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ABSTRACT
Acetaminophen is commonly used to reduce pain and fever.
Unfortunately, overdose of acetaminophen is a leading cause of
acute liver injury and failure in many developed countries. The
majority of acetaminophen is safely metabolized in the liver and
excreted in the urine; however, a small percentage is converted
to the highly reactive N-acetyl-p-benzoquinone imine (NAPQI).
At therapeutic doses, NAPQI is inactivated by glutathione
S-transferases, but at toxic levels, excess NAPQI forms reactive
protein adducts that lead to hepatotoxicity. Individual variability

in the response to both therapeutic and toxic levels of acet-
aminophen suggests a genetic component is involved in
acetaminophen metabolism. In this review, we evaluate the
genetic association studies that have identified 147 single
nucleotide polymorphisms linked to acetaminophen-induced
hepatotoxicity. The identification of novel genetic markers for
acetaminophen-induced hepatotoxicity provides a rich resource
for further evaluation and may lead to improved prognosis,
prevention, and treatment.

Introduction
Acetaminophen (paracetamol) is a commonly used analgesic

and antipyretic; however, high nontherapeutic doses can
cause severe liver injury. Although acetaminophen overdose
is a major cause of hepatotoxicity in many developed coun-
tries, drug-induced liver injury (DILI) is not unique to
acetaminophen, as more than 50% of acute liver failure
(ALF) cases have been attributed to the hepatic biotransfor-
mation of a wide array of small-molecule drugs (Lee, 2003).
Acetaminophen should be considered a dose-dependent hep-
atotoxin since most cases of toxicity are secondary to excessive
dosing of acetaminophen (Nourjah et al., 2006). Thus, theDILI
induced by acetaminophen is classified as intrinsic (dose
dependent) instead of idiosyncratic (dose independent) (Lee,
2013; Mosedale and Watkins, 2017).
Approximately 90% of a therapeutic dose of acetaminophen is

metabolized completely by multiple enzymes in the liver and,

along with 5% of nonmetabolized acetaminophen, eventually
excreted in urine and bile (Raheja et al., 1983; Vermeulen et al.,
1992). Themajority of acetaminophen is detoxified via formation
of either glucuronide (∼50%) or sulfate (∼40%) conjugates by
uridine 59-diphospho-glucuronosyltransferases (e.g., UGT1A1,
UGT1A6, UGT1A9, UGT2B7, UGT2B15) and sulfotrans-
ferases (e.g., SULT1A1, SULT1A3, SULT1A4, SULT1E1,
SULT2A1), respectively. However, a small percentage of
ingested acetaminophen (∼5%) is metabolized by oxidation
via the microsomal cytochrome P450 pathway into N-acetyl-
p-benzoquinone imine (NAPQI) (Corcoran et al., 1980, 1985).
The cytochrome P450 (P450) enzymes, including CYP1A2,
CYP2A6, CYP2D6, CYP2E1, and CYP3A4, convert acetamin-
ophen into the highly reactiveNAPQImetabolite (Raucy et al.,
1989; Thummel et al., 1993; Lee et al., 1996; Chen et al., 1998;
Dong et al., 2000). At toxic acetaminophen levels, CYP3A4
presented with the highest relative capacity for acetamino-
phen bioactivation to NAPQI by oxidation, followed by
CYP2E1, CYP2D6, and CYP1A2 (Laine et al., 2009). At
therapeutic acetaminophen levels, CYP3A4 again had thehttps://doi.org/10.1124/jpet.118.248583.

