AFTIR metric. Receptor density can influence
equilibrium intratumoral drug concentration relative to whether
the dose is saturating or not, thereby influencing the tumor
penetration depth of the antibody. We derive mechanistic RO

predictions based on distinct patterns of antibody tumor pen-
etration, presented as a global AFTIR metric guided by a Thiele
Modulus and a local saturation potential (drug equivalent of
binding potential for positron emissions tomography imaging)
and validate the results using rigorous global and local sensi-
tivity analysis. This generalized AFTIR serves as a more accu-
rate analytical metric to aid clinical dose decisions and rational
design of antibody-based therapeutics without the need for
extensive PDE simulations.

SIGNIFICANCE STATEMENT
Determining antibody-receptor occupancy (RO) is critical for
dosing decisions in pharmaceutical development, but direct
clinical measurement of RO is often challenging and inva-
sive, particularly for solid tumors. Significant efforts have
been made to develop mathematical models and simplified
analytical metrics of RO, but these often require complex
computer simulations. Here we present a mathematically
rigorous but simplified analytical model to accurately predict
RO across a range of affinities, doses, drug, and tumor
properties.

Introduction
Target engagement information is critical for guiding dose

selection of monoclonal antibodies, which can often be toler-
ated at high doses without exhibiting dose-limiting toxicities

in first-in-human trials. This makes dose optimization for
antibodies challenging since doses that are too low may lack
efficacy while doses that are too high increase the risk for an-
tidrug antibody responses and treatment cost. Mathematical
modeling has played a significant role in predicting first-
in-human doses for small molecules (Poulin and Theil, 2002b;
Poulin et al., 2015) and can also assist in the dosing of anti-
bodies (Baxter et al., 1995; Cao and Jusko, 2014; Bartelink
et al., 2019).
One of the major challenges for antibody dose prediction is

the complex target-mediated pharmacokinetics (PK), which
can vary the receptor occupancy both spatially within tissues
and over time. This is in contrast with small molecule pharma-
cokinetics that exhibit spatial gradients less frequently due to
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rapid diffusion. Small molecule organ uptake is primarily
driven by drug lipophilicity (Poulin and Theil, 2002a,b), and
tissue concentrations are more closely related to the plasma
concentration, making predictions more robust. For antibodies
targeted against solid tumors, receptor occupancy (RO) predic-
tions are a cornerstone of assessing target engagement, and
by extension pharmacodynamic response. Simplified receptor
occupancy metrics that capture the predictions of complex
mathematical models simulating in vivo antibody PK have
been explored as a strategy to more accurately predict anti-
body-target engagement (Spilker et al., 2016; Glassman and
Balthasar, 2017; Orcutt et al., 2017; Park et al., 2017; Stein
and Ramakrishna, 2017; de Vries Schultink et al., 2018; Ah-
med et al., 2019). Previously, Stein et al. have described a po-
tency metric Average Free target concentration to Initial
target concentration Ratio (AFIR), derived from a target-medi-
ated drug-disposition compartmental model to predict anti-
body engagement with soluble/shed antigen in circulation
(Stein and Ramakrishna, 2017). This metric was then ex-
tended using a physiologically based model that incorporates
cell surface receptors in the tumor tissue in addition to the sol-
uble/shed receptor species and renamed AFTIR (Average Free
Tissue target to Initial target Ratio) (Ahmed et al., 2019).
However, based on the model assumptions, AFTIR can only
accurately capture receptor occupancy at near-saturating anti-
body doses and is less accurate at subsaturating dosing regi-
mens, which are often clinically relevant, particularly for
highly expressed targets.
Here we expand receptor occupancy calculations to be appli-

cable at both saturating and subsaturating doses by deriving
a mechanistic and analytical global AFTIR (gAFTIR) metric
from the partial differential equations of a mechanistic Krogh
cylinder model. (These approximate analytical solutions for
different regimes are analogous to other engineering/mathe-
matical simplifications, such as fluid flow approximations for
turbulent versus laminar flow regimes.) All parameters em-
ployed in the AFTIR metric are readily measurable antibody
kinetic parameters except for the free intratumoral antibody
concentration, which is a function of the tumor microenviron-
ment (e.g., tumor vascularity, vessel permeability) and drug
parameters (e.g., dose, antibody affinity). The free antibody

concentration is challenging both to measure experimentally
and solve explicitly from analytical equations. Part of this
challenge results from the nonlinearities present in antibody
PK, primarily the local receptor binding equilibrium (high ver-
sus low affinity antibodies) and the tissue receptor saturation
(high versus low antibody doses), which can result in drasti-
cally different quantitative and qualitative distribution of free
antibody.
To overcome these limitations and achieve a robust predic-

tion of RO while avoiding the need for more complex numerical
simulations, we used dimensional analysis to define four quali-
tatively different “regimes” of antibody distribution, each with
an accurate description of RO for those conditions. The original
AFTIR metric describes RO for high doses approaching tissue
saturation but does not accurately capture subsaturating doses.
In contrast, a previous pseudo-steady state analysis of the par-
tial differential equations of a Krogh cylinder model by Thurber
and Wittrup (2012) provides a mechanistic estimate of free anti-
body concentration under subsaturating conditions but is not
valid for saturating doses. In this work, we combine these ap-
proaches to develop a mechanistic framework for antibody
pharmacokinetics that is valid under all dosing levels and anti-
body affinities. The framework is driven by two dimensionless
numbers—a simplified version of the generalized Thiele modu-
lus (Thurber et al., 2008a) (henceforth referenced here as just
Thiele modulus) and a newly defined local saturation potential
(Sp). These parameters determine the dosing regimen (saturat-
ing versus subsaturating and high affinity versus low affinity)
to identify the valid mathematical expression for free antibody
concentration, thereby providing a more universal receptor oc-
cupancy metric.

Materials and Methods
Computational Krogh Cylinder Model

The simulations for antibody uptake and distribution in vascular-
ized tumors are based on a previously validated Krogh cylinder model
of antibody distribution (Thurber and Wittrup, 2012). Briefly, a one-di-
mensional Krogh cylinder was used to capture radial concentration
gradient given the permeability-limited uptake of antibodies i.e., no
axial gradient along the length of the capillary (Fig. 1A). Plasma con-
centration of the antibody is captured as a biexponential equation.

A B C

Fig. 1. Pharmacokinetic models used to predict antibody-receptor occupancy. (A) Mechanistic Krogh cylinder model that captures systemic, intra-
tumoral, and cellular pharmacokinetics to provide a realistic estimate of spatiotemporal average receptor occupancy regardless of antibody uptake
and distribution. (B) Equilibrium compartment model that assumes plasma and tumor compartment are in equilibrium, which is valid at (super)
saturating doses. (C) Mechanistic compartmental model that captures temporal antibody binding kinetics in the tumor compartment to estimate
the antibody concentration in the tumor under subsaturating conditions.
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Antibody transport in the tumor interstitium is diffusion-driven given
the elevated interstitial pressure limiting convective transport (Baxter
and Jain, 1989; Baish et al., 2011). Bolus administration of the anti-
body results in extravasation of the antibody in the tumor, followed by
intratumoral diffusion and binding to free target receptor. The anti-
body-target complex undergoes receptor-mediated endocytosis, as does
the free target, which can also be recycled to the surface. The simula-
tions track the concentration of free target as well as free, bound, and
internalized antibody over both spatial location and time. Partial dif-
ferential equations describe the extracellular diffusion of the con-
structs along the radius of the tumor, binding to target receptors, and
receptor-mediated endocytosis (Supplemental Computational Model
and Equations). Simulations were performed for three monoclonal
antibodies used to treat solid tumors—ramucirumab (vascular en-
dothelial growth factor receptor), cetuximab (endothelial growth
factor receptor), and trastuzumab [human epithelial growth factor
receptor 2 (HER2)], selected for the distinction in typical target ex-
pression. All parameters for base simulations used in the model
(Table 1) are based on preclinical species (mice) and were gathered
from the literature or measured independently (i.e., not fit to

tissue distribution data). Simulations were performed using MAT-
LAB (MathWorks, Natick, MA).

