١

CONTENTS

NUMBER 1, MAY, 1929

I. On the Standardization of the Female Sexual Hormone, Especially of Pure	
Water-Soluble Preparations (Menformon). By Ernst Laqueur and S. E.	
de Jongh II. Pharmacological Actions of Phenylethanolamine. By Maurice L.	1
Tainter	29
III. A Contribution to the Study of Locoism. By James Fitton Couch IV. The Biological Assay of Ergot Preparations. By George L. Pattee and	55
Erwin E. Nelson	85
 V. Saline Injections. By Swale Vincent and J. H. Thompson VI. Studies on Crystalline Insulin. VIII. The Isolation of Crystalline Insulin from Fish Islets (Cod and Pollock) and from the Pig's Pancreas. The Activity of Crystalline Insulin and Further Remarks on Its Preparation. By H. Jensen, O. Wintersteiner and E. M. K. Geiling 	
NUMBER 2, JUNE, 1929	
 VII. The Effect of Magnesium Sulphate on Strychnine Convulsions. By Frank P. Underhill and Edward C. Wood VIII. The Blood Pressure in Unanesthetized Animals as Affected by "Vaso- 	129
pressin," "Oxytocin," Pituitary Extract and Other Drugs. By Charles M. Gruber IX. The Effect of Ceanothyn Extract on the Normal Human Blood-Coagula-	155
 1X. The Effect of Ceanothyn Extract on the Normal Human Blood-Coaguia- tion Time. By O. S. Gibbs. X. Comparative Studies on Pupillary Reaction in Tetrapods. V. The Action of Pilocarpine on the Pupil of the Guinea Pig. By Theodore 	173
Koppányi	179
XI. Action of Calcium on the Isolated Human Fetal Heart. By W. D. M.	
Lloyd XII. The Effect of Mercury on Cardiac Inhibition. By William Salant and	185
Keeve Brodman	195
XIII. The Influence of Pituitary Extract, "Vasopressin" and "Oxytocin" upon the Intact Intestine in Unanesthetized Dogs. By Charles M.	
	203
	227
XV. Experimental Study on the Sugar in Blood and Cerebro-Spinal Fluid. By S. Katzenelbogen	231
XVI. The Modification of Insulin Action in Medulliadrenal Inactivated Cats by Post-Pituitary Extracts. By E. M. K. Geiling, S. W. Britton and H.	201
0. Calvery	235

CONTENTS

Number 3, July, 1929

XVIII. Water Metabolism and Related Changes in Fat Fed and Fat-Free	
Fed Dogs under Morphine Addiction and Acute Withdrawal. By H. G.	
Barbour, L. G. Hunter and C. H. Richey.	251
XIX. The Solubility of Lead Salts in Physiological Salt Solutions. By L.	
C. Maxwell and Fritz Bischoff	27 9
XX. The Action of Mercury upon the Heart. By F. D. McCrea and Walter J.	
Meek	295
XXI. Effects of Long Continued Administration of Adrenalin. By A. M.	
Affleck	301
XXII. Investigation of the Hypoglycemic Properties of Reglykol, Pan-	
crepatine, and Papaw. By Fritz Bischoff, M. Louisa Long and Melville	
Sahyun	311
XXIII. The Salicylates. XVIII. Actions of Ammonium Salicylate Com-	
. pared with Sodium Salicylate. By C. C. Johnson and P. J. Hanzlik	319
XXIV. Comparison of Various Lactones with Santonin. I. Studies of	
Chemical Constitution and Pharmacological Action. By W. F. von	
Oettingen	335
XXV. The Toxicity and Vermicidal Properties of the Dilactone of Acetone	
Diacetic Acid and Beta Angelica Lactone in Cats. Dilactone and Beta	
Angelica Lactone as Anthelmintics. By W. F. von Oettingen and F.	
Garcia	355
XXVI. Relationship between the Pharmacological Action and the Chemical	
Constitution and Configuration of the Optical Isomers of Ephedrine and	
Related Compounds. By K. K. Chen, Chang-Keng Wu and Erle	
Henriksen	365
XXVII. Experimental Cocaine Addiction. By A. L. Tatum and M. H.	
Seevers.	1 01
XXVIII. The Antagonisms of Pilocarpine and Atropine and of Pilocarpine	
and Hyoscyamine on the Isolated Intestine of the Cat. The Physiologi- cal Assay of a Belladonna Extract. By Th. Exler and J. Van Niekerk	411
XXIX. The Nature of the Strychnin Reversal of the Ammonia Reflex in the	±11
	419
XXX. Racial Differences as Illustrated by the Mydriatic Action of Cocaine,	F1 9
Euphthalmine, and Ephedrine. By K. K. Chen and Edgar J. Poth 4	120
XXXI. Morphine Addiction and Its Physiological Interpretation Based on	
Experimental Evidences. By A. L. Tatum, M. H. Seevers and K. H.	
Collins	147
XXXII. Effect of Some Opium Alkaloids on Intestinal Movements in Cats.	
By N. B. Drever	177
XXXIII. Ouabain (g-Strophanthin or Acokantherin), Physiological Stand-	-
ard for Digitalis, Strophanthus, and Squill. By E. W. Schwartze, R.	
M. Hann and G. L. Keenan	181
XXXIV. Arthur S. Loevenhart	