ABBREVIATIONS: ALF, acute liver failure; ALI, acute liver injury; ALT, alanine aminotransferase; DILI, drug-induced liver injury; GPX, glutathione
peroxidase; GST, glutathione S-transferase; GWAS, genome-wide association study; MAF, minor allele frequency; NAPQI, N-acetyl-p-benzoquinone
imine; OR, odds ratio; P450, cytochrome P450; rs, rs accession number; SNP, single nucleotide polymorphism; SULT, sulfotransferase; UGT, uridine
59-diphospho-glucuronosyltransferase.
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highest rate of conversion to NAPQI, whereas the other P450
enzymes possessed a significantly lower capacity for bioacti-
vation (Laine et al., 2009). NAPQI, a strong oxidizer that is
toxic to liver tissue, is reduced (inactivated) by conjugation
with glutathione by glutathione S-transferases (GSTs), a
family of enzymes (e.g., GSTT1, GSTP1) responsible for the
detoxification of many drugs (Dahlin et al., 1984). The toxicity
of NAPQI is associated with its ability to bind to cysteine
residues in proteins to form NAPQI-protein adducts (Jollow
et al., 1973; Davern et al., 2006). At therapeutic doses, the
small amount of NAPQI-protein adducts produced are re-
moved effectively by autophagy (McGill et al., 2013; Ni et al.,
2016). However, in the case of acute and chronic overdoses of
acetaminophen, the SULT and UGT enzymes become satu-
rated, shifting the metabolism of acetaminophen through the
P450 enzymes to produce increased levels of NAPQI. Sub-
sequently, NAPQI depletes hepatic glutathione and accumu-
lates in hepatocytes where excess NAPQI binds to cysteine
residues (Leeming et al., 2015) on cellular (Cohen et al., 1997)
and mitochondrial proteins (Tirmenstein and Nelson, 1989),
leading to acute liver injury (ALI) or the more severe ALF.
The current model of acetaminophen-induced hepatic ne-

crosis links the NAPQI-protein adducts with amplified cas-
cades of reactive oxygen and nitrogen species, resulting in the
swift loss of hepatic cells and liver function (Ramachandran
and Jaeschke, 2017; Wang et al., 2017). This model has been
reviewed thoroughly (Russmann et al., 2009, 2010; Hinson
et al., 2010; Fontana, 2014; Krasniak et al., 2014), but in brief,
the reactive oxygen species/reactive nitrogen species induce
increased mitochondrial permeability, resulting in impaired
mitochondrial function (McGill et al., 2012; Jiang et al., 2015)
and leading to the initiation of massive necrotic cell death.
Subsequently, necrotic hepatocytes release damage-
associated molecular patterns resulting in an immune re-
sponse mediated by various cytokines and innate immune
cells (Bourdi et al., 2007; Wang et al., 2015; Fannin et al.,
2016).
Although acetaminophen is a dose-dependent hepatotoxin,

elevated alanine aminotransferase (ALT) serum levels were
measured in some healthy adults following a 7–14-day
administration of the maximum daily dose of 4 g per day
(Watkins et al., 2006; Harrill et al., 2009b). Additional case
studies, although rare, have reported the development of ALI
even at therapeutic doses (Kurtovic and Riordan, 2003;
Satirapoj et al., 2007). These findings confirm that some
healthy individuals experience mild to severe liver injury in
response to therapeutic doses of acetaminophen, suggesting
that genetic components are involved in acetaminophen me-
tabolism. Thus, several groups have proposed that NAPQI
toxicity can be enhanced by alterations in the metabolism of
acetaminophen due to genetic polymorphisms in the corre-
sponding enzymes (Adjei et al., 2008; Zhao and Pickering,
2011; Krasniak et al., 2014). Single nucleotide polymorphisms
(SNPs) in metabolic enzymes have been predicted to explain
both the ethnic and interindividual differences in acetamino-
phen degradation and hepatotoxicity (Critchley et al., 1986,
2005). This concept is not unique to acetaminophen-induced
hepatotoxicity, as genetic variations in cellular stress, drug
metabolism, and immune response genes are associated with
DILI susceptibility (Daly and Day, 2012; Chen et al., 2015).
Numerous SNPs have been identified that alter the activity of
drug-metabolizing enzymes, including SULT, UGT, and P450