Sensitivity Analysis
Parameter sensitivity analysis was performed to evaluate the

accuracy and robustness of the gAFTIR metric described in this
work. Global sensitivity analysis was performed by establishing a
range of values for several model parameters (Table 2) and per-
forming uniformly distributed random selection for each parame-
ter for each run of the simulation, for a total of 28001 Krogh
cylinder simulations. The combination of parameters for each sim-
ulation was recorded and used to perform theoretical AFTIR calcu-
lations and quantitatively compare the theoretical calculations to
the Krogh-simulated AFTIR. Local sensitivity analysis was per-
formed by establishing base parameters for each of the three anti-
bodies detailed in Table 1 and varying individual parameters from
0.001x to 1000x the base value, unless noted otherwise. Sensitivity
analysis was performed using MATLAB (MathWorks) and visual-
ized using Prism v9.4.1 (GraphPad Software Inc., San Diego, CA).

TABLE 1
Krogh cylinder model base parameters

Parameter Description Units Ramucirumab Cetuximab Trastuzumab

Tissue/Target Properties
T0 Initial steady state free target M 4.50E-10 8.33E-09 8.33E-07
Rcap Capillary radius m 8.00E-06
RKrogh Krogh radius m 7.50E-05
ke, T Target endocytosis rate s-1 2.80E-04 1.90E-04 3.30E-05
Rs Target recycling rate M/s 1.36E-13 1.583E-10 2.75E-11
Vplasma Volume of distribution (plasma) mL 1.4
H Hematocrit — 0.45

Antibody Properties
s Dosing interval days 14 7 21
A Fraction alpha phase — 0.3 0.562 0.43
ta Alpha half life h 3 3 8
ka Alpha clearance rate s�1 6.42E-05 6.42E-05 2.41E-05
tb Beta half life h 180 70 20
kb Beta clearance rate s�1 1.07E-06 2.75E-06 9.64E-06
P Vascular permeability m/s 3.00E-09
Deff Antibody diffusion coefficient m2/s 1.00E-11
kon Antibody association rate M-1s�1 4.79E105 1.00E105 7.10E105
koff Antibody dissociation rate s�1 2.40E-05 3.00E-05 3.50E-04
ke, Ab-T Antibody internalization rate s�1 2.80E-04 1.90E-04 3.30E-05
KD Antibody binding affinity M 5.00E-11 3.00E-10 5.00E-10
Keq Equilibrium constant at steady state M 6.35E-10 2.20E-09 5.39E-10
e Antibody void fraction — 0.24
kdeg Intracellular antibody degradation rate s�1 8.02E-06

TABLE 2
Global sensitivity analysis parameter

Parameter Description Units Range

Dose Antibody dose mg/kg [0.01, 0.1, 1, 10, 100] X 10
T0 Initial steady state free target nM [0.01, 0.1, 1, 10] X 83.3
Rcap Capillary radius m 8.00E-06
RKrogh Krogh radius m 7.50E-05
ke, Target endocytosis rate s-1 [1E-4, 1E-5, 1E-6]
s Dosing interval days [7, 14, 21]
A Fraction alpha phase — 0.43
ta Alpha half life h 8
tb Beta half life h [24, 72, 180]
P Vascular permeability m/s 3.00E-09
Deff Antibody diffusion coefficient m2/s 1.00E-11
kon Antibody association rate M-1s�1 [1E3, 1E4, 1E5, 1E6]
koff Antibody dissociation rate s�1 [1E-4, 1E-5, 1E-6]
e Antibody void fraction — 0.24
kdeg Intracellular antibody degradation rate s�1 8.02E-06

Bold values indicate parameter value range evaluated for global sensitivity simulations.
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AFTIR Derivation
AFTIR is the ratio of free target available in the presence of drug to

the initial free target available in the absence of drug (originally de-
rived by Ahmed et al., 2019).

AFTIR5
Tfold

Cint, avg
KEq

1Tfold

(1)

where Tfold is the fold change in target levels upon binding to the drug
at saturating doses, due to target accumulation, Cint,avg is the average
free interstitial antibody concentration in the tumor, and Keq is the
equilibrium affinity simplified as

KEq5
koff1ke,Ab�T

kon
(2)

In many cases, target internalization is the same whether bound to
antibody or not, leading to a Tfold 5 1. However, in the event of up- or
downregulation of the surface receptor in the presence of the antibody,
these rates are likely different yielding Tfold 6¼ 1 in the expression.

The AFTIR expression derived from the Krogh cylinder PDE model
(Supplemental Computational Model and Equations) is nearly identi-
cal to that described by Ahmed et al. (2019), except here we expand
the definition of Cint,avg, the interstitial antibody concentration at
steady state. Cint,avg is dependent on many factors related to the tumor
physiology, target properties, dose, and drug properties (Thurber
et al., 2008a). While Cint,avg cannot be solved analytically or readily
measured experimentally, approximate solutions can be obtained for
specific conditions (i.e., certain “regimes” as discussed in detail in the
Results). First, we show these approximate solutions, and then we de-
scribe the dimensionless numbers used to determine the relevant regi-
men based on the dose (saturating versus subsaturating) and affinity
(high versus low relative affinity).

Approximate Cint,avg Solutions
Saturating Doses. Theoretical predictions for antibody receptor

occupancy typically rely on the plasma antibody concentration. How-
ever, this approximation only holds true for (super) saturating doses,
where the tumor uptake exceeds target binding and degradation of
the drug (i.e., local tissue “clearance”), and the free interstitial concen-
tration approaches that in the plasma (Fig. 1B). In such regimes, the
linear plasma profile can be calculated using the biexponential equa-
tion

Cplasma5Cplasma, 0 Ae�kat1 1� Að Þe�kbt
� �

(3)

and the average plasma concentration over the first dosing window s
(Cplasma, average,first) can be calculated as

Cplasma, average, first5
Cplasma, 0

t

� �
A 1� e�katð Þ

ka
1

1� Að Þ 1� e�kbtð Þ
kb

 !

(4)

where Cplasma,0 is the plasma concentration after a bolus dose, s is the
dosing interval, A is the fraction of alpha phase redistribution, (1 – A)
is the fraction of beta phase clearance, ka is the antibody redistribu-
tion rate constant, and b is the antibody clearance rate constant.
These parameters can be estimated by fitting a biexponential curve to
the mean/median antibody plasma PK data using commercially avail-
able software.

At steady state, the average plasma concentration (Cplasma, average,ss)
can be calculated as (AUC0-1)/s (Bauer, 2008)

Cplasma, average, ss5
Cplasma, 0

t

� �
A
ka

1
1� Að Þ
kb

 !
(5)

Note that the relevant Cplasma,ss values can also be estimated nu-
merically from two-compartment model fits to antibody plasma PK
data.

