Downloaded from jpet.aspetjournals.org at ASPET Journals on April 10, 2024

CONTENTS

Number 1, May, 1929

I. On the Standardization of the Female Sexual Hormone, Especially of Pure Water-Soluble Preparations (Menformon). By Ernst Laqueur and S. E.	
de Jongh	[}{2
III. A Contribution to the Study of Locoism. By James Fitton Couch	3.5
 V. Saline Injections. By Swale Vincent and J. H. Thompson	
Number 2, June, 1929	
VII. The Effect of Magnesium Sulphate on Strychnine Convulsions. By Frank P. Underhill and Edward C. Wood	} {
pressin," "Oxytocin," Pituitary Extract and Other Drugs. By Charles M. Gruber	jĘ.
IX. The Effect of Ceanothyn Extract on the Normal Human Blood-Coagulation Time. By O. S. Gibbs	73
Action of Pilocarpine on the Pupil of the Guinea Pig. By Theodore Koppányi	7
Lloyd	ķ
Keeve Brodman	
Gruber and Paul I. Robinson	27
By S. Katzenelbogen	
O. Calvery 23 XVII. A Pharmacological Study of Leucines and Cystines. By David I. Macht. 24	

Number 3, July, 1929

XVIII. Water Metabolism and Related Changes in Fat Fed and Fat-Free Fed Dogs under Morphine Addiction and Acute Withdrawal. By H. G.	
Barbour, L. G. Hunter and C. H. Richey	051
XIX. The Solubility of Lead Salts in Physiological Salt Solutions. By L.	201
	070
C. Maxwell and Fritz Bischoff	219
	295
Meek	293
Affleck	201
XXII. Investigation of the Hypoglycemic Properties of Reglykol, Pan-	901
crepatine, and Papaw. By Fritz Bischoff, M. Louisa Long and Melville	
Sahyun	911
XXIII. The Salicylates. XVIII. Actions of Ammonium Salicylate Com-	911
pared with Sodium Salicylate. By C. C. Johnson and P. J. Hanzlik	210
XXIV. Comparison of Various Lactones with Santonin. I. Studies of	019
Chemical Constitution and Pharmacological Action. By W. F. von	
Oettingen	225
XXV. The Toxicity and Vermicidal Properties of the Dilactone of Acetone	000
Diacetic Acid and Beta Angelica Lactone in Cats. Dilactone and Beta	
Angelica Lactone as Anthelmintics. By W. F. von Oettingen and F.	
Garcia	355
XXVI. Relationship between the Pharmacological Action and the Chemical	000
Constitution and Configuration of the Optical Isomers of Ephedrine and	
Related Compounds. By K. K. Chen, Chang-Keng Wu and Erle	
Henriksen	365
XXVII. Experimental Cocaine Addiction. By A. L. Tatum and M. H.	•••
Seevers	401
XXVIII. The Antagonisms of Pilocarpine and Atropine and of Pilocarpine	
and Hyoscyamine on the Isolated Intestine of the Cat. The Physiologi-	
cal Assay of a Belladonna Extract. By Th. Exler and J. Van Niekerk	411
XXIX. The Nature of the Strychnin Reversal of the Ammonia Reflex in the	
Rabbit. By P. F. Swindle	419
XXX. Racial Differences as Illustrated by the Mydriatic Action of Cocaine,	
Euphthalmine, and Ephedrine. By K. K. Chen and Edgar J. Poth	42 9
XXXI. Morphine Addiction and Its Physiological Interpretation Based on	
Experimental Evidences. By A. L. Tatum, M. H. Seevers and K. H.	
Collins	447
XXXII. Effect of Some Opium Alkaloids on Intestinal Movements in Cats.	
By N. B. Dreyer	477
XXXIII. Ouabain (g-Strophanthin or Acokantherin), Physiological Stand-	
ard for Digitalis, Strophanthus, and Squill. By E. W. Schwartze, R.	
M. Hann and G. L. Keenan	
XXXIV. Arthur S. Loevenhart	493