(Chambers et al., 2011; Zhao and Pickering, 2011; Krasniak
et al., 2014), yet very few SNPs have been experimentally
associated directly with acetaminophen-induced hepatotoxic-
ity (Ueshima et al., 1996; Court et al., 2013, 2014). Genome-
wide association studies (GWAS) provide a powerful tool to
scan for SNPs that associate with a disease phenotype, such as
hepatotoxicity. GWAS in idiosyncratic DILI have identified
pharmacogenetic polymorphisms (Chambers et al., 2011;
Urban et al., 2012; Petros et al., 2017) associated with liver
injury following treatment with statins (Nicoletti et al., 2017),
flucloxacillin (Daly et al., 2009), amoxicillin-clavulanate (Lucena
et al., 2011), flupirtine (Nicoletti et al., 2016), and antituber-
culosis drugs (Petros et al., 2016). Unfortunately, large-scale
GWAS for acetaminophen-induced hepatotoxicity have not
been performed to date.
To overcome the limitations of GWAS in human cohorts,

several groups have performed innovative experiments using
mouse models and/or human tissue culture assays to identify
and characterize SNPs associated with acetaminophen-
induced hepatotoxicity. Therefore, this review explores the
candidate gene and genome-wide approaches that have
identified 147 SNPs associated with either protection against
or susceptibility to acetaminophen-induced hepatotoxicity.
The inclusion criteria used in this review were to include all
humanSNPs that: 1) have been experimentally identified for a
significant association with acetaminophen-induced hepato-
toxicity using candidate gene and genome-wide approaches,
and 2) have been annotated with an rs accession number (rs).
The clinical utilities of pharmacogenetics and pharmacoge-

nomics are becoming increasingly important for optimizing
individual patient care. Although the application of genetic
information has not yet been applied formally to acetamino-
phen dosing, the studies presented here provide the foundation
for critical translational research inDILI. The identification of
SNPs associated with a significant risk for acetaminophen-
induced hepatotoxicity will provide potential targets for
improved prognosis, prevention, and treatment.

Candidate Gene Approaches to Identify SNPs
Associated with Acetaminophen-Induced

Hepatotoxicity
Ueshima et al. (1996) described a CYP2E1 promoter SNP

(rs2031920, C.T) that was associated with altered acetamin-
ophen metabolism. rs2031920 is common in East Asian
populations with a minor allele frequency (MAF) of 0.20 but
is rare in other ethnic groups. Homozygous carriers of the
rs2031920 variant T allele presented with a 2-fold increase in
the elimination rate of acetaminophen compared with CC and
CT individuals (Ueshima et al., 1996), which correlated with
increased promoter activity due to the homozygous minor
genotype (Hayashi et al., 1991) and higher hepatic levels of
CYP2E1 (Tsutsumi et al., 1994). We can predict that elevated
levels of CYP2E1 would result in increased production of
NAPQI and could lead to a greater risk of acetaminophen-
induced hepatotoxicity in homozygous TT individuals. How-
ever, GWAS in acetaminophen-induced hepatotoxicity cohorts
have not yet identified rs2031920 as a susceptibility locus.
Court et al. (2013) identified three 39untranslated region

SNPs (rs8330, C.G; rs10929303, C.T; rs1042640, C.G)
in the UGT1A gene that were associated with increased
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glucuronidation activity following acetaminophen exposure.
The UGT1A rs8330 MAF (G) was significantly lower in the
unintentional acetaminophen hepatotoxicity group (0.16)
compared with the other ALF subgroups (0.22), with an odds
ratio (OR) of 0.53 (0.30–0.94; P 5 0.027) (Court et al., 2014)
(Table 1). This finding was consistent with a protective effect
of the variant rs8330 G allele through enhancement of
acetaminophen glucuronidation and detoxification, as dem-
onstrated by a series of in vitro mechanistic studies by Court
et al. (2013). rs8330 increased glucuronidation activity due to
altered splicing of the primary UGT1A transcript, resulting in
the preferential retention of exon 5A versus exon 5B. Trans-
lation of UGT1A mRNA containing exon 5B produces a
truncated UGT1A protein, termed isoform two variant, which
lacks enzymatic activity and further represses enzymatic
activity through heterodimerization with the wild-type iso-
form (Court et al., 2013). Similar to rs2031920, the rs8330
MAF varies among ethnic populations.
Court et al. (2014) evaluated the association with