Subsaturating Doses. Under subsaturating antibody doses,
which are often the case in clinical development of potent antibodies
or highly expressed targets, assuming equilibrium between the tumor
and plasma compartment concentrations is often not accurate. A pre-
vious pseudo-steady state analysis of the partial differential equations
(PDE) of the Krogh cylinder model, approximated by a compartmental
model in Thurber and Wittrup (2012), provides a mechanistic estimate
of the total tumor antibody concentration (bound antibody plus free
antibody) under subsaturating conditions. This estimate is not valid
for saturating doses (simplified schematic shown in Fig. 1C), providing
a complement to the assumption of saturation above. The underlying
principle of the subsaturating dose analysis is that extravasation is
the rate-limiting step in antibody uptake, which results in the total
antibody uptake in the tumor being nearly independent of the distri-
bution pattern. As such, it allows for the pseudo-approximation of a
“well-mixed” tumor compartment for uptake, even though tumors are
in fact not well-mixed compartments given the high interstitial pres-
sure that prevents convective flow.

The approximation provides a mechanistic estimate of antibody con-
centration for subsaturating doses. In the context of AFTIR, this pro-
vides a mechanistic estimate of the “biodistribution coefficient” (i.e.,
fraction of drug from circulation found in the tumor interstitium at
saturating doses) described by Ahmed et al. (2019), except at subsatu-
rating doses here, and is calculated as

BISF
sub�sat5

Ctumor;total;overall

eCplasma; 0
5

2PRcap

eR2
Krogh

 !
A e�kat � e�Vtð Þ

V� ka
1

ð1� AÞ e�kbt � e�Vtð Þ
V� kb

 !

(6)

where Ctumor,total,overall is the overall total antibody concentration in
the tumor (sum of free and bound antibody in the overall tumor vol-
ume), Cplasma,0 is the antibody plasma concentration after a bolus
dose, e is the void fraction in the tumor (accessible interstitial volume
over total tumor volume), P is the vascular permeability, Rcap is the
capillary radius, RKrogh is the Krogh cylinder radius (equivalent to
half the intercapillary distance in the tumor), and 2Rcap/R

2
Krogh is the

blood vessel surface area to volume ratio in the tumor. The cumulative
local clearance rate, V, is a sum of two mechanisms of antibody loss
from tumors—unbound antibody washing out of the tumor and bound
antibody being internalized and degraded by cells

V5
2PRcap

eR2
Krogh

KD
T0
e 1KD

 !
1ke,Ab�T

T0
e

T0
e 1KD

 !
(7)

where T0 is the initial receptor concentration, ke,Ab-T is the antibody-
receptor complex internalization rate, and KD is the binding affinity.

KD5
koff
kon

(8)

Note that progressively higher affinity (i.e., smaller KD) antibodies
are often primarily eliminated by internalization (ke,Ab-T) and degrada-
tion (owing to tight binding and relatively slower dissociation rate,
koff) while progressively lower affinity (i.e., larger KD) antibodies often
wash out of the tumor intact (owing to slower binding/faster koff rela-
tive to ke,Ab-T) (Shih et al., 1994; Schmidt and Wittrup, 2009; Zhang
et al., 2016).

To provide a single characteristic value for receptor occupancy, the
average overall total antibody concentration in the tumor at steady
state Ctumor total,average,overall,ss is calculated by taking the time-aver-
aged total antibody (i.e., the integral of eq. 6 from 0 to s divided by s):

Ctumor, total, average, overall, ss

5
Cplasma;max, ss

t

� �
2PRcap

R2
Krogh

 !
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which yields an average interstitial total antibody concentration

Ctumor, total, average, interstitial5
Ctumor, total, average, overall

e

� �
(10)

Note that eq. 9 uses Cplasma,max,ss instead of Cplasma,0 to approximate
the total antibody concentration in the tumor at steady state rather
than after the initial dose.

For subsaturating doses of a high affinity (i.e., small KD) antibody,
the antibody distributes heterogeneously, exhibiting a “saturation
front” moving through the tissue (i.e., binding site barrier; Saga et al.,
1995). Outside of this saturation front, there is a negligible amount of
antibody. Within this saturation front, though, the antibody is in ex-
cess of the target (hence saturation), so the free antibody tumor con-
centration term in the AFTIR metric can be approximated using the
total antibody concentration in this region.

Conversely, for subsaturating doses of a low affinity (i.e., large KD)
antibody, the antibody distributes evenly in the tissue with the anti-
gen in excess. Therefore, the total tumor concentration of the antibody
can be used to derive the average overall free antibody concentration
in the tumor (Ctumor,free) using the KD, given by

Ctumor, free, average, overall, ss5Ctumor, total, average, overall, ss
KD

T0
e 1KD

 !

(11)

which yields an average interstitial free antibody concentration

Ctumor, free, average, interstitial5
Ctumor, free, average, overall

e

� �
(12)

Eqs. (5), (10), and (12) mark the three main approximations for tumor
interstitial antibody concentration that are used to define the gAFTIR.
Note, the binding affinity used to calculate the tumor antibody concen-
tration is based on in vitro measurements (antibody titration and bulk
incubation with cells in suspension), and therefore gAFTIR is derived
on a total antibody-antigen binding basis rather than individual bind-
ing arms/sites (i.e., two target sites per antibody).

Nondimensional Groups for Defining gAFTIR
The distinction between a saturating versus subsaturating dose is

critical to determine the relevant antibody concentration to use in the
AFTIR metric. Likewise, the determination of heterogeneous high af-
finity (i.e., small KD) antibody distribution versus homogeneous low

affinity (i.e., large KD) antibody distribution impacts the qualitative
and quantitative measure of RO. It is not the absolute affinity or dose
that determines the behavior but rather the affinity and dose relative
to other processes within the tissue. Therefore, it is the ratio of affinity
and dose to these other rates that ultimately determines the behavior,
resulting in two dimensionless numbers (i.e., two ratios)—the Thiele
modulus (f2) and the local saturation potential (SP).

Thiele Modulus. Tumor saturation is determined by a Thiele
modulus, which described the fundamental ratio between local con-
sumption of the antibody versus tumor uptake (Thurber et al., 2007).
The formula for the Thiele modulus (Table 3) utilizes the steady
state interstitial antibody concentration at the capillary wall,
Ctumor,surf,free,int(Thurber et al., 2008b). Ctumor,surf,free,int is the tumor
surface free antibody concentration determined by the incoming anti-
body flux across the capillary wall versus the antibody diffusion flux
away from the capillary wall and can be calculated as

Ctumor, surf, free, int, avg, ss � Cplasma, avg, ss
1

11 1=Bi
� �

 !
(13)

where Bi is the mass transfer Biot number, a ratio of antibody extrav-
asation across the capillary wall to the antibody diffusion rate, and is
calculated as

Bi5
2PRcap

eDeff
(14)

Large values for Bi result in concentration equilibration with the
plasma, while small numbers (typically around 0.02 for antibodies)
highlight a permeability-limited uptake.