CONTENTS

Number 4, August, 1929

· · · · · · · · · · · · · · · · · · ·	
XXXV. The Control of Respiration in the Domestic Duck (Anas boscas).	
By Marion S. Dooley and Theodore Koppányi	507
XXXVI. A Comparative Study of the Effect upon Rat and Rabbit Tissues of	
Ephedrine Sulphate, Epinephrine Chloride and an Adrenaline-like	
Substance. By Edwin J. Doty	519
XXXVII. The Administration of Large Amounts of Ammonium Salts of	
Organic Acids. By Victor John Harding and Leslie Nelles Silverthorne.	525
XXXVIII. I. The Action of Ephedrine, Pseudoephedrine and Epinephrine	
on the Bronchioles. By Edward E. Swanson	541
XXXIX. Comparative Effects of Ephedrine and Epinephrine on Blood	
Pressure, Pulse and Respiration with Reference to Their Alteration by	
Cocaine. By M. L. Tainter	569
XL. The Oxytocic Substance of Cerebrospinal Fluid. By H. B. Van Dyke,	
Percival Bailey and Paul C. Bucy	595
XLI. The Toxicity of Synthalin. By W. G. Karr, W. P. Belk and O. H.	
	611
XLII. Effects of Excessive Doses of Irradiated Ergosterol in Growing Rats	
and Dogs. By G. F. Cartland, J. H. Speer and F. W. Heyl	619
XLIII. Effect on Intestinal Movements of Certain Salts Administered Intra-	
venously. By N. B. Dreyer and Thelma Tsung	629
XLIV. Experimental Studies on Heart Tonics. I. The Variable Response	
of the Frog Heart to the Action of the Drug. By William Nyiri and	
Louis Du Bois	635
XLV. The Specific Action of Ergot Alkaloids on the Sympathetic Nervous	
System. By E. Rothlin	657
XLVI. Index	685

ILLUSTRATIONS

Standardization of the female sexual hormone, especially of pure water-solu-	
ble preparations (menformon) (Fig. 1)	9
Phenylethanolamine on untreated and previously constricted blood vessels of	
perfused rabbit ears (Fig. 1)	35
Pressor reactions of phenylethanolamine and epinephrine before and after	
ergotoxine in a dog (8.2 kgm.) (Fig. 2)	38
Cocaine desensitization (partial) of phenylethanolamine and sensitization of	
epinephrine on blood pressure in a rabbit (2.0 kgm.) (Fig. 3)	39
— desensitization (complete) of phenylethanolamine and sensitization of	
epinephrine on blood pressure in a cat (20 kgm.) (Fig. 4)	4 0
Comparative effects of phenylethanolamine and epinephrine on excised	
bovine iris (Fig. 5)	45
— inhibitory effects of phenylethanolamine (1:4200) and of epinephrine	
(1:5,000,000) on longitudinal strips of excised rabbit duodenum (Magnus	
method) (Fig. 6)	47
Stimulation by phenylethanolamine of excised strip of ergotoxinized non-	
pregnant uterus of rabbit, contrasted with slight depression by epi-	
nephrine (Fig. 7)	49
Diagram to show method of fractionating loco extracts used for feeding	58
Weight curve of cat 28, fed fraction A, from January 6 to March 2, 1925	
(Fig. 1)	63
—— curve of cat 18, fed fraction B, from May 9 to June 16, 1923 (Fig. 2) —— curve of cat 17, fed fraction B, from May 9 to August 7, 1923, when feed-	63
ing of the loco was discontinued (Fig. 3)	64
the loco was discontinued (Fig. 4)	65
curve of cat 20 from October 12 to November 24, 1923, during the experi-	
mental feeding of fraction BA—the substances precipitated by lead ace-	
tate from the water-soluble fraction (Fig. 5)	67
— curve of cat 21 from October 12 to November 24 fed the same fraction as	
cat 20 (Fig. 6)	67
curve of cat 20 from August 21 to October 2, 1923, during the experimen-	
tal feeding of fraction BC—the substances precipitated by basic lead	••
acetate from the water-soluble fraction (Fig. 7)	6 8
curve of cat 21 from August 21 to October 2, 1923, fed the same fraction	•
as cat 20 (Fig. 8)	6 8
- curve of cat 22 from September 20, 1923, to January 7, 1924, during experi-	
mental feeding of fraction BD—the substances not precipitated by lead	68
(Fig. 9)	UO
curve of cat 23 from September 20 to December 3, 1923, fed the same	68
fraction as cat 22 (Fig. 10)	vo