acetaminophen-induced hepatotoxicity in a panel of poly-
morphisms from genes encoding known acetaminophen-
metabolizing enzymes, including UGT1A, UGT1A1, UGT1A6,
UGT1A9,UGT2B15,SULTA1,CYP2E1, andCYP3A5. Theyalso
analyzed a polymorphism in CD44 that was associated with
elevated serum ALT levels in healthy volunteers who con-
sumed the maximum recommended dose of acetaminophen
for up to 2 weeks (Watkins et al., 2006; Harrill et al., 2009b).
Three genes, CYP3A5,UGT1A, and CD44, contained SNPs with
relatively weak associations with acetaminophen-induced liver
injury in an acute liver failure study group cohort of 260 Cauca-
sian individuals, which consisted of 78 patients with intentional
acetaminophen overdose, 79 patients with unintentional
acetaminophen overdose, and 103 patients with ALF due to
nonacetaminophen-associated causes.
The CYP3A5 splice donor variant (rs776746, G.A) is associ-

ated with acetaminophen-induced hepatotoxicity (Table 1). The
minor A allele (also known as CYP3A5*1) encodes a functional
cytochrome P450 family 3 subfamily A member 5 protein,
whereas a nonfunctional protein is produced from CYP3A5
genes containing the major G allele (rs776746; CYP3A5*3)
(Kuehl et al., 2001). The CYP3A5*1 A allele was observed more
frequently in intentional acetaminophen overdose cases com-
pared with all other acute liver failure patients (Court et al.,
2014). The heterozygous GA genotype was an “at risk” genotype
with OR 5 2.3 (1.1–4.9; P 5 0.034) (Court et al., 2014). The
homozygous AA genotype was not observed in this cohort.
Subsequently, the CYP3A5 diplotypes have been correlated
with phenotypes for the metabolism of drugs, such as tacroli-
mus: *1/*1, extensive metabolizer; *1/*3, intermediate metab-
olizer; *3/*3, poor metabolizer (Tanaka et al., 2014; Birdwell
et al., 2015). The MAF for the rs776746 A allele (*1) in this

cohort of 260 Caucasians was 0.06, which is the same as the
European population. Although the rs776746MAF varies among
ethnic groups, it did not correlate with the incidence of
acetaminophen-induced hepatotoxicity across stratified ethnic
groups (Critchley et al., 1986; Patel et al., 1992; Russo et al.,
2004; Marzilawati et al., 2012).
The CD44 rs1467558 (C.T) TT minor allele genotype was

over-represented in the unintentional hepatotoxicity group, with
OR 5 4.0 (1.0–17.2; P 5 0.045) (Court et al., 2014), suggesting
that rs1467558 TT is an “at risk” genotype (Table 1). This
observation was supported by previous studies that revealed
rs1467558 is associatedwith elevated serumALT levels (Watkins
et al., 2006; Harrill et al., 2009b). In silico mechanistic structural
analysis predicted that rs1467558 can alter many of the complex,
alternative CD44 transcripts, including a potentially damag-
ing amino acid change from threonine to isoleucine (Harrill
et al., 2009b). Interestingly, CD44 is not an acetaminophen-
metabolizing enzyme, but rather a cell surface receptor involved
in cell-cell interactions, cell adhesion, and cell migration in
inflamed tissue (Kimura et al., 2010).
The rs1902023 (G.T) missense polymorphism inUGT2B15

(termed UGT2B15*2) was associated with lower acetamino-
phen glucuronide-to-acetaminophen concentration ratios in
urine (Navarro et al., 2011) and blood (Mehboob et al., 2017).
Court et al. (2017) demonstrated that UGT2B15*2 was
associated with increased plasma concentrations of NAPQI-
protein adducts, and that the plasma concentrations of the
protein adducts negatively correlated with acetaminophen
glucuronidation. Thus, carriers of rs1902023 may be slower
metabolizers of acetaminophen glucuronidation, resulting in
increased availability of acetaminophen for oxidative metab-
olism to NAPQI and subsequent liver damage.
Although a major limitation of these studies is the popula-

tion size, the results are compelling. The association of these
polymorphisms with acetaminophen-induced hepatotoxicity,
along with their ethnic variations, should be investigated
further. To overcome the challenges of the candidate gene
approach in human populations with ALF resulting from
acetaminophen toxicity, additional studies have used alter-
native approaches, such as GWAS, to identify SNPs that may
serve as biomarkers for acetaminophen susceptibility.