Of note, the Thiele modulus is used in two distinct ways in this
work. First, the calculation of the Thiele modulus for a given tumor ra-
dius RKrogh is used to determine if a saturating dose of antibody is ad-
ministered, which determines the choice of Cint,SS for gAFTIR. Second,
for a subsaturating dose of a high affinity (i.e., small KD) antibody, the
Thiele modulus is used to determine the penetration distance of anti-
body within the tumor. Since f2 5 1 corresponds to tumor saturation
(i.e., the local antibody concentration is in excess over the target con-
centration) for high affinity antibodies, setting the Thiele modulus to a
value of 1 allows for the calculation of the radius of saturation
(Rsaturation) for a given antibody dose, target receptor concentration,
binding affinity, and internalization rate (Supplemental Fig. 1).

f2
saturation, average515

ke,Ab�TR2
saturation

T0
�
e

� �
Deff Ctumor, surf, free, int, avg, ss

0
@

1
A (15)

which yields

TABLE 3
Summary of nondimensional criteria

Nondimensional group Formula Ratio Physiologic Relevance

Thiele Modulus, f2

ke,Ab�TR2
Krogh

T0
�
e

� �
Deff Ctumor, surf, free, int

0
@

1
A Local catabolism rate

Tumor Delivery
When diffusion rate is

balanced with local
catabolism rate (i.e., f2 #

1), the dose is saturating for
a tumor of radius RKrogh.

Local Saturation Potential, SP SP5
Ctumor, surf, free, int

KD

Capillary wall free concentration
Local immobilization

When the steady state free
antibody concentration at the
capillary wall < < binding
affinity (i.e., SP < < 1),
the antibody behaves as a
weak binder and can
penetrate farther into the
tumor before binding the
local receptors.
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Rsaturation5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Deff Ctumor, surf, free, int:avg, ss

ke,Ab�T
T0=e
� �

s
(16)

The radial saturation area correction term can be simplified to

Rsaturation
2

RKrogh
2 5

DeffCtumor, surf, free, int:avg, ss

ke,Ab�TRKrogh
2 T0=e
� � 5

1
f2
average

(17)

This is a necessary factor to account for penetration in the gAFTIR
calculation for high affinity antibodies, as none of the Cint,SS approxi-
mations described earlier account for spatial variation in antibody con-
centration. For low affinity (i.e., large KD) antibodies, this is often not
a concern as the affinity is weak enough to allow for homogeneous dis-
tribution without saturation.

Local Saturation Potential. Thurber et al. have previously de-
scribed the effects of antibody affinity (KD) on tissue penetration (Thur-
ber et al., 2008a), highlighting how high affinity (i.e., small KD)
antibodies that exhibit the binding site barrier effect (Fujimori et al.,
1989, 1990; Graff and Wittrup, 2003) typically exhibit KD �
Ctumor,surf,free,int, while low affinity (i.e., large KD) antibodies that can
penetrate more homogeneously through the tumor exhibit KD �
Ctumor,surf,free,int. Ctumor,surf,free,int represents the free antibody concentra-
tion in the tumor at the capillary wall (driven by the vascular perme-
ability, P, and intratumoral diffusion coefficient, Deff) and represents
the free antibody concentration once binding equilibrium is achieved at
the first cell layer. Therefore, the ratio of Ctumor,surf,free,int to the binding
affinity KD, defined as local saturation potential (SP) here represents
the potential for Ctumor,surf,free,int to saturate receptors on the first cellu-
lar layer next to the capillary (i.e., the source of antibody). This cellular
saturation potential is distinct from the Thiele modulus, which captures
the ability of the tumor antibody concentration to saturate receptors in
the whole tumor. SP is reminiscent of the binding potential (Mintun
et al., 1984), a combined measure of receptor density and ligand binding
affinity used to quantify the binding kinetics for radioligands. However,
the binding potential uses target concentration (due to target excess
over trace amounts of radioligand) instead of the permeability-driven
antibody concentration in the tumor interstitium, Ctumor,surf,free,int, in
this work. Based on this analysis, it can be approximated that the ratio
of Ctumor,surf,free,int to binding affinity (KD, which accounts for koff and
kon) can aid in categorizing whether an antibody acts as a high affinity
or low affinity antibody in the tumor and therefore determine the antic-
ipated antibody accumulation and distribution pattern. If SP is greater
than 1, the tumor surface free antibody concentration at the first cell
layer (post-binding equilibrium) is larger than the KD. Thus, the anti-
body exhibits a binding site barrier effect; i.e., receptors on each cell
layer will be saturated before the antibody diffuses to the next cell
layer, resulting in heterogeneous/perivascular distribution. When this
ratio is less than 1, the tumor surface free antibody concentration at
the first cell layer (post-binding equilibrium) is smaller than the KD.
The antibody acts as a low affinity (i.e., large KD) antibody and can dif-
fuse through the tumor without needing to saturate all receptors at
each cell layer. Together, the saturation potential and Thiele modulus
determine the antibody binding regimen needed to estimate the free an-
tibody concentration and receptor occupancy.

Results
Global Krogh Simulations Highlight Critical Parameters for
RO Predictions

To aid in the development of a global AFTIR metric to pre-
dict receptor occupancy, we performed global sensitivity simu-
lations using the Krogh cylinder model to highlight antibody
and tissue parameters that are critical to RO predictions but
may not be captured by the original AFTIR metric. We ran
28001 simulations for randomly selected values within de-
fined parameter sets across an eight-parameter space, namely

antibody dose, dosing frequency, systemic beta phase clear-
ance half-life, absolute receptor density, tumor vessel density,
antibody association rate, antibody dissociation rate, and re-
ceptor internalization rate, all of which are known to influence
antibody penetration (Thurber et al., 2008a). Global sensitivity
analysis (Supplemental Fig. 2) shows that absolute receptor
density, antibody dose, internalization rate, and systemic
clearance half-life have a strong influence on receptor occu-
pancy predictions regardless of combination of other parame-
ters. Target receptor density (T0) is particularly noteworthy,
as it is clearly a critical factor influencing receptor occupancy
but is not present in the original AFTIR metric. However, the
absolute receptor density influences the distribution pattern
and steady state interstitial antibody concentration in the tu-
mor, and accounting for it can greatly improve the accuracy of
AFTIR.

Antibody Distribution Regimes Categorized by Nondimensional
Groups

Antibody dose, plasma clearance half-life, absolute receptor
density, and internalization rate, the four main parameters
that were shown earlier to strongly impact receptor occupancy,
collectively influence the accumulation and distribution of an-
tibody in the tumor. Generally, antibody distribution patterns

Fig. 2. Antibody distribution patterns in tumor tissue. Inset spheroid im-
ages reproduced from Thurber and Wittrup (2008). Antibody distribution
can broadly be described by simplified regimes based on the affinity to the
antibody and dose administered. Fluorescent images and spheroid dia-
grams show the inward tissue penetration seen with tumor spheroids (top
of each panel), while the diagrams highlight the outward penetration from
tumor blood vessels (bottom of each panel). Regimen 1 and 2: Under satu-
rating doses, antibodies are in excess relative to receptor binding sites. Dif-
ferences between high and low affinity become less relevant as the
interstitial concentration of antibody far exceeds the molar concentration of
receptors in the tissue, and all cells in the tissue are targeted regardless of
the antibody distribution pattern (e.g., 7nM sm3E and 10nM shMFE). Reg-
imen 3: With a subsaturating dose, high affinity antibodies (sm3E KD 5
0.03 nM) typically exhibit the “binding site barrier” effect where receptors
on each cell layer must be saturated before the antibody can diffuse to the
next cell layer (e.g., 3 nM of sm3E). As the dose decreases below saturation
(Regimen 1 ! Regimen 3), the saturation front penetrates to a decreasing
fraction of the tissue. Regimen 4: Lower affinity antibodies (shMFE KD 5
8 nM) or rapidly diffusing fragments can penetrate more uniformly without
needing to saturate any preceding cell layer, even under subsaturating
doses (e.g., 3nM of shMFE). The saturating regimes (Panels 1 and 2) are
accurately described by the original AFTIR metric. The current work ex-
tends this to describe RO on the regimes in Panels 3 and 4.
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can be classified into regimes based on two factors: (1) binding
affinity and (2) dose (Fig. 2).
Typically, high affinity (i.e., small KD) and fast internalizing