Weight curve of cat 24 from December 10, 1923, to March 17, 1924, while being	
fed the alkaloidal fraction BDE (Fig. 11)	70
curve of cat 25 from December 10, 1923, to March 17, 1924, while being fed	
the alkaloidal fraction BDE (Fig. 12)	71
curves of cats 35, 36, and 37 (Fig. 13)	72
curve of cat 32 fed resin acid, fraction BDC from July 18 to September 20,	
1927 (Fig. 14)	72
curve of cat 20, fed fraction BDD from December 3, 1923, to March 27,	-
1924 (Fig. 15)	73
curve of cat 21 fed fraction BDD from December 3, 1923, to January 10,	•
1924 (Fig. 16)	74
curve of cat 26 fed fraction BDA from January 21 to March 27, 1924	
(Fig. 17)	74
curve of cat 27 fed fraction BDA from January 21 to March 27, 1924	
· · · · · · · · · · · · · · · · · · ·	75
(Fig. 18)	**
·	75
1924 (Fig. 19)	10
curve of cat 24, fed fraction BDH from September 29, 1924, to February	70
4, 1925 (Fig. 20)	76
- curve of cat 29 fed fraction BDP from June 25 to August 12, 1925	
(Fig. 21)	78
- curve of cat 28 fed fraction BDF from June 25 to August 11, 1925	
(Fig. 22)	79
- curve of cat 30, fed increasing doses of barium chloride from November	
16, 1925, to October 26, 1926 (Fig. 23)	81
Two strips from the same uterus (Fig. 1)	91
Experiment in which the same concentration of ergotamine was added to both	
strips, but histamine only to the upper one (Fig. 2)	92
Fall of blood-pressure due to injection of 10 cc. saline (Fig. 1)	108
Injection of 10 cc. saline into internal jugular vein, femoral vein (Fig. 2)	108
Experiment demonstrating the effect upon the blood-pressure of 10 cc. saline	
injected at different speeds: 2, 5, 10, 15, 20, 40, 55 seconds (Fig. 3)	1
injections of 10 cc. saline at various temperatures showing falls of blood-	
pressure below 37°C. and rises above 37°C., while at this critical tempera-	
ture compound effects occur (Fig. 4)	
Fall of blood-pressure due to injection of 10 cc. saline—blood pressure 120 mm.	
Hg (Fig. 5a)	111
Same animal as figure 5a. Compound effect—delayed initial rise and after-	
fall—due to injection of 10 cc. saline—blood pressure 110 mm. Hg (Fig. 5b)	111
— animal as figures 5a and b. Rise of blood-pressure due to injection of 10	
cc. saline—blood pressure 80 (Fig. 5c)	111
Male dog, 29 kgm. (Fig. 1)	158
Unanesthetized female dog, 25 kgm. (Fig. 2)	163
Male dog, 6 kgm. (Fig. 3)	
Dog, 6 kgm. (Fig. 4)	
, 8.2 kgm. (Fig. 5)	
, 0.2 kgm, (Fig. 0) 10.2 kgm - San figure 5 (Fig. 6)	100

Kymographic tracing of the beating human fetal heart after the addition of	
the first 10.5 cc. of a 0.25 per cent calcium chloride solution to the perfus-	
ing fluid (Fig. 1)	189
- tracing of human fetal heart after the addition of a second 4 cc. of a 0.25	
per cent calcium chloride solution to the perfusing fluid (Fig. 2)	190
tracing of human fetal heart following calcium administration (Fig. 3)	191
	101
Experiment 696. Cat, weight, 2.5 kgm. Urethane anesthesia (Fig. 1)	
C-6. Cat, weight, 3.8 kgm. Urethane anesthesia (Fig. 2)	
Unanesthetized 18-kgm. dog. Reduced ½ (Fig. 1)	
—— 16-kgm. dog. Reduced $\frac{2}{3}$ (Fig. 2)	211
16-kgm. dog. Reduced ½ (Fig. 3)	
14-kgm. dog. Reduced ½ (Fig. 4)	
	218
	219
—— 18-kgm. dog (Fig. 8)	220
	221
dog weighing 10 kgm. Reduced \(\frac{1}{3} \) (Fig. 10)	
Development of toleration toward sodium nitrite recovery of susceptibility	
on withdrawal of the nitrite (Fig. 1)	228
- of toleration toward nitroglycerin in rabbits receiving sodium nitrite	
with recovery of susceptibility on withdrawal of the nitrite (Fig. 2)	22 9
Body weight, total morphine sulfate, and fluidity of stools during acute	
experimental periods (Fig. 1)	
Blood specific gravity (Fig. 2)	
Serum specific gravity (Fig. 3)	
Water content of liver (Fig. 4)	
— content of muscle (Fig. 5)	
Liver fat (Fig. 6)	
Muscle fat (Fig. 7)	
Water intake and urine volume of dogs (Fig. 8)	
Alkali reserve of serum (Fig. 9)	
Serum calcium (Fig. 10)	
Solubility of lead salts in physiological salt solutions (Fig. 1)	290
Experiment 4. Dog. Weight 16 kgm. Showing the effect of 3 mgm. per kilogram of mercuric chloride injected intravenously. Ether anesthesia	
(Fig. 1)	200
Liberation of free salicylic acid according to hydrolysis of ammonium salicyl-	290
ate and sodium salicylate in phosphate-citric acid buffer mixtures after	
one-hour incubation at 38°C. (Fig. 1)	399
Effects of small (4 gram) doses of ammonium salicylate on urinary volume,	
nitrogen and uric acid and blood uric acid, and the total urinary excretion	
of salicyl in human subjects on purine-free diets (Fig. 2)	324
Comparative effects of clinical "toxic" doses of ammonium and sodium salicyl-	
ates on urine and blood metabolites and the total urinary excretion of	
· ·	325