Genome-Wide Approaches to Identify SNPs
Associated with Acetaminophen-Induced

Hepatotoxicity
To test the hypothesis that genetic polymorphisms down-

stream of NAPQI formation contribute to hepatotoxicity,
Moyer et al. (2011) used a human variation panel of 176 lym-
phoblastoid cell lines established from healthy donors. The
growth inhibitory effect of NAPQI (IC50) was determined for

TABLE 1
Top human SNPs associated with acetaminophen-induced hepatotoxicity [Court et al. (2014), n = 78 intentional, 79 unintentional, 103 control]

SNP Gene Name Allelesa MAF Category Odds Ratiob P Value

rs8330 UGT1A UDP glucuronosyltransferase family 1 member A complex locus C/G 0.26 39UTRc 0.53 (0.3–0.94) 0.027
rs776746 CYP3A5 Cytochrome P450 family 3 subfamily A member 5 G/A 0.38 Intron 2.3 (1.1–4.9) 0.034
rs1467558 CD44 CD44 molecule C/T 0.06 Missense 4.0 (1.0–17.2) 0.045

aMajor allele/minor allele.
bOR (95% confidence interval).
cUntranslated region.
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each cell line following 24 hours of treatment with seven doses
(0–100 mM) of NAPQI. Large variations in NAPQI IC50,
ranging from 1 to 25 mM (6.5 6 4.5 mM; mean 6 S.D.), were
detected between the 176 cell lines, suggesting a genetic
component in NAPQI metabolism. To identify SNPs associ-
ated with NAPQI-induced hepatotoxicity, GWAS was per-
formed using Illumina (San Diego, CA) Infinium HumanHap
550K and 510S bead chips and Affymetrix (Santa Clara, CA)
6.0 GeneChips.
Initially, Moyer et al. (2011) examined the association of

716 SNPs, located in 31 glutathione pathway genes, with
NAPQI IC50. Only 45 SNPs had significant P values (,0.05),
24 of which were located in the multidrug resistance ATP-
binding cassette, sub-familyC (CFTR/MRP),member3 (ABCC3),
and member 4 (ABCC4) genes. Expression of Abcc3 and Abcc4
in mice upon acetaminophen-induced hepatotoxicity has been
shown to be dependent upon the transcription factor, Nrf2
(Aleksunes et al., 2008). Nrf2 has been shown to play a protective
role in acetaminophen-induced hepatotoxicity asNrf22/2 knock-
out mice were more susceptible to acetaminophen-induced
liver damage compared with their wild-typeNrf21/1 controls
(Enomoto et al., 2001). The remaining significant SNPs were
located in or near glutamate cysteine ligase (GCLC), gluta-
thione peroxidase (GPX2, GPX3, GPX4, and GPX7), glutathi-
one synthetase (GSS), and glutathione transferase (GSTA2,
GSTA3, and GSTP1). Two SNPs, E4p254 (GSTM1, P 5 0.13)
and I6m18 (GSTP1, P 5 0.04), are not annotated in dbSNP
database and, therefore, are not discussed further in this
review.
Moyer et al. (2011) extended their study to a genome-wide