antibodies exhibit the “binding-site barrier” phenomenon, where
the immobilization of the antibody on the receptor (and, subse-
quently, rapid internalization) is faster than diffusion, resulting
in a perivascular penetration pattern where all receptors in each
cell layer must be saturated before the antibody can diffuse to
the next cell layer. This pattern of antibody distribution is exem-
plified by a subsaturating dose of sm3E, a high affinity (KD 5
30pM) single chain variable fragment antibody against carcino-
embryonic antigen (Graff et al., 2004; Thurber and Wittrup,
2008) (Fig. 2, Panel 3, 3nM sm3E). In contrast, antibodies with
weaker binding affinity (i.e., large KD), faster diffusion, or slower
cellular internalization rates are not immediately immobilized
and can penetrate deeper in the tumor tissue without needing to
saturate perivascular cell layers first. This antibody penetration
pattern is exemplified by a subsaturating dose of shMFE, or an
single chain variable fragment antibody against carcinoembry-
onic antigen (Begent et al., 1996; Thurber and Wittrup, 2008),
but with lower binding affinity (KD 5 8nM) (Fig. 2, Panel 4,
3nM shMFE). In vivo, both patterns of penetration can result
in similar average antibody uptake [i.e., percent injected dose
per gram (%ID/g)], because the total tumor uptake is limited by
vascular permeability, not tissue distribution (Bhatnagar et al.,
2014). However, a “well-mixed” compartmental PK model fails to
capture spatial variations that can influence receptor occupancy
predictions. For very large doses, the differences in distribution
pattern become vanishingly small when the dose of antibody ad-
ministered is saturating (i.e., the free antibody concentration is
in excess over the target concentration), as seen with the distri-
bution of higher doses of sm3E (7nM, Fig. 2, Panel 1) and
shMFE (10nM, Fig. 2, Panel 2). These large doses have different

intratumoral pharmacokinetics compared with subsaturating
conditions. At saturating doses, antibody distribution in solid tu-
mors can sufficiently be approximated by the original AFTIR
metric, but the dose at which this inflection point of “saturation”
occurs can vary (Supplemental Fig. 3), depending on both the an-
tibody and the tumor tissue of interest.
Though qualitatively descriptive, this categorization alone

does not provide quantitative benchmarks for distinguishing
high versus low doses and affinities. In fact, there are no ab-
solute doses or affinities that distinguish these different re-
gimes, but it is the relative doses and affinities compared
with other kinetic processes that determine the behavior of
the biologic. Dimensional analysis has been used to relate
the various parameters that determine the antibody pharma-
cokinetics described earlier (Thurber and Weissleder, 2011;
Ferl et al., 2016; Evans and Thurber, 2022). In this work, we
employ two nondimensional groups to select the relevant
Cint,avg based on the antibody distribution regimen. As the
dose increases, more receptors become occupied as uptake
into the tumor increases relative to local “consumption” (in-
ternalization and degradation), and this ratio is described by
the Thiele modulus. As the affinity increases (i.e., KD be-
comes smaller), antibodies bind at greater levels to the first
cell layer that they contact, resulting in greater saturation of
cells near blood vessels (or at the periphery of spheroids) rel-
ative to more distant cells. This ratio is described by the local
saturation potential. The Thiele modulus and local satura-
tion potential categorize different regimes of antibody distri-
bution using well-validated computational models backed by
experimental measurements (Schmidt and Wittrup, 2009).
This serves as the basis for defining the relevant intratu-
moral antibody concentration to use in the AFTIR metric to

Fig. 3. Simplified scheme of mechanistically weighted gAFTIR. Tumor receptor occupancy is a function of binding at the relevant interstitial antibody
concentration. This concentration varies depending on the affinity and dose of the antibody, specified by the regimen as determined by the relative bind-
ing affinity (SP) and the tumor saturation (Thiele modulus). These parameters can be plotted to describe different regimes (four quadrants on the right
illustrated with spheroids). For high affinity antibodies, increasing doses result in a saturation front penetrating deeper into the tissue (Regimen 3) until
it reaches all tissue at a saturating dose (Regimen 1). At subsaturating doses, the saturation front becomes more diffuse as the affinity is reduced until it
distributes evenly in the tissue at a subsaturating level (moving from Regimen 3 to 4). If these lower affinity antibodies are dosed at higher levels, the
antibodies occupy more receptors evenly throughout the tissue until saturating all cells (moving from Regimen 4 to 2). In Regimen 3, since the radius of
the saturation front (Rsaturation) is less than the radius of the tumor (RKrogh), the calculated AFTIR must be normalized to the radial average.
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robustly predict receptor occupancy for both low and high af-
finity antibodies at both saturating and subsaturating doses.

Mechanistic Derivation of Global AFTIR

A conceptual summary of gAFTIR in the different regimes
is shown in Fig. 3. As the affinity and dose change, the distri-
bution and saturation of receptors changes as depicted in the
spheroid diagrams. Higher affinity (lower Kd) results in
greater heterogeneity (e.g., Fig. 2, Panel 3), while higher doses
increase the saturation level (e.g., Fig. 2, Panels 1 and 2). The
base formula for the mechanistic gAFTIR derived from the
Krogh cylinder model PDEs (eq. 1) is similar to Ahmed et al.
(2019). However, the choice of intratumoral antibody concen-
tration is determined based on mechanistic interdependence
of dose, equilibrium affinity, and absolute receptor density, as
reflected by the different regimes in Fig. 3.
Regimes 1 and 2: Saturating Dose. When the dose is

saturating, the form of the receptor occupancy calculations is
less influenced by differences in antibody binding affinity. In
Fig. 3, Regimes 1 and 2 represent saturating antibody doses
relative to target receptor density, which accounts for receptor
occupancy using a well-mixed equilibrium compartment model
regardless of antibody equilibrium affinity. These regimes can
be identified mechanistically by a Thiele modulus cut-off of 1
(Thurber et al., 2007) (i.e., f2

average < 1; Supplemental Fig.
10), regardless of the value of SP. Here saturation refers to a
stoichiometric excess of total antibody concentration relative
to target concentration (rather than 100% receptor occupancy).
Therefore, the tumor interstitium can equilibrate with the
plasma concentration, and the interstitial free antibody tumor
concentration (Cint,avg) can be approximated by the average
plasma concentration (Cplasma,average) described in eq. 5.