CONTENTS

NUMBER 4, AUGUST, 1929

XXXV. The Control of Respiration in the Domestic Duck (Anas boscas). By Marion S. Dooley and Theodore Koppányi	507
XXXVI. A Comparative Study of the Effect upon Rat and Rabbit Tissues of Ephedrine Sulphate, Epinephrine Chloride and an Adrenaline-like	
Substance. By Edwin J. Doty	519
XXXVII. The Administration of Large Amounts of Ammonium Salts of	
Organic Acids. By Victor John Harding and Leslie Nelles Silverthorne XXXVIII. I. The Action of Ephedrine, Pseudoephedrine and Epinephrine	525
on the Bronchioles. By Edward E. Swanson	541
XXXIX. Comparative Effects of Ephedrine and Epinephrine on Blood	
Pressure, Pulse and Respiration with Reference to Their Alteration by	
Cocaine. By M. L. Tainter	56 9
XL. The Oxytocic Substance of Cerebrospinal Fluid. By H. B. Van Dyke,	
Percival Bailey and Paul C. Bucy.	595
XLI. The Toxicity of Synthalin. By W. G. Karr, W. P. Belk and O. H.	
Petty	611
XLII. Effects of Excessive Doses of Irradiated Ergosterol in Growing Rats	
and Dogs. By G. F. Cartland, J. H. Speer and F. W. Heyl	619
XLIII. Effect on Intestinal Movements of Certain Salts Administered Intra-	
venously. By N. B. Dreyer and Thelma Tsung	629
XLIV. Experimental Studies on Heart Tonics. I. The Variable Response	
of the Frog Heart to the Action of the Drug. By William Nyiri and	
Louis Du Bois	635
XLV. The Specific Action of Ergot Alkaloids on the Sympathetic Nervous	
System. By E. Rothlin	657
XLVI. Index	685