SNP analysis in which 1,008,202 SNPs were screened for
association with NAPQI IC50. Ninety-six SNPs (P, 1 � 1024)
were associated with NAPQI IC50. Interestingly, 15 of the top-
20 significant SNPsmapped to intergenic regions. Ten of these
15 intergenic SNPs were clustered in a region of chromosome
3, between the C3orf38 and EPHA3 genes. Functional anal-
ysis of rs2880961, which lies 317 kb downstream of C3orf38,
demonstrated binding of transcription factors, including
NF-kB, HSF1, and HSF2 (Moyer et al., 2011). However,
significant differences in NF-kB, HSF1, and HSF2TF binding
were not detected by chromatin immunoprecipitation assays
between wild-type and variant SNPs (Moyer et al., 2011).
However, this does not preclude differential binding of other
transcription factors. Thus, further analyses of these potential
regulatory islands and their roles inNAPQI hepatotoxicity are
warranted. The top-10 intragenic SNPs are located in the

introns of genes (Table 2). These genes are involved in gene
regulation (LMX1A), signal transduction (ETKN2, KCNJ3,
MCTP1), immune response (IL23R,UBASH3A), extracellular
matrix (SPAG16,LAMA4), and the detoxification of aldehydes
generated by lipid peroxidation (ALDH1A3). The remaining
gene, RFPL4B, which is poorly characterized, encodes a zinc-
finger protein. To identify potential cis effects of SNPs on gene
expression, Moyer et al. (2011) measured mRNA expression
using Affymetrix U133 Plus 2.0 GeneChips. Interestingly,
19 probe sets, representing 17 genes, were associated signif-
icantly with NAPQI IC50, with P , 0.0001. However, none of
these 17 genes overlapped with genes containing SNPs,
suggesting that the SNPs may have a trans effect on the
expression of these genes (Moyer et al., 2011).
Two studies by Harrill et al. (2009a,b) identified potential

susceptibility targets using a panel of 36 inbred mouse strains
to model genetic diversity. Fasting mice were treated with
300 mg/kg acetaminophen by intragastric dosing. Food was
reintroduced after 3 hours of acetaminophen dosing. After
24 hours, the mice were euthanized for analysis. The extent of
liver injury was quantified by serum ALT levels. Haplotype-
associated mapping and targeted sequencing revealed that
polymorphisms in Ly86, Cd44, Cd59a, and Capn8 correlated
with increased ALT levels. To determine if the orthologous
human genes were also associated with acetaminophen-
induced liver injury, genomic DNA from two independent
cohorts, University of North Carolina (Harrill et al., 2009b)
and Purdue Pharma (Watkins et al., 2006), was sequenced.
AlthoughHarrill et al. (2009b) did not detect SNP associations
within LY86 and CD59, rs3749166 in CAPN10 (the human
ortholog of mouse Capn8) (P 5 0.045) and rs1467558 in CD44
(P 5 0.002) were associated with elevated ALT levels in both
cohorts. To validate these findings further, liver damage was
measured in C57BL/6J Cd44 knockout mice administered
acetaminophen. Cd44 knockout mice presented with greater
liver injury (61% 6 7%, mean liver necrosis 6 S.E.) compared
with wild-type controls (40%6 4%) following a 24-hour dose of
acetaminophen (300 mg/kg). These results indicate a role for
CD44 in modulation of susceptibility to acetaminophen hep-
atotoxicity, as supported by Court et al. (2014). Further
investigations of CD44 and CAPN10, as well as LY86 and
CD59, are needed to determine if they are indeed potential
markers of enhanced risk of acetaminophen-induced hepato-
toxicity. Harrill et al. (2009a) also performed mRNA micro-
array analyses on anAgilent (Santa Clara, CA)Mouse Toxicology
Array (#4121A) to identify gene-expression biomarkers for

TABLE 2
Intronic SNPs associated with NAPQI-induced hepatotoxicity [Moyer et al. (2011), n = 176]

SNP Gene Name Allelesa MAF Category P Valueb

rs1532815 LMX1A LIM homeobox transcription factor 1 alpha A/T 0.33 Intron 6.04E27
rs3795578 ETNK2 Ethanolamine kinase 2 C/T 0.40 Intron 7.18E26
rs3825924 ALDH1A3 Aldehyde dehydrogenase 1 family member A3 C/T 0.21 Intron 1.73E25
rs1343151 IL23R Interleukin 23 receptor G/A 0.34 Intron 1.91E25
rs17640676 KCNJ3 Potassium voltage-gated channel subfamily J member 3 G/T 0.23 Intron 2.09E25
rs4869233 MCTP1 Multiple C2 and transmembrane domain containing 1 T/C 0.32 Intron 2.28E25
rs16851554 SPAG16 Sperm associated antigen 16 T/G 0.15 Intron 2.46E25
rs3208829 LAMA4 Laminin subunit alpha 4 C/G 0.16 Intron 2.54E25
rs11153350 RFPL4B Ret finger protein like 4B G/A 0.15 Intron 2.54E25
rs3746923 UBASH3A Ubiquitin associated and SH3 domain containing A C/T 0.43 Intron 2.56E25