AFTIRsat5
Tfold

Cplasma, average, ss
KEq

1Tfold

(18)

However, if the dose is reduced to the point that the total
antibody concentration is no longer in excess, the pattern
of distribution becomes dependent on the binding affinity.
Likewise, local (tumor cell) internalization and degrada-
tion of the antibody result in free antibody concentrations
below the plasma concentration, necessitating a more de-
tailed compartmental model to describe the free antibody
concentration.
Zone 3 and 4: Subsaturating Dose. Zones 3 and 4 rep-

resent subsaturating dose regimes where the assumption of
equilibrium between tumor free interstitial antibody concen-
tration and plasma concentration becomes invalid. Instead, tu-
mor interstitial antibody concentration is estimated based on
a mechanistic uptake model (Thurber and Wittrup, 2012).
Subsaturating regimes exhibit f2

average > 1 (Supplemental
Fig. 9). However, it is important to note the difference in pat-
terns of subsaturation between high affinity (steep concentra-
tion gradient in Zone 3) and low affinity (relatively uniform
concentration in Zone 4) antibodies.
For high affinity antibodies that exhibit the “binding site

barrier” phenomenon (Zone 3), each cell layer must have all
its receptors saturated before the antibody can penetrate to
additional cell layers, i.e., SP > 1. Note that when SP > 1, a
subsaturating dose does not imply that none of the cells in the
tumor are saturated—rather it represents compartmentalized

saturation where only a fraction of the tumor radius has cells
saturated with the antibody, while the rest of the tumor has
no receptors occupied (Supplemental Fig. 1). Consequently,
the full tumor averaged AFTIR emerges when the local AFTIR
calculation within the saturation front is scaled by the frac-
tional area of the tumor that is saturated with the antibody.
For this regimen (f2

average > 1, SP > 1) the available intersti-
tial free antibody concentration can be approximated by the
total interstitial antibody concentration (Ctumor,total,avg,int, eq. 10)
because the antibody is assumed to be in excess relative to anti-
gen within the saturation front. The whole tumor RO is then
calculated by combining the free antigen within the saturation
front and outside the saturation front.

AFTIRsubsat, high affinity 5 1

� Rsaturation

RKrogh

 !2

1� Tfold
Ctumor, total, average, interstitial, ss

KEq
1Tfold

 !
(19)

Reducing the binding affinity manifests as an increasingly
diffuse gradient. Eventually, the affinity becomes low enough
that a “binding site barrier” no longer exists (i.e., Rsaturation $

RKrogh), and the local AFTIR does not require scaling to the sat-
uration radius (Rsaturation). This is because as the affinity de-
creases, the distribution of the antibody becomes more
homogeneous, effectively approaching a “well-mixed” compart-
ment model approximation (i.e., SP < 1) where most of the cell
layers in the tumor are partially targeted but not all receptors
are saturated. Given the lack of a binding site barrier effect for
low affinity antibodies as the dose is further decreased below
Regimen 2, very little antibody is bound to the target receptor.
In this subsaturating dose regimen (f2

average > 1, SP < 1),
the free interstitial antibody concentration in the tumor
(Ctumor,free,avg,int, eq. 12) best approximates the antibody concen-
tration for calculating AFTIR.

AFTIRsubsat, low affinity5
Tfold

Ctumor, free, average, interstitial, ss
KEq

1Tfold

(20)

Overall, the regimes highlight the mechanistic nuances in cal-
culating receptor occupancy and can be summarized into one
gAFTIR expression as follows, with the values for R and
Cint,avg specified for each regimen, which in turn are identified
by the quantitative combination of f2

average and SP (Fig. 3).

gAFTIR 5 1� R 1� Tfold
Cint, avg, ss

KEq
1Tfold

 !
(21)

With the relevant antibody concentrations and quantitative
criteria for the nondimensional groups defined for different re-
gimes, we next focused on global and local sensitivity analysis
for validation of the gAFTIR metric.

Validation of Mechanistic gAFTIR

Having established the regimes, formulae, and quantitative
criteria for the gAFTIR, we sought to validate the applicability
of the algorithm. We mechanistically predicted the RO for the
28001 global sensitivity simulations using the full partial differ-
ential equation simulations of antibody distribution and com-
pared the results to the simplified (analytical) RO using gAFTIR
(Cmechanistic) to quantify the improvement in accuracy. The recep-
tor occupancy was averaged over both time and radius (distance
from blood vessels) in the Krogh cylinder simulations for the
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simulation average free fraction of receptor. Qualitative compari-
son of the simulations shows a vast improvement in correlation
between calculated (analytical approximation) and simulated
RO (Fig. 4, Supplemental Fig. 4), particularly in the subsaturat-
ing cases (identified by f2

average > 1). However, a small cluster
of outliers was observed in the lower right corner (Fig. 4B), indi-
cating cases where gAFTIR is overpredicting receptor occupancy
compared with the mechanistic Krogh cylinder simulations.
Most scenarios in this outlier cluster exhibited SP > 1 and
f2

average < 1, indicating a high affinity antibody in a saturating
regimen. Further exploration highlighted these simulations to
indeed be saturating for most of the dosing period. However, as
the plasma concentration drops over time, the system switches
for a saturating regimen to a subsaturating regimen toward the
end of the dosing period (Supplemental Fig. 8), resulting in a
mismatch between gAFTIR and simulated RO (Supplemental
Fig. 5). To identify and correct for these outliers, any scenarios

that presented f2
average < 1 but f2

trough > 1 (i.e., saturating at
the average concentration but subsaturating at trough concen-
tration, Supplemental Fig. 5) were flagged. The gAFTIR was av-
eraged with the trough free fraction tissue target to initial target
ratio (TFTIR) calculated using the tumor surface free antibody in-
terstitial concentration (Ctumor,surf,free,int,trough,ss) and corrected to
the trough saturation radius (Rsaturation,trough, which is calculated
the same as eq. 17 but using Ctumor,surf,free,int,trough,ss instead).

Cplasma, trough, ss5Cplasma,max, ss Ae�kat1 1� Að Þe�kbt
� �

(22)
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1
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Fig. 5. Local sensitivity analysis with individual parameters (log scale). The global AFTIR calculations with outlier corrections (dark pink) is
overall more accurate at reproducing the results from simulations (black) than either the uncorrected gAFTIR (purple) or using an interstitial an-
tibody concentration only from specific regimes. When beta phase clearance half-life exceeds dosing frequency (marked by *), the comparison was
excluded since the Krogh simulation run time was not long enough to achieve steady state (Supplemental Fig. 6).

A B C

Fig. 4. Global sensitivity analysis for validation of mechanistic gAFTIR. Comparison of spatiotemporal Krogh cylinder simulation AFTIR to (A)
calculations using average plasma concentration, equivalent to AFTIR derived from a simple equilibrium compartment model, (B) calculations us-
ing mechanistic gAFTIR, and (C) calculations using gAFTIR including outlier corrections that correspond to a zone transition at the trough con-
centration, as identified using f2

trough.
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Empirically, we observed that when f2

average> 0.5, a linear
average of gAFTIR and TFTIRsurf was more applicable, while
a logarithmic average was usually more appropriate when
f2

average < 0.5. This correction resulted in further improve-
ment in the accuracy of gAFTIR (Cmechanistic,outlier) (Fig. 4C).
To provide a more quantitative metric of improvement, we cal-
culated the residual error between simulated RO and calcu-
lated RO for all [Ctumor] calculation methods and found that
using the gAFTIR with outlier corrections, approximately 70%
and 83% of the calculated ROs were within ±0.05 and ±0.1 re-
sidual error margin respectively, compared with about 33% to
54% (±0.05) and about 41% to 66% (±0.10) for alternative ap-
proaches (Supplemental Fig. 4F), supporting that the mecha-
nistically weighted gAFTIR has significantly improved RO
prediction accuracy.
To further demonstrate improved matching between sim-

ulated RO and the mechanistic AFTIR, we performed a lo-
cal sensitivity analysis for three antibody-receptor systems
(Fig. 5) across each of the individual eight parameters var-
ied in the global sensitivity analysis. Each column of Fig. 5
and Supplemental Fig. 7 represents the result of changing
one parameter while holding the other parameters fixed, and
the change in the parameter is listed on the x-axis of each
plot. For example, fold-change of 1 in the “Dose” column indi-
cates the original dose (1 mg/kg, except for s and RKrogh