•

•

Standardization of the female sexual hormone, especially of pure water-solu- ble preparations (menformon) (Fig. 1)	9
Phenylethanolamine on untreated and previously constricted blood vessels of perfused rabbit ears (Fig. 1)	9 35
Pressor reactions of phenylethanolamine and epinephrine before and after	
ergotoxine in a dog (8.2 kgm.) (Fig. 2) Cocaine desensitization (partial) of phenylethanolamine and sensitization of	38
epinephrine on blood pressure in a rabbit (2.0 kgm.) (Fig. 3) —— desensitization (complete) of phenylethanolamine and sensitization of	39
epinephrine on blood pressure in a cat (20 kgm.) (Fig. 4)	4 0
Comparative effects of phenylethanolamine and epinephrine on excised bovine iris (Fig. 5)	45
inhibitory effects of phenylethanolamine (1:4200) and of epinephrine (1:5,000,000) on longitudinal strips of excised rabbit duodenum (Magnus	
method) (Fig. 6) Stimulation by phenylethanolamine of excised strip of ergotoxinized non-	47
pregnant uterus of rabbit, contrasted with slight depression by epi- nephrine (Fig. 7)	49
Diagram to show method of fractionating loco extracts used for feeding	58
Weight curve of cat 28, fed fraction A, from January 6 to March 2, 1925	
(Fig. 1) — curve of cat 18, fed fraction B, from May 9 to June 16, 1923 (Fig. 2) — curve of cat 17, fed fraction B, from May 9 to August 7, 1923, when feed-	63 63
ing of the loco was discontinued (Fig. 3)	64
the loco was discontinued (Fig. 4)	65
curve of cat 20 from October 12 to November 24, 1923, during the experi- mental feeding of fraction BAthe substances precipitated by lead ace-	
tate from the water-soluble fraction (Fig. 5) — curve of cat 21 from October 12 to November 24 fed the same fraction as	67
cat 20 (Fig. 6) — curve of cat 20 from August 21 to October 2, 1923, during the experimen-	67
tal feeding of fraction BC—the substances precipitated by basic lead acetate from the water-soluble fraction (Fig. 7)	68
curve of cat 21 from August 21 to October 2, 1923, fed the same fraction	
as cat 20 (Fig. 8) — curve of cat 22 from September 20, 1923, to January 7, 1924, during experi-	68
mental feeding of fraction BD—the substances not precipitated by lead	
(Fig. 9)	68
curve of cat 23 from September 20 to December 3, 1923, fed the same fraction as cat 22 (Fig. 10)	68
vi	

Weight curve of cat 24 from December 10, 1923, to March 17, 1924, while being fed the alkaloidal fraction BDE (Fig. 11)	70
 curve of cat 25 from December 10, 1923, to March 17, 1924, while being fed the alkaloidal fraction BDE (Fig. 12). curves of cats 35, 36, and 37 (Fig. 13). 	71 72
 curve of cat 32 fed resin acid, fraction BDC from July 18 to September 20, 1927 (Fig. 14) curve of cat 20, fed fraction BDD from December 3, 1923, to March 27, 	72
1924 (Fig. 15) — curve of cat 21 fed fraction BDD from December 3, 1923, to January 10, 1924 (Fig. 16)	73 74
 curve of cat 26 fed fraction BDA from January 21 to March 27, 1924 (Fig. 17). curve of cat 27 fed fraction BDA from January 21 to March 27, 1924 	74
(Fig. 18) — curve of cat 28, fed fraction BDG from September 19 to November 17, 1924 (Fig. 19)	75 75
 curve of cat 24, fed fraction BDH from September 29, 1924, to February 4, 1925 (Fig. 20). curve of cat 29 fed fraction BDP from June 25 to August 12, 1925 	76
(Fig. 21) — curve of cat 28 fed fraction BDF from June 25 to August 11, 1925 (Fig. 22)	78 79
 curve of cat 30, fed increasing doses of barium chloride from November 16, 1925, to October 26, 1926 (Fig. 23)	81 91
Experiment in which the same concentration of ergotamine was added to both strips, but histamine only to the upper one (Fig. 2)	92 108
	108
Injections of 10 cc. saline at various temperatures showing falls of blood- pressure below 37°C. and rises above 37°C., while at this critical tempera- ture compound effects occur (Fig. 4)	-
Fall of blood-pressure due to injection of 10 cc. saline—blood pressure 120 mm. Hg (Fig. 5a)	
 fall—due to injection of 10 cc. saline—blood pressure 110 mm. Hg (Fig. 5b) — animal as figures 5a and b. Rise of blood-pressure due to injection of 10 cc. saline—blood pressure 80 (Fig. 5c). 	
Male dog, 29 kgm. (Fig. 1). Unanesthetized female dog, 25 kgm. (Fig. 2).	158 163
Male dog, 6 kgm. (Fig. 3) Dog, 6 kgm. (Fig. 4) 	166 168
, 10.2 kgm. See figure 5 (Fig. 6)	109

.