aMajor allele/minor allele.
bThe top-10 intronic SNPs based upon P value are presented.
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acetaminophen hepatotoxicity in their panel of 36 inbred
mouse strains. Gene-expression profiling identified 26 genes
which were associated significantly with liver damage. Sim-
ilar to the Moyer et al. (2011) study, these genes did not
overlapwith the hepatotoxicity SNPs identified in theirmouse
panel. This observation further supports the hypothesis that,
in addition to affecting protein-coding regions, SNPs may
disrupt noncoding regulatory regions. An alternative expla-
nation is that the 26 genes function either upstream or
downstream of the SNP-modified genes.

Discussion
As a leading cause of ALF, DILI both increases the cost of

medical care and limits access to drugs which would normally
be beneficial (Lee, 2003). In this review, we explored the SNPs
associated with the intrinsic DILI associated with acetamin-
ophen by highlighting the difficulties of genetic studies in
cohorts with limited case and control populations while
presenting a potentially useful perspective to elucidate addi-
tional insight into genetic variations that can be applied to all
DILI GWAS studies.
Acetaminophen overdose is a major cause of hepatotoxicity

in many developed countries and has been linked to the
formation of reactive NAPQI-protein adducts resulting in
increased oxidative damage, an enhanced immune response,
and mitochondrial dysfunction, leading to apoptosis and/or
necrosis. Currently, the primary therapy for acetaminophen
overdose is the administration ofN-acetylcysteine, a glutathi-
one precursor; however, the effective therapeutic window is
limited once liver injury has occurred. Liver transplantation is
the only effective therapy for patients who do not recover from
primary therapy and management. Therefore, it is necessary
to identify genetic markers that identify individuals who are
at risk for acetaminophen-induced hepatotoxicity. Unfortu-
nately, as demonstrated in this review, there remains very
little human data investigating acetaminophen-induced hep-
atotoxicity. The majority of data have been generated using
either in vitro or animal models. However, the studies
reviewed in this article provide a strong starting point for
the validation of these findings and the further investigation
of potentially promising acetaminophen-susceptible bio-
markers. Ultimately, these 147 SNPswill have to be examined
experimentally to determine if they are intricately involved in
acetaminophen metabolism or simply false positives due to
experimental limitations. The identification of SNPs associ-
ated with acetaminophen-induced hepatotoxicity will provide
novel insights into the mechanisms of acetaminophen metab-
olism and the potential for therapeutic interventions. Addi-
tional GWAS studies, including whole-genome sequencing
and SNP-array assays, on larger cohorts of acetaminophen-
induced ALI or ALF and the inclusion of large control
populations are critical for the identification of additional
biomarkers. Furthermore, the complex, and perhaps redun-
dant, biochemical metabolism of acetaminophen in the liver
suggests that it might be necessary to perform haplotype and
diplotype multiloci analyses to identify a combination of SNP
alleles associated with acetaminophen-induced hepatotoxicity
rather than a single polymorphic allele.
In addition, the coupling of GWAS studies with transcrip-

tome, metabolome, and expression quantitative trait loci
analyses will facilitate mechanistic studies to elucidate the

immunologic,mitochondrial, apoptotic, and necrotic pathways
involved in acetaminophen-induced hepatotoxicity. These
mechanistic and systematic studies will allow the identifica-
tion of additional, and hopefully more effective, therapeutic
targets not only to counter acetaminophen-induced hepato-
toxicity but also to understand DILI on a broader scale.
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