which was 10 mg/kg) used in all simulations; fold-change of
10 indicates 10x original dose (i.e., 10 mg/kg), fold-change of
0.1 indicates 1/10th the original dose (i.e., 0.1 mg/kg), and so
on while all other parameters are held constant. Only the s
and RKrogh columns represent absolute values for these pa-
rameters instead of a fold change. The error bars on the sim-
ulations represent the standard deviation in simulated RO
per dosing period and tumor radius. Overall, a marked im-
provement in accuracy was observed with the mechanistic
AFTIR (Fig. 5 for log scale, Supplemental Fig. 7 for linear
scale). The calculations/simulations for kb showed discrepan-
cies when t1/2,b > s (which indicates unrealistically frequent
dosing on the order of days to weeks) for ultra-slow clearance
rates on the order of months to years [rarely possible (Robbie
et al., 2013)] due to the Krogh cylinder model not achieving
steady state by 6 weeks. In these scenarios, we show that
gAFTIR at the first dose closely matches the Krogh simulations
after 6 weeks (Supplemental Fig. 6), indicating agreement when
the Krogh simulations align with the time frame of gAFTIR.
It is important to note that the analytical (algebraic) calcu-

lations may not always perfectly match the simulated re-
sults—this would only be achievable if the partial differential
equations for the tumor antibody concentrations were analyti-
cally solvable. However, this mechanistically weighted AFTIR
metric provides a closer and more realistic estimate of in vivo
receptor occupancy than calculations with any standalone
steady state antibody concentration estimate (Ctumor,surf,free,
Cplasma, Ctumor,total, or Ctumor,free).

Practical Guide for Implementing gAFTIR

The gAFTIR metric provides more accurate calculations of
receptor occupancy primarily by improving the estimation of

the average (over space and time) interstitial antibody concen-
tration in the tumor. However, it is tedious given the multiple
regimes needed to describe the approximate solutions to these
coupled, nonlinear, partial differential equations with time-de-
pendent mixed boundary conditions in a cylindrical annulus.
To aid the practical implementation of this regimen-based RO
prediction, a step-by-step guide describing the calculations for
RO is shown in Fig. 6, with detailed formulae for various cal-
culations in the expanded AFTIR listed in the Methodssection.
(Detailed derivations can be found in previous works by Thur-
ber et al., 2007; Thurber and Wittrup, 2012). Additionally, an
Excel spreadsheet interface is made available to automatically
calculate the RO based on input parameters (Supplemental
Materials: “Global_AFTIR_calculation_sheet.xlsx”).
The first step is identifying relevant input parameters (both

intrinsic and extrinsic). During development, easily modifiable
parameters Cplasma,0 and s are dependent on the dose (mg/kg)
and dosing frequency, while antibody-intrinsic parameters A,
ka, kb, kon, koff, ke,Ab-T, PAb, Deff,Ab, and e are predetermined by
physicochemical and molecular properties of the antibody. A,
ka, kb can be estimated by fitting a biexponential function or a
two-compartment model to plasma antibody PK data (see ex-
ample calculations for Supplemental Fig. 11 in Supplemental
Materials: “Global_AFTIR_calculation_sheet.xlsx”). Note that
the biexponential function is only applicable for antibodies
that exhibit linear pharmacokinetics. In cases where the anti-
body exhibits nonlinear pharmacokinetics (e.g., target-
mediated drug-disposition; Mager and Jusko, 2001), or when
estimating biexponential parameters is otherwise inconve-
nient, the steady state average plasma concentration can be
estimated by other methods (e.g., population PK fitting/simu-
lations) and directly input into subsequent formulae. Molecu-
lar parameters kon, koff, and ke,Ab-T can be experimentally
measured in vitro and ex vivo using quantitative assays such
as flow cytometry (Nessler et al., 2020), surface plasmon reso-
nance (Hearty et al., 2012), and so on. PAb, Deff,Ab, and e can
be estimated based on the molecular weight/hydrodynamic ra-
dius of the antibody (Schmidt and Wittrup, 2009). Note that
PAb, Deff,Ab, and e are also influenced by the tissue properties
(e.g., leaky vasculature, tumor extracellular matrix, cellular
packing density, etc.) Tissue-intrinsic parameters like T0 and
ke,T can also be measured in vitro and ex vivo using quantita-
tive assays such as flow cytometry (Vasilyev et al., 2013;
Khera et al., 2021). Note ke,T and ke,Ab-T are typically similar;
however, in some cases, binding of the antibody to the target
receptor can result in different effective internalization rates
(e.g., decreased target recycling) and trigger up- or down-
regulation of the receptor. Rcapillary (typically 8 mm) may
vary by tumor type and from effects of vasodilation, while
RKrogh can often be estimated by stereology of tumor histol-
ogy images marking functional blood vessels, which pro-
vides the average intercapillary distance (i.e., 2 x RKrogh)
(Yoshii and Sugiyama, 1988; Boyce et al., 2010).
The second step is calculating the base output parameters

required for determining the antibody regimen (formulae for
each can be found in the Methods section; auto calculated in
the Excel sheet interface). The third step is calculating the di-
mensionless numbers f2

average, SP, and f2
trough using the base

outputs and input parameters. The final step is identifying
the regimen based on the combination of dimensionless num-
bers and calculating RO.
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Discussion
Monoclonal antibodies represent one of the most rapidly

growing class of drugs and have in recent decades emerged as
a clinically and commercially successful approach to targeted
therapy of cancer. Antibodies can exert their antitumor effects
via several mechanisms, including inhibiting tumor growth sig-
naling (Tan et al., 2006) and coengagement of tumor-infiltrat-
ing immune cells to activate antitumor immunity. The latter
mechanism includes activating immune mechanisms such as
natural killer cell mediated antibody-dependent cellular cyto-
toxicity, tumor-associated macrophage mediated phagocytosis,
and dendritic cell response against shed antigen (Weiner et al.,

2012). Implicit in the success of monoclonal antibody efficacy,
particular for receptor antagonists, is successful and sustained
target receptor engagement on the tumor cell surface. RO can
be measured experimentally in discovery and preclinical set-
tings via quantitative flow cytometry (Stewart et al., 2016), im-
aging (Zhang and Fox, 2012; Tang et al., 2019), and other
sophisticated methods such as microfluidics (Chou et al., 2020).
Though efforts have been made to extrapolate receptor occu-

pancy estimates from proxy sources such as circulating cells
(Spilker et al., 2016), direct estimation of target engagement
in situ in the clinic is extremely challenging and has prompted
the use of increasingly sophisticated and mechanistic models
to predict receptor occupancy via simulations. While these

Fig. 6. Flowchart for calculating RO using global AFTIR, the average Thiele modulus (f2
average), local saturation potential (SP), and trough Thiele modulus