Antipyretic effects of ammonium and sodium salicylates in experimental	
systemic infection of rabbits (Fig. 4)	
Effect of lactones on the intestines (Fig. 1)	345
—— of lactones on the heart (Fig. 2)	347
Analysis of the lactone effect (Fig. 3)	349
Action of related compounds of ephedrine on blood pressure (Fig. 1)	370
— of related compounds of ephedrine on blood pressure (Fig. 2)	
— of related compounds of ephedrine on blood pressure (Fig. 3)	
— of related compounds of ephedrine on blood pressure (Fig. 4)	
— of related compounds of ephedrine on blood pressure (Fig. 5)	
— of related compounds of ephedrine on frog's heart (Fig. 6)	
of related compounds of ephedrine on frog's heart (Fig. 7)	
- of related compounds of ephedrine on frog's heart (Fig. 8)	370
- of related compounds of ephedrine on frog's heart (Fig. 9)	
- of optical isomers of ephedrine on blood pressure (Figs. 10 and 11)	
Quantitative comparison of the pressor activity of ephedrine isomers	901
	207
(Fig. 12)	
Action of related compounds of ephedrine on blood pressure (Fig. 13)	
of related compounds of ephedrine on blood pressure (Fig. 14)	
Intestinal loop of rabbit in 75 cc. tyrode solution (Fig. 1)	
—— loop of cat in 75 cc. tyrode solution (Fig. 2)	413
—— loop of cat in 75 cc. tyrode solution (Figs. 3 and 4)	
—— loop of cat in 75 cc. tyrode solution (Figs. 5 and 6)	416
Nature of the strychnin reversal of the ammonia reflex in the rabbit (Figs. 1	
to 4)	425
—— of the strychnin reversal of the ammonia reflex in the rabbit (Fig. 5)	426
Comparison of the mydriatic action of l-ephedrine, dl-ephedrine, d-pseudo-	
ephedrine, cocaine, and euphthalmine in Caucasians, the Chinese, and	
Negroes (Fig. 1)	440
Morphine addiction and its physiological interpretation based on experi-	
mental evidences (Fig. 1)	472
Effect of some opium alkaloids on intestinal movements in cats (Figs. 1	
	478
— of some opium alkaloids on intestinal movements in cats (Fig. 3)	
Arthur S. Loevenhart	
Respiratory tracing of an etherized duck (Fig. 1)	
The upper tracing represents the respiratory, the lower one the blood pres-	
sure curve of a duck (Fig. 2)	510
Respiratory (upper tracing) and blood pressure (lower tracing) records of a	010
duck (Fig.3)	51A
tracing of a blindfolded, non-anesthetized duck, showing the effects of	010
	510
intravenous injections of CO ₂ (Fig. 4)	910
tracing of a blindfolded, non-anesthetized duck, showing a, the effect of	
CO ₂ inhalation from a closed jar; and the effect of intravenous injection	E10
of CO ₂ on postural apnea (Fig. 5)	910
tracing of a blindfolded, non-anesthetized duck, showing the effect of the	
intravenous injection of 20 cc. of O ₂ on respiration (Fig. 6)	510