·

·**n**.

Kymographic tracing of the beating human fetal heart after the addition of	
the first 10.5 cc. of a 0.25 per cent calcium chloride solution to the perfus-	
ing fluid (Fig. 1)	189
tracing of human fetal heart after the addition of a second 4 cc. of a 0.25	
per cent calcium chloride solution to the perfusing fluid (Fig. 2)	
tracing of human fetal heart following calcium administration (Fig. 3)	191
tracing of human fetal heart showing the effects of the addition of weak	
calcium solutions to the perfusing fluid (Fig. 4)	
Experiment 696. Cat, weight, 2.5 kgm. Urethane anesthesia (Fig. 1)	
C-6. Cat, weight, 3.8 kgm. Urethane anesthesia (Fig. 2)	
Unanesthetized 18-kgm. dog. Reduced ½ (Fig. 1)	211
16-kgm. dog. Reduced ² / ₃ (Fig. 2)	212
16-kgm. dog. Reduced ½ (Fig. 3)	
14-kgm. dog. Reduced ½ (Fig. 4)	
dog weighing 14 kgm. Reduced ½ (Fig. 5)	
dog weighing 17 kgm. Reduced & (Fig. 6)	218
dog weighing 17 kgm. Reduced $\frac{1}{2}$ (Fig. 7)	219
	220
dog weighing 17 kgm. (Fig. 9)	220
dog weighing 10 kgm. Reduced $\frac{1}{3}$ (Fig. 10)	
Development of toleration toward sodium nitrite recovery of susceptibility	222
on withdrawal of the nitrite (Fig. 1)	000
	440
with recovery of susceptibility on withdrawal of the nitrite (Fig. 2)	000
Body weight, total morphine sulfate, and fluidity of stools during acute	229
experimental periods (Fig. 1)	05 A
Blood specific gravity (Fig. 2)	
Serum specific gravity (Fig. 3).	
Water content of liver (Fig. 4).	400 004
content of muscle (Fig. 5)	
Liver fat (Fig. 6).	
Muscle fat (Fig. 7).	
Water intake and urine volume of dogs (Fig. 8)	
Alkali reserve of serum (Fig. 9)	
Serum calcium (Fig. 10).	
Solubility of lead salts in physiological salt solutions (Fig. 1)	290
Experiment 4. Dog. Weight 16 kgm. Showing the effect of 3 mgm. per	
kilogram of mercuric chloride injected intravenously. Ether anesthesia	
(Fig. 1)	298
Liberation of free salicylic acid according to hydrolysis of ammonium salicyl-	
ate and sodium salicylate in phosphate-citric acid buffer mixtures after	
one-hour incubation at 38°C. (Fig. 1)	322
Effects of small (4 gram) doses of ammonium salicylate on urinary volume,	
nitrogen and uric acid and blood uric acid, and the total urinary excretion	
of salicyl in human subjects on purine-free diets (Fig. 2)	324
Comparative effects of clinical "toxic" doses of ammonium and sodium salicyl-	
ates on urine and blood metabolites and the total urinary excretion of	
salicyl in convalescent subjects (Fig. 3)	325