(f2
trough), calculated from the input parameters and base output parameters, determine the antibody targeting regimen. Once the regimen is determined, the

appropriate AFTIR metric is selected that incorporates the relevant free antibody concentration. Specific formulas for the antibody concentrations are found in
the Methods section, and an Excel sheet is provided to automatically calculate these values (Supplemental Materials: “Global_AFTIR_calculation_sheet.xlsx”).
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complex models, including the Krogh cylinder model used
here, provide valuable insights on antibody penetration, they
are not conducive for use by clinicians and nonmodelers who
may not have the time or extensive experience to perform com-
plex simulations. The AFTIR potency metric developed by Ah-
med et al. (2019) presents a simple but powerful quantitative
tool that can be used to guide recommended phase 2 dose pre-
dictions and rapidly predict target engagement for a range of
molecular properties without the need for tedious simulations
to expedite the drug design and development process. How-
ever, the AFTIR metric was developed with the assumption of
“saturating” doses—though a reasonable assumption for some
dosing regimens, it is difficult to determine when this assump-
tion is valid. Furthermore, this assumption makes AFTIR pre-
dictions less useful at subsaturating doses, which are relevant
for many clinical antibody dose decisions (Supplemental Fig. 11).
Here we expand the existing AFTIR metric and present a
mechanistically driven global AFTIR guided by the Thiele
modulus and local saturation potential to predict receptor
occupancy more reliably regardless of antibody dose, antibody
pharmacokinetics, and tissue properties, providing a simple
and universal guide to estimating target engagement for
antibodies.
Antibody distribution is a complex phenomenon that varies

both spatially and over time within a tumor. Any model is nec-
essarily an approximation of the underlying processes govern-
ing drug distribution. However, a single value approximating
the average receptor occupancy spatially and over time within
the tumor can be a useful metric to guide dosing decisions.
While the use of multiple regimes adds some additional com-
plexity to the calculations, these results are nevertheless ana-
lytical expressions that can be easily calculated by hand or in
a spreadsheet rather than numerically solving multiple partial
differential equations. This general gAFTIR is more broadly
applicable to estimates of receptor occupancy by not requiring
an assumption of tumor saturation, which is often an un-
known by itself.
We demonstrate through both global and local sensitivity

analyses that absolute receptor density is a critical parame-
ter that influences target engagement, and it is necessary to
accurately predict receptor occupancy using the mechanistic
gAFTIR. However, immunohistochemistry remains the gold
standard for estimating clinical receptor density quantifica-
tion despite being a semi-quantitative method due to the use
of variable labeling protocols that can only provide relative
expression levels and not quantify absolute receptor density
on tumors. Thus, for the successful practical application of
the mechanistic AFTIR metric, the utilization of quantitative
tools like flow cytometry and mass cytometry that can quan-
tify absolute receptor density (receptors/cell) with single-cell
resolution is critical.
Though more accurate and universal than existing RO cal-

culation metrics, the described mechanistic AFTIR does have
limitations including a few outlier scenarios (Fig. 6) that are
simulated to show significant unoccupied receptor (AFTIR >
0.1) but are predicted to have high receptor occupancy (AF-
TIR approximately 0.01–0.0001). Many of these discrepancies
resulted from a transition from one regimen to another dur-
ing the course of dosing (e.g., a transition from a saturating
(f2

average < 1) to nonsaturating regimen at trough concentra-
tion (f2

trough > 1). However, the discrepancy is not delineated
in all the outlier cases. By using simple cut-off values rather

than smoother approaches (e.g., asymptotic matching), small
changes in parameters for scenarios close to the regimen
transitions can result in step-changes in the model assump-
tions and predictions. Likewise, the model is not valid for
small molecule therapeutics that may be blood-flow limited
or diffusion-limited in the tissue (Thurber and Weissleder,
2011; Bhatnagar et al., 2014).
For subsaturating doses, the pattern of antibody penetra-

tion and receptor occupancy becomes an important consider-
ation for efficacy depending on the dominant mechanism of
action (i.e., the pharmacodynamics). Low affinity antibodies
can better penetrate the tumor, but better penetration comes
at the cost of losing complete saturation of receptors on indi-
vidual cell layers. High affinity antibodies are excellent at
completely blocking receptors on targeted cell layers, but
they may not be capable of targeting cells deep in the tumor
at low doses. When saturating doses are not feasible, target-
ing more cell layers with partial receptor occupancy per cell
layer might be beneficial for an antibody that functions pri-
marily by activation of the immune system (i.e., agonists;
Jung et al., 2022). Contrarily, complete saturation of at least
a fraction of cells might be better for an antibody that medi-
ates efficacy by blocking ligand-receptor signaling (antago-
nists), as even 1% of receptors occupied by the ligand can be
sufficient for near complete activation of downstream growth
signaling pathways (Wiley, 2018). These strategies can be in-
dependently pursued beyond just dosing and affinity consid-
erations. For example, Bordeau et al., (2021) and Chen et al.
(2022) have recently described a unique strategy to improve
antibody distribution at subsaturating doses via transient
competitive inhibition of antibody-antigen binding using an
anti-idiotypic distribution enhancer. By coadministering an
anti-trastuzumab single domain antibody that competitively
binds to trastuzumab, the high affinity binding between tras-
tuzumab-based therapeutics and HER2 is transiently dis-
rupted, akin to epitope masking but independent of the
tumor microenvironment, enabling more uniform distribu-
tion before dissociating and binding to HER2.
Accounting for distribution effects becomes even more im-

portant (and complex) when designing advanced therapeutics
such as antibody-drug conjugates (ADC), which are designed
to deliver cytotoxic payloads to cells in addition to antibody
mechanisms of therapeutic action and are often limited by a
relatively low maximum tolerated dose. High affinity ADCs
administered at subsaturating doses are likely to exhibit in-
creased efficacy when carrying a bystander payload that can
efficiently compensate for perivascular antibody distribution
of the ADC (Burton et al., 2019). Alternatively, a carrier dos-
ing strategy, where the high affinity ADC is coadministered
with the unconjugated antibody (Cilliers et al., 2018), may be
another efficient method to exploit both growth signaling in-
hibition and cytotoxic payload delivery. However, in such a
case it is important to ensure that the payload used is highly
potent, so that dilution of the payload concentration per cell
does not significantly impact efficacy (Ponte et al., 2021). If
immune cell engagement is a primary mechanism of anti-
body-mediated efficacy, where even partial surface receptor
saturation is sufficient to engage tumor immune cells, a low
affinity antibody conjugated to an ultrapotent payload that
uniformly targets all cells (but not all receptors on each cell)
might ensure sufficient activation of immune cells through-
out the tumor while also enabling efficient cytotoxic cell
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death from the ultrapotent payload like pyrrolobenzodiaze-
pine or indolinobenzodiazepine that can mediate irreversible
cell death at even extremely low intracellular concentrations
(pM – nM) (Nessler et al., 2020; Ponte et al., 2021).
The analysis presented here specifically validates gAFTIR

for intravenously dosed antibodies, though there is increasing
clinical interest in subcutaneous antibody dosing. While we
have not evaluated the translatability of the analytical approx-
imations of complex PDE simulations that include the subcu-
taneous absorption and lymphatic distribution on the plasma
compartment, this approach could readily be extended to other
dosing routes of interest for monoclonal antibodies.
This mechanistic approach to refining receptor occupancy

metrics opens avenues to employing a similar methodology in
more sophisticated target engagement scenarios. For example,
the mechanistic model can be expanded to include additional
species such as endogenous ligand and shed antigen to mecha-
nistically calculate the degree of ligand-blocking mediated by
the antibody, both in the presence and absence of decoy shed
antigen (Schmidt et al., 2019; Alaybeyoglu et al., 2021). This
work can also be expanded to calculate the receptor occupancy
of bispecific antibodies to rapidly estimate the degree of en-
gagement between tumor cells and T-cells.

Conclusion
In conclusion, we have developed an improved and mecha-

nistically validated metric to calculate the receptor occupancy
of antibodies more rapidly and reliably regardless of distribu-
tion PK, dosing regimen, and tumor tissue properties. This
universal guide can be used by quantitative scientists and
clinical pharmacologists alike to gain valuable insights on tar-
get engagement by antibody-based drugs and aid in advancing
the field toward mechanistically driven drug design and clini-
cal dosing decisions.
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