Respiratory (upper tracing) and blood pressure (lower tracing) records of an	
anesthetized duck, showing the production of "apnea vera" by con-	
tinuous insufflation through the left humerus (Fig. 7)	510
- (upper tracing) and blood pressure (lower tracing) records of a duck,	
demonstrating the effect of the stimulation of the central end of the	
vagus on respiration (Fig. 8)	F10
record of an unanesthetized duck, demonstrating the effect of heat on	910
respiratory rate and postural apnea (Fig. 9)	512
(upper tracing) and blood pressure (lower tracing) records of a duck,	
demonstrating the effect of subcutaneous injection of 30 mgm. of morphine	
sulphate on postural apnea (Fig. 10)	512
tracing of a duck, showing the effect of the intravenous injection of 30	
mgm, of caffeine on the respiratory rate (Fig. 11)	512
— (upper tracing) and blood pressure (lower tracing) records of a duck.	
demonstrating the effect of intramuscular injection of 6 cc. of a 1 per cent	
ammonium chloride solution on the respiratory rate (Fig. 12)	512
— tracing of an unanesthetized guinea pig, showing the effects of stretching	012
of the animal's hind legs and neck on respiration (Fig. 13)	510
- tracing of a guinea pig, showing the effect of CO ₂ inhalation on the	312
respiratory rate (Fig. 14)	710
	512
- tracing of a guinea pig, demonstrating the effect of the section of the	
right vagus (the left vagus has already been cut) on respiration (Fig. 15)	512
Action of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Fig. 1)	547
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Fig. 2)	548
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Fig. 3)	549
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
	550
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
	551
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
	552
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	002
	553
	999
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
/B/	554
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
	555
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
	556
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Fig. 11)	557
of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
	558
- of ephedrine, pseudoephedrine and epinephrine on the bronchioles	
(Fig. 13)	559
(8/	

Action of ephedrine, pseudoephedrine and epinephrine on the b	oronchioles	
(Fig. 14)	• • • • • • • • • • •	560
of ephedrine, pseudoephedrine and epinephrine on the b	ronchioles	
(Fig. 15)		
- of ephedrine, pseudoephedrine and epinephrine on the b	pronchioles	
(Figs. 16 and 17)		
of ephedrine, pseudoephedrine and epinephrine on the b	ronchioles	•••
(Figs. 18 and 19)		
Median pressor responses to successive injections of ephedrine		
nephrine in dogs and cats (Fig. 1)		
Typical sensitization to the pressor action of epinephrine and sin		
desensitization to that of ephedrine in a cocainized dog (Fig. 2)		
sensitization to the pressor action of epinephrine and sin	nultaneous	
desensitization to that of ephedrine in a cocainized cat (Fig. 3).		
desensitization to the pressor action of the first injection of	ephedrine	
and sensitization to epinephrine in a cocainized dog (Fig. 4)	- 	583
Increases in pulse rate after successive injections of ephedrine a		
nephrine (Fig. 5)		
Control experiments illustrating the non-destruction of pituitar	v ovytonia	•
principle when the calcium concentrations of artificial solution		
cisternal cerebrospinal fluid were reduced by precipitation with		
(Fig. 1)		598
Modified Trendelenburg apparatus for the titration of small a		
oxytocic substances (Fig. 2)		601
Typical experiments illustrating the abolishment of the oxytocic	c effect of	
cerebrospinal fluid by the reduction of the calcium concentrate	tion of the	
fluid to the concentration present in the uterine bath-solution ((Fig. 3)	602
Tracings from an experiment with a highly calcium-sensitive uterus		
Oxytocic effects of increased calcium concentrations in artificial		
(Fig. 5)		605
Effects of excessive doses of irradiated ergosterol in growing rats		000
	_	200
(Fig. 1) of excessive doses of irradiated ergosterol in growing rats		044
	_	000
(Fig. 2A)		623
— of excessive doses of irradiated ergosterol in growing rats		
(Fig. 2B)		624
of excessive doses of irradiated ergosterol in growing rats	and dogs	
(Fig. 2C)		625
Shows the effect of intravenous injections of isotonic and hypert	tonic solu-	
tions of sodium chloride and sodium sulphate (Fig. 1)		630
- results obtained by giving isotonic sodium chloride solution		
and hypertonic solutions of sodium bicarbonate and carbonate		630
— depressing effect of magnesium sulphate and stimulating effect		000
carbonate on the gut (Fig. 3)		631
Illustration of technic of operation upon frog		
Experimental studies on heart tonics (Fig. 1)		
(Trendelenburg's method) Isolated guines pig gut (Fig. 1)		RR2

ILLUSTRATIONS

(Magnus' technique.) Isolated rabbit gut (Fig. 2)	663
Two specimens of isolated small intestine of rabbit (Fig. 3, a to d)	
	665
Rabbit weighing 2.8 kgm. (Fig. 7, a to c)	
Dog (Fig. 8, a and b)	672
—— weighing 8 kgm. (Fig. 9)	674
Non-gravid isolated cat uterus (Fig. 10, a and b)	
solated non-gravid uterus of cat (Fig. 11, a and b)	
uterus of a cat which had kittens a day before (Fig. 12, a and b)	