Antipyretic effects of ammonium and sodium salicylates in experimental	
systemic infection of rabbits (Fig. 4)	
Effect of lactones on the intestines (Fig. 1)	
Analysis of the lactone effect (Fig. 3)	
Action of related compounds of ephedrine on blood pressure (Fig. 1)	
of related compounds of ephedrine on blood pressure (Fig. 2)	
of related compounds of ephedrine on blood pressure (Fig. 3)	
of related compounds of ephedrine on blood pressure (Fig. 4)	
of related compounds of ephedrine on blood pressure (Fig. 5)	
of related compounds of ephedrine on frog's heart (Fig. 6)	
of related compounds of ephedrine on frog's heart (Fig. 7)	
of related compounds of ephedrine on frog's heart (Fig. 8)	
of related compounds of ephedrine on frog's heart (Fig. 9)	
of optical isomers of ephedrine on blood pressure (Figs. 10 and 11) 387	
Quantitative comparison of the pressor activity of ephedrine isomers	
(Fig. 12)	
Action of related compounds of ephedrine on blood pressure (Fig. 13)	
Intestinal loop of rabbit in 75 cc. tyrode solution (Fig. 1)	
loop of cat in 75 cc. tyrode solution (Fig. 2)	
loop of cat in 75 cc. tyrode solution (Figs. 3 and 4)	
loop of cat in 75 cc. tyrode solution (Figs. 5 and 6) 416	
Nature of the strychnin reversal of the ammonia reflex in the rabbit (Figs. 1	
to 4)	
of the strychnin reversal of the ammonia reflex in the rabbit (Fig. 5) 426	
Comparison of the mydriatic action of <i>l</i> -ephedrine, <i>dl</i> -ephedrine, <i>d</i> -pseudo-	
ephedrine, cocaine, and euphthalmine in Caucasians, the Chinese, and	
Negroes (Fig. 1)	
Morphine addiction and its physiological interpretation based on experi-	
mental evidences (Fig. 1)	
Effect of some opium alkaloids on intestinal movements in cats (Figs. 1	
and 2)	
of some opium alkaloids on intestinal movements in cats (Fig. 3)	
Arthur S. Loevenhart	
Respiratory tracing of an etherized duck (Fig. 1)	
The upper tracing represents the respiratory, the lower one the blood pres-	
sure curve of a duck (Fig. 2) 510	
Respiratory (upper tracing) and blood pressure (lower tracing) records of a	
duck (Fig.3)	
tracing of a blindfolded, non-anesthetized duck, showing the effects of	
intravenous injections of CO ₂ (Fig. 4)	
CO ₂ inhalation from a closed jar; and the effect of intravenous injection	
of CO ₂ on postural apnea (Fig. 5)	
tracing of a blindfolded, non-anesthetized duck, showing the effect of the	
intravenous injection of 20 cc. of O_2 on respiration (Fig. 6)	
Intervention of a boot of or or or tespitation (Fig. 0)	

ix

·

Respiratory (upper tracing) and blood pressure (lower tracing) records of an	
anesthetized duck, showing the production of "apnea vera" by con-	
tinuous insufflation through the left humerus (Fig. 7)	510
demonstrating the effect of the stimulation of the central end of the	
vagus on respiration (Fig. 8)	510
record of an unanesthetized duck, demonstrating the effect of heat on	510
respiratory rate and postural apnea (Fig. 9)	512
(upper tracing) and blood pressure (lower tracing) records of a duck,	
demonstrating the effect of subcutaneous injection of 30 mgm. of morphine	
sulphate on postural apnea (Fig. 10)	512
tracing of a duck, showing the effect of the intravenous injection of 30	
mgm. of caffeine on the respiratory rate (Fig. 11)	512
(upper tracing) and blood pressure (lower tracing) records of a duck,	
demonstrating the effect of intramuscular injection of 6 cc. of a 1 per cent ammonium chloride solution on the respiratory rate (Fig. 12)	F10
	512
of the animal's hind legs and neck on respiration (Fig. 13)	519
	012
respiratory rate (Fig. 14)	512
tracing of a guinea pig, demonstrating the effect of the section of the	
right vagus (the left vagus has already been cut) on respiration (Fig. 15)	512
Action of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Fig. 1)	547
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Fig. 2) of ephedrine, pseudoephedrine and epinephrine on the bronchioles	548
(Fig. 3)	540
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	049
	550
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Fig. 5)	551
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Fig. 6)	552
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
	553
of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 8)	554
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	003
	555
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Fig. 10)	556
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
	557
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Fig. 12).	558
of ephedrine, pseudoephedrine and epinephrine on the bronchioles $(\mathbf{F}_{i=1}^{i}, 1_{2})$	
(Fig. 13)	998

Action of embedding manufambadwing and aninophying on the base shirles	
Action of ephedrine, pseudoephedrine and epinephrine on the bronchioles (Fig. 14)	200
—— of ephedrine, pseudoephedrine and epinephrine on the bronchioles	500
(The 15)	501
(Fig. 15)	501
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	~ ~ ~
(Figs. 16 and 17)	565
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Figs. 18 and 19)	
Median pressor responses to successive injections of ephedrine and epi-	
nephrine in dogs and cats (Fig. 1)	
Typical sensitization to the pressor action of epinephrine and simultaneous	
desensitization to that of ephedrine in a cocainized dog (Fig. 2)	
sensitization to the pressor action of epinephrine and simultaneous	
desensitization to that of ephedrine in a cocainized cat (Fig. 3)	580
desensitization to the pressor action of the first injection of ephedrine	
and sensitization to epinephrine in a cocainized dog (Fig. 4)	583
Increases in pulse rate after successive injections of ephedrine and of epi-	
nephrine (Fig. 5)	584
Control experiments illustrating the non-destruction of pituitary oxytocic	
principle when the calcium concentrations of artificial solution on canine	
cisternal cerebrospinal fluid were reduced by precipitation with Ca ₃ (PO ₄) ₂	
(Fig. 1)	598
Modified Trendelenburg apparatus for the titration of small amounts of	
oxytocic substances (Fig. 2)	601
Typical experiments illustrating the abolishment of the oxytocic effect of	
cerebrospinal fluid by the reduction of the calcium concentration of the	
fluid to the concentration present in the uterine bath-solution (Fig. 3)	602
Tracings from an experiment with a highly calcium-sensitive uterus (Fig. 4)	
Oxytocic effects of increased calcium concentrations in artificial solutions	
(Fig. 5)	605
Effects of excessive doses of irradiated ergosterol in growing rats and dogs	
(Fig. 1)	622
(Fig. 2A)	623
(Fig. 2B)	624
(Fig. 2C)	625
Shows the effect of intravenous injections of isotonic and hypertonic solu-	020
tions of sodium chloride and sodium sulphate (Fig. 1)	630
results obtained by giving isotonic sodium chloride solution, isotonic	
and hypertonic solutions of sodium bicarbonate and carbonate (Fig. 2)	630
	000
carbonate on the gut (Fig. 3)	631
Illustration of technic of operation upon frog	
Experimental studies on heart tonics (Fig. 1)	
(Trendelenburg's method.) Isolated guinea pig gut (Fig. 1)	
(Treaserenseite a method) Therated Runge his Rut (Like I)	004

٠

(Magnus' technique.) Isolated rabbit gut (Fig. 2)	663
Two specimens of isolated small intestine of rabbit (Fig. 3, a to d)	664
	665
specimens of isolated small intestine (Fig. 5; a to d)	666
specimens of isolated small intestine of rabbit (Fig. 6)	667
Rabbit weighing 2.8 kgm. (Fig. 7, a to c)	671
Dog (Fig. 8, a and b)	672
weighing 8 kgm. (Fig. 9)	674
Non-gravid isolated cat uterus (Fig. 10, a and b)	675
Isolated non-gravid uterus of cat (Fig. 11, a and b)	677
uterus of a cat which had kittens a day before (Fig. 12, a and b)	678